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RESUM

El reconeixement de grà�cs ha estat una àrea d'intensa recerca en el camp de l'anàlisi de documents. El
reconeixement de grà�cs es centra en la interpretació d'estructures grà�ques en imatges de documents.
Entre les aplicacions més comunes es troba el reconeixement i la interpretació de diagrames de circuits
lògics, plànols d'arquitectura, equacions matemàtiques, el reconeixement de logos i el reconeixement de
partitures musicals.
En els darrers anys hi ha hagut un interès creixent en l'anàlisi de documents antics per a la preservació
d'antigues col.leccions de documents existents en arxius històrics, i així convertir-les en llibreries digitals.
El Reconeixement Òptic Musical consisteix en la identi�cació d'informació musical a partir d'imatges de
partitures i la seva conversió en un format que pugui entendre l'ordinador. Aquests sistemes permetran
un gran nombre d'aplicacions, incloent l'edició i renovació de partitures, la conversió al codi Braile, la
creació de bases de dades per realitzar anàlisis musicològics o �ns i tot la producció de �txers d'àudio o
de descripció musical.
Encara que el Reconeixement Òptic Musical es una àrea madura en partitures impreses, pocs treballs
de recerca s'han fet sobre partitures manuscrites. En aquest treball de recerca, es proposa un mètode
per a les etapes inicials del reconeixement: segmentació de les línies de pentagrama i de primitives
grà�ques en partitures manuscrites. Després d'introduir la feina realitzada amb partitures modernes
manuscrites, es descriu la metodologia aplicada per treballar amb partitures manuscrites antigues. En
aquest tipus de partitures, les di�cultats del reconeixement s'incrementen degut a la degradació del pa-
per i la manca d'estàndard en la notació musical, per tant, es requereixen altres tipus de tècniques. El
nostre mètode ha estat provat amb partitures del segle XIX amb un elevat percentatge de reconeixement.

Paraules clau: Reconeixement Òptic Musical, Documents antics, Diagrames manuscrits, Reconeix-
ement de documents grà�cs, Reconeixement de símbols.

ABSTRACT

Graphics recognition is an intensive research area within the document image analysis �eld. Graph-
ics recognition is focused in the interpretation of graphical structures in document images.
Typical applications of graphics recognition are the interpretation of logic circuit diagrams, engineer-
ing drawings, maps, architectural drawings, mathematical equations, logo recognition and optical music
recognition.
In the last years there is a growing interest in the analysis of ancient documents, in order to preserve
old collections of documents existing in archives and to convert them to digital libraries.
Optical Music Recognition consists in the identi�cation of music information from images of scores and
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their conversion into a machine readable format. Such systems will allow a huge number of applications,
including the edition and renewal of scores, the conversion into Braille code, the creation of collecting
databases to perform musicological analysis, and the production of audio or musical description �les.
Although Optical Musical Recognition is a mature area in printed scores, few research works have been
done in handwritten ones. In this dissertation, we propose a method for the early stages of the recog-
nition: segmentation of sta� lines and graphical primitives in handwritten scores. After introducing
our work with modern musical scores, an approach to deal with old handwritten scores is exposed. In
such these old scores, di�culties in recognition are increased due to paper degradation and the lack of a
standard in musical notation, so other techniques are required. Our method has been tested with several
scores of XIX century with high performance rates.

Keywords: Optical music recognition, Old documents, Handwritten diagrams, Graphics Recog-
nition, Symbol Recognition.
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Chapter 1

Introduction

In this section, a brief introduction to the �eld of Optical Music Recognition (OMR) is presented.
Firstly, an initial location of this area in Pattern Recognition �eld, exposing the main applications and
di�culties of OMR. Secondly, elements of musical notation, structure of scores and layers of the system
are shown.

1.1 Framework
One of the major �elds of research in Computer Vision is Pattern Recognition, consisting in the study

of the operation and design of systems that recognize patterns in data. It encloses subdisciplines like
discriminant analysis, feature extraction, error estimation, cluster analysis (together sometimes called
statistical pattern recognition), grammatical inference and parsing (syntactical pattern recognition).
Important application areas in image analysis are industrial inspection, person identi�cation (includ-
ing human faces recognition) and document analysis (see Fig.1.1), which includes the popular Optical
Character Recognition and graphical analysis (where Optical Music Recognition belongs).

1.1.1 Document Image Analysis
Document image analysis, is the process that performs the overall interpretation of document images.

Because of wide variability in the structure of documents, Document Image Analysis is divided in three
major areas of research: Optical Character Recognition, Layout understanding(Structure of Documents)
and Graphic Recognition (where Optical Music Recognition belongs).

Optical Character Recognition Optical Character Recognition (OCR) is focused on the recog-
nition of text (printed and handwritten) in documents, and is one of the most classical and common
areas of pattern recognition research. In [1] and [2], we can �nd extensive surveys of OCR research: the
concept of Optical Character Recognition (optically because it deals with scanned-optically processed

1
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Figure 1.1: Pattern Recognition.

characters rather than magnetically processed ones) appeared in the 1940s with the development of
digital computers. The principal motivation for the development of OCR systems is the need to cope
with the enormous �ood of paper such as bank cheques, commercial forms, government records, credit
cards imprints and mail sorting. The research of OCR systems has been a subject of great interest, and
a large number of papers and books have been published about this area. Presently, the methodologies
in character recognition have advanced from the earlier use of primitive techniques for the recogni-
tion of printed numerals, to sophisticated techniques for the recognition of a wide variety of complex
handwritten characters, symbols and chinese and japanese characters.

There are two major areas in OCR (see Fig.1.2a)): On-line and o�-line character recognition. O�-
line is performed after the writing or printing is completed. OCR deals with the recognition of optically
processed characters (typically digitized by an optical scanner).

Layout understanding The aim of layout understanding is the analysis of data contained in image
documents and the recognition of its structure: determine what region corresponds to text, graphics,
tables and images. An interesting application of these systems is the possibility to perform the intelligent
information retrieval from a digital library.

An approach of a layout document understanding system can be found in [3], where layout analysis
starts with block segmentation which decomposes the digital image of a document page into regions.
The process locates large streams of white space (background analysis) running horizontally or vertically.
Streams that are considered region boundaries are used to partition the image into regions. A region
must be bound by two horizontal and vertical background boundaries. Figure 1.3 shows the regions
of a document after block segmentation. Then those regions are classi�ed into one of the structural
categories such as text, line drawings, tables and photographs. The classi�cation of a region is performed
by matching a set of features extracted from the region against the prede�ned reference features of a
category.
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(a) (b)

Figure 1.2: (a) OCR Classi�cation. (b) Example of a Text document.

Graphics Recognition Graphics recognition of documents has been an area of intensive research
in the �eld of pattern recognition and document analysis. Main applications are the interpretation of
logic circuit diagrams, engineering drawings, maps, architectural drawings (see Fig.1.4), mathematical
equations, logo recognition and optical music recognition.

The automatic interpretation of such documents, requires processes able to recognize the correspond-
ing alphabets of symbols (see [4]). In a general way, a symbol can be de�ned as a graphical entity with a
particular meaning in the context of an speci�c application domain. Each kind of graphic document own
a characteristic set of symbols according to their visual properties (see Fig.1.5): in circuits and maps,
symbols are simple 2D binary shapes composed of line segments, in logos there are complex gray level
or color shapes whereas in musical scores symbols are a combination of line segments and solid shapes.

1.1.2 Optical Music Recognition
The advancement of computer technology has a great in�uence on the musical �eld. Whether in

multimedia processing or in performing time consuming tasks (such as transposition), the computer
o�ers accuracy. This musical information has to be represented in a machine readable format, and input
methods become an important factor. Apart from the popular electronic keyboards, a good input method
can be scanned images of musical scores (see Fig.1.6), due to the enormous quantities of paper-based
music existing.

The aim of Optical Music Recognition (OMR) is the identi�cation of music information from images
of scores and its conversion into a machine legible format. This �eld was �rst attempted in the late 1960s
and early 1970s, and research has been increasing over the last decade due to its potential bene�ts: The
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Figure 1.3: Regions segmented in a document.

Figure 1.4: Architectural drawing.

existence of an automatic recognition system for musical scores can make practical the conversion of large
quantities of scores into a computer-readable form. This is similar to the requirement for automatic entry
of engineering drawings for existing documents.

Once music is stored (using some music representational language), it can be manipulated freely,
enabling the development of a wide variety of applications (see [5],[6]):

• Edition and publication of scores never edited.

• Renewal of old scores.

• Conversion of scores into Braille code to aid blind musicians.

• Adaption of existing works to other instrumentations (such as the reduction of full scores to piano
scores).
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Figure 1.5: Some Graphic Symbols.

Figure 1.6: Example of a musical score.

• Making critical editions of musical compositions given di�erent printed versions of the same com-
position.

• Transpose a music sample to some other clef or key signature.

• Produce parts from a given score or a full score from given parts.

• Read in a newly engraved piece of music and proofread it for syntactic and other errors.

• Print newly written music automatically (on-line recognition).

• Creation of collecting databases to perform musicological analysis

• Production of audio �les (the computer becomes a musician).
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• Production of musical description �les: NIFF (Notation Interchange File Format) and MIDI
(Music International Device Interface).

• Creation of collecting databases:

� Creation of indices of themes and other music features.

� Analysis of musical structure and style.

� Automatic Harmonization of monophonic scores.

� Testing theories of music.

� Evaluation of algorithms for the automatic analysis or composition of music.

Optical Music Recognition has many similarities with Optical Character Recognition because whereas
OCR recognizes characters in text, OMR recognizes musical symbols in scores, and some techniques of
OCR can be e�ectively used in OMR. In fact OCR is a sub-task of OMR because lots of scores include
text, that must be also recognized. It is nevertheless true that OMR belongs to graphical analysis because
it requires the understanding of two-dimensional relationships (musical symbols have two-dimensional
shapes).

Di�culties Main character recognition problems are: Shape discrimination (there is a lot of di�er-
ent fonts and styles in printed characters and thousands of handwriting shapes), deformation of the
image caused by noise (disconnected line segments, holes and breaks in lines, isolated notes), translation
(movement of a whole character or its components) and rotation (change in orientation); and variations
in sizes and pitch. In addition, an OCR system must be able to distinguish �gure from text, recognize
touching characters, and be una�ected by proportional spacing and variable line spacing.

Main optical music recognition problems are:

• Musical symbols are written on the sta�: For that reason, musical symbols are connected by sta�
lines making di�cult the segmentation stage.

• Translation (movement of a whole symbol or its components) and rotation (change in orientation)
of musical symbols.

• Variations in sizes: musical symbols have great variation in relative sizes (whereas in OCR, sizes
of characters do not vary much, see Fig.1.7).

Figure 1.7: Sizes of musical symbols (treble clef, �at and duration dot) in front of sizes of text.
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• Distinguish musical symbols from text-lyrics and dynamic marks.

• Touching objects: The scores to be recognized are complex and have a high density of symbols.
As a result, connections are often found between musical objects that syntactically should not be
touching, causing segmentation problems (see Fig.1.8).

Figure 1.8: Touching musical symbols.

• Broken objects: one of the most common problems when scanning is the introduction of noise,
which frequently causes broken objects: holes and breaks in lines, isolated notes. In addition,
objects a�ected are small, making di�cult their recognition.

Notice that it must be di�cult to scale up a prototype into one capable of analyzing complex
music (such as polyphonic music). Most existing OMR are adapted to simple scores, because grammar
organization for complex scores could contain hundreds of production rules, becoming unmanageable.

Handwritten scores As commented in [7] and [8], although the introduction of new technologies
(such as typewriter, computers and PDAs), handwriting persists as a means of communication and
recording information for numerous day-to-day situations: postal addresses on envelopes, bank checks,
handwritten �elds in forms... For that reason, OCR systems for handwritten documents (see Fig.1.9)
are required (also called Intelligent Character Recognition systems, ICR) in order to transform a lan-
guage represented in its spatial form of graphical marks (handwritten documents) into its symbolic
representation.

Figure 1.9: Example of a Handwriting text.

Concerning Optical Music Recognition, a system capable to recognize handwritten musical scores
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(see Fig.1.10) is also required. In fact, OMR is a mature area for printed scores (there is a lot of literature
about the recognition of printed scores) whereas few research works have been done in handwritten ones.

Figure 1.10: Example of an handwriting musical score.

When compared to classical OMR systems for printed scores, handwritten music recognition intro-
duces additional di�culties in the segmentation and the recognition process. The most important are
the following:

• Notation varies from writer to writer.

• Simple and large changes in notation can occur in the same score.

• Sta� lines are often handwritten, so they mostly do not have the same height and are rarely
straight.

• Symbols are written with di�erent sizes, shapes and intensities.

• The relative size between di�erent components of a musical symbol can vary.

• More symbols are superimposed in handwritten music than in printed music.

• Di�erent symbols can appear connected to each other, and the same musical symbol can appear
in separated components.

Old handwritten musical scores A growing interest in the Document Analysis area is the recog-
nition of ancient manuscripts and their conversion to digital libraries, towards the preservation of cultural
heritage. Recent works include the reconstruction of Don Quixote (see [9]), and the recognition of korean
and greek handwritten documents (see [10], [11]). For those reasons, our work in handwritten scores has
been conducted to the recognition of old handwritten scores (XVI-XIX centuries) of unknown composers,
contributing to the di�usion of these scores never edited (see Fig.1.11).

Di�culties in the recognition of handwritten scores are increased when working with old documents:
First of all, paper degradation requires specialized image-cleaning and binarization algorithms (see [12]).
Secondly, there is a lack of standard notation, because notation di�ers from a century to another. In
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Figure 1.11: Example of an old handwriting musical score.

practice, in the XX century, composers often feel free to adapt notation to new uses (in fact, there are
national dialects of music notation). This is obvious that this variability in music notation is increased
when working with scores of XVI-XIX centuries.

To cope with these di�culties an expert system will be required to learn every new way of writing,
and arti�cial intelligence based techniques will take advantage of higher level musical information.
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1.2 Structure of a musical score
In this section, elements of musical scores are shown: a brief de�nition of Musical Notation is

presented. After that, the graph grammars that formalize how graphical primitives are physically joined
is shown. Finally, the logical structure of musical scores is de�ned with a grammar.

1.2.1 Elements of scores: Musical Notation.
The musical notation (see [5],[13]) in scores consists of the following elements (see Fig.1.12):

• Sta�: Where musical symbols are written down. Five equidistant, horizontal lines form a sta�.

• Attributive symbols at the beginning: Clef, Time and Key signature.

• Bar lines, that separate every bar unit or measure.

• Rests(pauses) and Notes. Notes are composed of head notes, beams, stems, �ags and accidentals.

• Slurs: Curves that join musical symbols.

• Dynamic Markings indicate how loud or soft the music should be played.

• Tempo Markings indicate the speed of the rhythm of a composition.

Some scores include text, so an important task is to determine which objects are text (lyrics),
and which are musical symbols. In addition, some words correspond to dynamic markings, so context
information should help to distinguish them.

Some terminology used in music is the following:

• Sta� line sections: The covered sections of a sta� line are those sections where other music symbols
intersect the sta� line; the remaining sections of the sta� line are bare.

• Sta� space: The distance between the sta� lines within a single sta�. The sta� space provides a
normalized unit of measurement for expressing distances.

• System: A set of staves that are played in parallel. In printed music these staves are connected
with braces, and bar lines may be drawn through from one sta� to the next. A page of an orchestra
score may contain only a single system.

• Sta� nucleus: The area of a sta� that contains the sta� lines and the musical symbols. In order to
avoid missing symbols on ledger lines, the sta� nucleus can be de�ned to extend vertically one or
two sta� spaces above the top sta� lines and one or two sta� spaces below the bottom sta� line.

• Voice: A musical line. A voice may correspond to a single instrument; a piano has two voices
(one for the right hand and another for the left one). Some times, several voices may be printed
together on one sta�: in a orchestra score, the �ute 1 and �ute 2 voices are printed on the same
sta� (with opposite stem direction).
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• Monophonic: Music consisting of a single voice, where this voice contains no chords.

• Polyphonic: Music consisting of several voices, including chords.

Figure 1.12: Common elements of Music Notation.

1.2.2 Structure of Graphical Primitives: spatial structure.
Graph grammars (grammars which operate on a graph) can solve picture processing problems, and

can be applied to determine the meaning of complex diagrams, where the interaction among physically
distant symbols is semantically important (see [14]). Graph grammars can describe two-dimensional
structures and are �exible to express arbitrary relations between pattern primitives. As musical scores
are complex 2-D diagrams, the interaction among physically distant symbols and graphical primitives
(such as lines, curves, circles and dots) is semantically important. For our OMR system, we have de�ned
a graph grammar in which graphical primitives form musical symbols:
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• Nodes: Will be the primitives, including the kind of primitive (line, curve, circle, dot) and their
location (x,y) in the image.

• Arcs: Will be the connections between primitives: joined (left, right, top, down, and its diagonals),
closed (left, right, top, down, and its diagonals), or parallel (left, right, top or down).

1.2.3 Logical Structure of musical scores.
Thanks to the fact that music scores follow strict structural rules, context information about musical

notation can be e�ectively used to help in the recognition process. As we know, formal language theory
provides useful tools to recognize and solve ambiguities in terms of context-based rules or semantic
restrictions using attributes. For that reason, these structural rules can be formalized by grammar rules
(describing the musical score structure) and applied in the postprocess stage of the OMR system in order
to guide the recognition and validation process.

Informally speaking, a grammar describing a score (see Fig. 1.13) consists of three blocks G: S →
H[B]E, where H is the heading with the attribute symbols: treble, alto or bass clef, time signature
(commonly formed by two numbers that indicate the measure) and key signature (�ats, sharps or nat-
urals, which indicate the tonality of the score). All these symbols are very important to provide the
meaning of musical symbols. Then, the score is discomposed in bar units B, in which notes and rests
are written down. The amount of notes and rests in every bar unit depends on the time signature, so it
will obviously help to solve ambiguities in the recognition of notes and rests. Finally, there is an ending
measure bar (E). The entire grammar that formalizes the structure of musical scores, and which will
be used in our system can be found in the Appendix.

Figure 1.13: Structure of a score.

As Ng comments in [15], global information (such as time and key signatures) in�uence the layout,
grouping and beaming of notes, and introduce probabilistic constraints to the usage of certain note
classes in accordance to the tonality of the piece or section of the music:
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• Key signature (Tonality): In a musical score, two of the most signi�cant note classes of any key
are the tonic (�rst note) and the dominant (�fth note) and there is a distribution pattern which
re�ects the harmonic weighting of the note classes in the musical scale. The major utility of
knowing the tonality and modality (major or minor) of a musical score is that they will help to
verify all isolated accidental signs.

• Time Signature: The timing information of the score establishes the total duration of every mea-
sure, so any discrepancies between the estimated duration of a measure and the expected duration
of the time signature indicates missing or misclassi�ed items. In addition, a database of commonly
found rhythmical patterns for every time signature (e.g. three quavers group in 6/8 time) could
solve ambiguous note length and note heads. It must be said that duration of measures can help
to recognize time signatures, because many ambiguous time signatures can be resolved using a
simple count of the linearly disposed note values between a pair of barlines.
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1.3 General Architecture of an OMR system
In this section the stages of an OMR system are exposed: Location and Segmentation, Preprocessing,

Feature Extraction, Classi�cation and Postprocessing stages. They are very similar to the ones of an
OCR system. Afterwards, levels of the processed information of the system are exposed: image layer,
graphical primitives layer, symbol layer and �nally, context information layer.

1.3.1 Stages of a OMR system
Our recognition strategy follows a typical OMR architecture (see Fig. 1.14), whose stages are indeed

very similar to the ones in OCR systems (see [2],[7]): The input document is scanned by an optical
scanner to produce a gray-level or binary image. If the image is in gray-level, it must be binarized using
a thresholding method. After that, the system locates the regions on the digitized document in which
data is located, and segments the score into isolated symbols. After segmentation, data is subjected to
smoothing, elimination of noise, size normalization and other operators to facilitate the extraction of
features in the subsequent stage. The identi�cation and classi�cation of symbols is achieved by comparing
the extracted features with the statistics of features obtained from the set of samples used in the learning
phase (a training set is commonly used). Finally, linguistic, contextual or statistical information can be
used to resolve ambiguities of symbols with similar shapes or to correct some sections.

Figure 1.14: OMR Architecture.
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Location and Segmentation It determines the regions on the document in which musical informa-
tion is written down and segment those regions. In OCR systems this task consists in the understanding
of the structure of the document and the isolation of text form graphics and images.

Preprocessing Preprocessing is an important phase of pattern recognition process. The main pre-
processing techniques available are:

• Binarization and smoothing (which includes �ltering, �lling and thinning).

• Normalization (see [16]) consists in a slant normalization to reduce the variability of the writing
style, stroke width normalization to reduce the writing instrument and size normalization to reduce
the variability of the symbols' size.

• Segmentation consists in the distinction of musical data from images and the isolation of musical
symbols. The segmentation is easy if symbols do not touch or overlap with one another.

• Line segment approximation is the conversion of a list of pixel coordinates of chain-coded pixels into
a set of coordinates, which when joined with straight line segments from a polygonal approximation
to the original line. This approximation is performed to reduce the volume of data and is used in
connection with recognition techniques that are based on the extraction of features which describe
the geometry or topology of the drawing.

Feature extraction Feature extraction is one of the most di�cult and important problems of pattern
recognition. Many di�erent types of shape features can be extracted and used to recognize characters.
The problem is to extract those features which will enable the system to discriminate e�ciently one class
of characters from the others. The main recognition techniques are: Template matching and correlations,
extraction of features from statistical distribution of points, global transformations and series expansions.
As Mori exposes ([17]), template matching and structure analysis are converging. The template matching
approach has been absorbing structure analysis techniques and now the two approaches seem to be on
the verge of fusion.

Classi�cation Phase The classi�cation phase consists of detecting to which class the set of features,
extracted from the input symbol, belongs. For the classi�cation, a learning expert system with models are
used: a library of feature vectors of every symbol is created during a learning phase. The classi�cation
algorithms based on similarity measures calculate the distance between the feature set of the input
symbol and every class. The likelihood of the calculation depends on the measures used. The most well-
known measure is the Euclidean distance, but Mahalanobis and Minkowski distances are also popular.
The character will be assigned to the class of minimum distance. It should be noted that the cost in
computation time increases with an increase in the number of library sets used. Also, shape derivation,
shape matching and hierarchical feature matching in the form of decision trees are used. In structural
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and syntactic Pattern Recognition the classi�cation stage consists in a graph matching or graph parsing
process given a relational description of features.

Postprocessing The performance of a recognition system that consists only of a single-character
recognition unit is not su�cient. It is necessary to use context information. The application of context
makes it possible to detect errors and even to correct them. Some techniques are: diagrams, grammars
and dictionaries. In OCR, dictionary methods have proven to be the most e�ective for error detection
and correction: Given a word in which an error may be present, the word is looked up in the dictionary.
If the word is present, it does not necessary mean that no error occurred. If there is an error, the error
is undetectable without a wider use of context information. If the word is not in the dictionary, then
the error has been detected and can be changed to the most similar word in the dictionary. The main
disadvantage with the use of a dictionary is that searches and comparisons for error correction are time-
consuming and increase with the size of the dictionary. In OMR systems, the use of grammars is the
most popular technique in order to validate the scores and solve ambiguities. The grammar formalized
in our system has been exposed in section 1.2.3.

1.3.2 System Levels
According to the approach proposed by Kato ([18]), an OMR system has several layers, corresponding

to the abstraction levels of the processed information, see Fig. 1.15:

• The image layer is formed by pixels.

• The graphical primitive layer is formed by dots, lines, circles and curves.

• In the symbol layer graphical primitives are combined to form musical symbols, such as notes and
rests.

• In the semantic-meaning layer information, the pitch and the beat of every note is obtained, and
grammar rules are used to validate it and solve ambiguities.

Feedback among layers is extremely important because each level contains hypothesis of various
levels of abstraction, so, if an upper layer rejects a result produced from lower layers (e.g. a certain
object is not what it has been determined to be), the system must be able to correct this error and
classify the object again.
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Figure 1.15: (a) Levels of a OMR system.

1.4 Objectives
The main objective of this work is to achieve the early-level stages of the Optical Music Recogni-

tion system in old handwritten musical scores: segmentation of sta� lines and detection of graphical
primitives.

• Segmentation of musical score blocks in documents.

• Detection and extraction of sta� lines in modern and old handwritten musical scores (from XVI
to XIX centuries).

• Detection of graphical primitives: vertical lines, bar lines, �lled head notes and whole head notes.

• Classi�cation of clefs: sol, do and fa.

• Formalize a grammar to validate musical scores.

• Perform a system reliable enough to avoid the need for human veri�cation (using context infor-
mation).

Concerning the recognition of old documents, the applied objective is the recognition of ancient
manuscripts and their conversion to digital libraries, towards the preservation of cultural heritage. In
addition, these scores of unknown composers could be edited and published (contributing to the di�usion
of artistic and cultural heritage).

1.5 Structure of the dissertation
This dissertation is organized as follows:
In Chapter 1 an introduction to Optical Music Recognition is done: after the framework and appli-

cations of OMR, the structure of scores and layers of the system are shown. Afterwards, objectives of
this work are exposed.
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Chapter 2 presents the state of art in Optical Music Recognition, covering research both in printed
and handwritten musical scores.

In Chapter 3 the methodology used in our system is brie�y exposed: from general image process-
ing techniques (such as binarization, �ltering and morphological operations) to statistical classi�cation
techniques and an explanation of Graph Grammars and Graph Matching techniques.

In Chapter 4 our approach to detect primitives in modern and old handwritten scores is shown.
First of all, our preliminary work with modern handwritten scores is exposed: the detection of sta�
lines is performed using Hough Transform and projections, and morphological operations are used for
the detection of graphical primitives (vertical lines, �lled head notes and whole notes). After that, our
work with old scores is shown: for the detection and extraction of sta� lines, a contour tracking process
is required to cope with deviations in sta�. Concerning graphical primitive detection, morphological
operations and median �lters are used.

In Chapter 5 some illustrative experimental results of modern handwritten scores (�rst) and old
handwritten scores (taken from the Archive of Barcelona) are reported.

In Chapter 6 the concluding remarks and future work are exposed.



Chapter 2

State of the Art in Optical Music
Recognition

In this chapter, a review of the research literature concerning Optical Music Recognition, also known
as Musical Score Recognition (MSR), is presented. First works in this �eld were done by Prerau and
Pruslin in 1966 and 1970, and interest in OMR has been growing in last decades, appearing several OMR
systems and even a keyboard-playing robot in Japan called Wabot-2 described in [19].

As it has been said in the introduction, there is a lot of literature about the recognition of printed
scores, whereas few research works have been done in handwritten ones. For that reason, stage of art
about OMR will include works done for both printed and handwritten musical scores.

An interesting survey of classical OMR (from 1966 to 1990) can be found in [5], where several
methods to segment and recognize symbols are reviewed. It must be said that most work through 1990
has concentrated on locating staves and isolating and recognizing symbols. Nowadays, problems in OMR
of printed scores include e�ective algorithms to interpret the resulting 2-D arrangement of symbols, and
precise formalisms for representing the results of interpretation. Referring OMR for handprinted scores,
research is in a early stage and more work must be done.

2.1 Overview of techniques used in OMR
In this section, a review of techniques used for di�erent authors for each stage of the OMR system is

exposed, but before that, it must be said that the de�nition of musical symbols varies through authors:
In one hand, Prerau ([20]) de�ne music symbols as all four-connected regions that remain after sta�
lines have been removed (that means, that a beamed note sequence is called a single symbols). He
distinguish between characters (which are size invariant and OCR methods can be used), and other
malleable symbols (beams, slurs...) which have a parameterized shape (so, OCR techniques will not
work). In the other hand, authors such as Mahoney ([21]) consider that music symbols are composed of

19
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pattern primitives such as stems, beams and note heads. He distinguish between the music symbols that
describe what is to be played (notes, clefs, key signatures...) and music symbols that describe how it
must be played (dynamic and tempo markings). That distinction implies the use of di�erent techniques
in the symbol classi�cation stage.

2.1.1 Binarization and Noise Reduction
The �rst operation in a OMR system is binarizing the gray-scale image into a binary image: Some

authors [6] do not apply a binarization method because the scanner performs automatic thresholding to
obtain a binary image. Others [20] choose the threshold manually.

Concerning noise reduction, in [6] a horizontal low-pass �lter is used to remove short breaks in sta�
lines and symbols, whereas in [22] a three-by-three mask is used to eliminate isolated black pixels and
to �ll in isolated white pixels. Recent works ([23]) use adaptive binarization techniques to binarize in a
more robust way.

In the vision system for the Wabot-2 robot (see [19]) the image is subdivided and each region
separately thresholded to allow for uneven illumination. The image is then rotated as required and
normalized to compensate for distortions introduced in scanning.

2.1.2 Detection and extraction of sta� lines
Sta� lines play a central role in music notation, because they de�ne the vertical coordinate system for

pitches, and provide a horizontal direction for the temporal coordinate system. The sta� spacing gives
a size normalization that is useful both for symbol recognition and interpretation: the size of musical
symbols is linearly related to the sta� space.

Most OMR systems (except Wabot-2 [19]), after recognizing the sta�, remove it from the image in
order to isolate musical symbols and facilitate the recognition process.

The approach proposed in [24] eliminates all thin horizontal and vertical lines, including many bare
sta�-line sections and stems. This results in an image of isolated symbols, such as note heads and beams,
which are then recognized using contour tracking methods. This preprocessing step erases or distorts
most music symbols other than quarter notes and beamed note groups.

Prerau ([20]) identi�es tree ways in which sta� lines interfere with symbol recognition:

• The sta� lines graphically connect symbols that would normally be disconnected.

• The sta� lines camou�age the contour of a symbol.

• The sta� lines �ll in symbol areas that would normally be blank.

In [20], the process is divided in fragmentation and assemblage. In the fragmentation step, the system
scans along the top and bottom edges of sta� lines to identify parts of symbols lying between, above
and below the sta� lines (a new symbol fragment is begun whenever a signi�cant change in slope is
encountered). Fragments from a single symbol are separated by the gaps left from crossing sta� lines. In
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the assemblage step, these symbol fragments are recombined using a simple connection rule: two symbol
fragments (separated by a sta� line) will be connected if they have horizontal overlap. One disadvantage
with this technique is that symbols which merge with sta� lines do not always have horizontal overlap,
so with this method, would keep disconnected when it should be connected.

Mahoney (see [21]) distinguishes between two types of line removal, removing real lines (bare sta�-
line sections) and removing ideal lines (complete sta� lines). The goal is to remove only those parts
of the line that do not overlap other symbols, what is accomplished by removing only those portions
of the line satisfying the line's allowed thickness range. For the identi�cation of sta� lines, he uses a
strategy similar to the symbol identi�cation method: sta�-line candidates are constructed (including all
thin horizontal lines in the image) and the sta� line descriptor (specifying allowable thicknesses, lengths
and gap-lengths) is used to classify sta� lines. Similarly, the ledger-line descriptor is used to classify
ledger lines. With this method, good extraction of sta� lines and ledger lines is achieved, although more
work is needed for dealing with the more di�cult cases of line-region overlap.

Carter and Bainbridge (see [6]) propose a system for segmentation that uses processing based on
a Line Adjacency Graph (LAG). Because the detection of places where a thin portion of a symbol
tangentially intersects a sta� line is di�cult, mostly methods create gaps in symbols. Carter proposes a
LAG-based analysis that successfully identi�es such tangential intersections of symbols with sta� lines.
In addition, the system locates sta� lines despite the image rotation of up to 10 degrees, copes with slight
bowing of sta� lines and with local variations in sta�-line thickness. This method also uses horizontal
projections to �rst locate sta� lines (see Fig. 2.1). An extensive explanation of this approach will be
exposed in next section.

Figure 2.1: Sta� detection using projections.
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In [18] the detection and extraction of sta� lines is performed using histograms, run-lengths and
projections. After determining the spacing of sta� lines and their location (using run-lengths and his-
tograms), the sta� is analyzed (tracking from the left), eliminating short horizontal runs whose width is
under a certain threshold. An extensive explanation will be found in next section.

In [22] and [25], projection methods are used to recognize sta� lines, which are found in a Y projection.
A de�ned threshold is used to select projections strong enough to be candidate sta� lines. These
candidates are searched to �nd groups of �ve equally-spaced lines. A score after sta� removing is shown
in Fig. 2.2.

Figure 2.2: Sta� removing.

In [26] a method for printed music recognition computationally inexpensive is presented. The sta�
lines are located by looking for long horizontal runs of black pixels. Then the neighborhood of each
sta�-line pixel is examined to determine whether a music symbol intersects the sta� line at this point.
The image is processed one sta� at a time, to accommodate the memory limitations on a PC. Staves are
located by examination of a single column of pixels near the left end of the system. Large blank sections
indicate gaps between sta� lines, and are used to divide the image into individual staves. Complete sta�
separation is no always achievable, because parts of symbols belonging to the sta� above or the sta�
below may be included.

In [27] the method proposed consists in a vertical projection, projection �ltering, local minima regions
�nding (those regions correspond probably to the regions where there is only sta� lines), horizontal
projection of each local minima regions (to ensure that that those peaks are certainly lines), and linking
di�erent peaks between them in order to built up the every sta�. The author comments that this
technique is robust because even if these lines are bowed, skewed of fragmented they are always found.
To delete these sta� lines, a straightforward criterion based on thickness is used. The thickness of each
line is estimated in according to the width values of the lines peaks. Then if width is smaller than a
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threshold (proportional to the estimated thickness) the line points at this place are erased. The problem
of split symbols will be carried over in recognition stage.

Leplumey ([28]) presents a method based on a prediction-and-check technique to extract staves, even
detecting lines with some curvature, discontinuities and inclination. After determining thickness of sta�
lines and interlines using histograms and run lengths, some hypotheses on the presence of lines is done
grouping compatible observations into lines. Afterwards, those segments are joined to obtain sta� lines,
thanks to the construction of an interpretation graph. This method process allows little discontinuities
thanks to the use of a local predicting function of the sta� inclination.

In [29] an OMR system for handwritten scores is described. In such scores, only musical symbols are
drawn by hand, because sta� lines are printed. His segmentation stage detects sta� lines using measures
of line angle and thickness. A window is passed over the image to compute a line-angle for every black
pixel. The line angle is measured from the center of the window to the furthest black pixel in that
window; this furthest black pixel is chosen so that the path from it to the center does not cross any
white pixels. To detect sta� lines, a large window radius is used. this causes covered sta�-line sections
to be labelled with a horizontal line-angle despite the interference of the superimposed musical symbols.
Once a line angle has been determined, a line-thickness can be measured. These two measurements,
combined with adjacency information are used to identify horizontal lines.

Systems that do not remove sta� lines The Wabot-2 robot must also be commented (see
[19]) because it performs a template matching without removing sta� lines: sta� lines are detected and
used to normalize the image, to determine the score geometry, and also to restrict the search area for
music symbols (then, the recognition of musical symbols must learn symbols which include segments of
sta�s). Sta� lines are detected in hardware by a horizontal line �lter, tolerating some skew. Where �ve
equally-space lines are found, a sta� is deemed to exist. Normalization parameters include sta� location,
sta� inclination, area covered by sta� and note-head size. In preparation for further processing, the
image of each sta� is normalized according to these parameters.

2.1.3 Extraction and Classi�cation of musical symbols
After removing sta� lines, the classi�cation of music symbols starts:
Pruslin [24] uses contour tracking to describe connected binary image regions which remain after

deleting horizontal and vertical lines. Classi�cation depends both on trace properties as well as on
inter-trace measurements (a method for template matching using contour traces is developed).

In [20], relative symbol size is used for an initial classi�cation, because each type of music symbol
is signi�cantly di�erent in overall size from almost all other types of music symbols. For that reason,
the bounding-box dimensions of each symbols are expressed in sta�-space units. The height and width
of the bounding box are used to look up a list of possible matches (there is a pre-computed table
containing the standard areas of each symbol in a height/width space). Typically there are three to
�ve possible matches for each symbol, so heuristic tests are used to distinguish symbols that overlap in
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the height/width space, taking advantage of the syntax, redundancy, position and feature properties of
each symbol type. Notice that, this classi�cation os dependant of the publisher, and will not work in
handwritten scores.

In [21], pattern primitives (such as note heads, stems beams and �ags) are combined to form music
symbols (e.g. notes, chords and beamed note sequences). This distinction between pattern primitives
and musical symbols simpli�es the recognition task, because it is easier to design �exible recognition
procedures around simple descriptions. The primitive lines accommodate the variable parameters of
the symbols: a parameterized composite symbol such as a beamed note sequence is made up of non-
parameterized characters and parameterized lines. It does not use context information for the recognition
of primitives, but it is used to infer musical symbols from the relationships between the various kinds
of primitives. The pattern primitives used are lines, dots and characters, and classes of primitives are
described using ranges of values for parameters. After extracting line primitives, dot primitives are
processed and removed. All measures of distance are normalized on sta�-line and sta�-space thickness.
Sample line parameters for describing sta� lines, ledger lines, beams, note stems and bar lines are:
principal direction (horizontal, vertical), angle, thickness, length, maximum permitted gap. Sample
region parameters for describing whole, half and quarter note heads, �ags, sharps and dots are: mass,
width, height and inclination angle. This process is initially used in an interactive mode to develop object
descriptions and to tailor prede�ned descriptions to new music samples for which the old descriptions
do no work well.

In [30] and [6] the recognition system is in an early stage. Objects are classi�ed according to the
bounding-box size, and according to the number and organization of their constituent sections. An
example of their classi�cation of musical symbols is shown in Fig. 2.3.

Figure 2.3: Classi�cation of musical symbols.

In the Wabot-2 robot [19], musical symbols are recognized according to a two-level hierarchy: the
upper level (in which the recognition of sta� lines, note heads and bar lines is done) is implemented
in hardware and the lower level in software. The search is performed using hardware-implemented
template-matching.

Lee ([22]) uses projection methods to recognize sta� lines, bar lines and notes (including notes and
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rests). Once an image containing only a sta� nucleus is obtained, an X and Y projections are used to
�nd bar lines. Notes are recognized using X and Y projections from a small window around the symbol.
Characteristic points in the projections are used for classi�cation; a comparison is made with stored
projections for known symbols. The main disadvantage of this method is that is rotation-sensitive.

In [26] an initial classi�cation is obtained from the symbol height and width (as in [20]), and then
pixels in few particular rows and columns of the symbol-image are examined (because complete template
matching is too computationally expensive). Some preliminary work on chord recognition is also present.
An important problem is the noise-sensitivity of the method.

In [18] a sophisticated symbol recognition stage with a top-down architecture is performed. It consists
on pattern processing and semantic analysis, which will be described in next section.

In [31] a system that extracts heads and stems in printed piano scores is performed using a neural
network: After extracting all regions candidates of stems or heads, a three-layer neural network is used to
identify heads; the weights for the network are learned by the back propagation method. In the learning,
the network learns the spatial constraints between heads and surroundings rather that the shapes of
heads. Afterwards, this networks are used to identify a number of test head candidates. Finally, the
stem candidates touching the detected heads are extracted as true stems.

In [32] the recognition system for printed scores is composed of two modules: the low-level vision
module uses morphological algorithms for symbols detection; the high-level module context information
to validate the results. Because morphological operations can be e�ciently implemented in machine
vision systems, the recognition task can be performed in near real-time.

Roach ([29]) proposes that knowledge about music notation could be represented in a rule-based
system, and this information should be applied starting with the earliest steps of symbol segmentation
and recognition. Images are digitalized in low resolution, so it is not clear the e�ectiveness of the
system. The primitives recognized are: circular blobs (for closed note heads), circles (for open note
heads), horizontal lines, non-horizontal line segments and arcs (clefs are not recognized). The location
and orientation data for each primitive are intended to from the input to a high-level visual expert system.
Primitive identi�cation is coded as several passes, using context information in the last pass. Note-head
detection is extremely di�cult in these handwritten images, and a general-purpose blob detector does
no work. Thus, note heads are searched for in constrained locations: �rst, verticals lines (which might
be note stems) are located, then a thickness measure is used to test for wide spots at the ends of each
potential stem; if there is a wide spot (whose circularity is under a certain threshold), it is accepted as
a note head.

In [33], a probabilistic framework for recognition of printed scores is presented. The system uses
an explicit descriptive model of the document class to �nd the most likely interpretation of a scanned
document image, carrying out all stages of the analysis with a single inference engine (which allows for
an end-to-end propagation of the uncertainty). The global modeling structure is similar to a stochastic
attribute grammar, and local parameters are estimated using Hidden Markov Models (HMM). The HMM
parameters are estimated from a training set using the segmental k-means algorithm. It also uses The
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Hough Transform and a low-band �lter to locate lines and note heads of note groups.
In [27] symbols are isolated by using region growing method and thinning. After the polygonalization

of the object, a parameter de�ned as a minimum distance to the contour is attributed to each segment
(the aim is to attribute the maximum distance of its points to the note head segments and the minimum
to others), so spurious segments can be eliminated and some con�guration segments are transformed.
Once the skeleton structure is simpli�ed, the attributed graph is constructed: the graph nodes correspond
to the segments and the graph arcs to the links between segments (see Fig. 2.4). After constructing the
graph, symbols are classi�ed (using the distance to the contour) in symbols including notes with black
heads (there is at least one segment having a distance to the contour exceeding a certain threshold) and
the others. Half notes are detected if there is a stem with a little loop in its extremes.

Figure 2.4: Graphical representation of the constructed attributed graph of Randriamahefa.

In [15] the development of a stroke-based segmentation approach using skeletons and mathematical
morphology for handwritten scores is exposed. This approach will be described in next section.

In [13], a grammar is formalized to work in the image level to produce an accurate segmentation
and thus accurate recognition. Whereas most grammars are usually used at a high level to validate
the structured document, Coüasnon's system uses context information (syntax) to control the entire
recognition process. Further explanation can be found in next section.

Pinto describes in [34] a system for the recognition of ancient musical scores, where the recognition
process is based on a graph structure of classi�ers, including the construction of a class hierarchy as-
sociated with recognizers that distinguish between clusters of classes based on selected object features.
Further information will be found in next section.

2.1.4 Validation
Rules on music notation makes the recognition task easier, because the information of two-dimensional

relationships between musical symbols can be captured in a syntactic description of music. For that rea-
son, most authors de�ne grammars describing the organization of music notation in terms of music
symbols. In [35], lower level grammars are used to describe the structure of individual music symbols, so
they can be used for symbol recognition. High-level grammar is simple, describing a piece as a sequence
of staves, where a sta� starts with a clef, key signature, and several measures. Five adjacency operators
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(above, below, right of, above-right of, above-left of) to relate terminal and nonterminal grammar sym-
bols are de�ned. The terminal grammar symbols are geometric �gures such as white dots, black dots,
and oriented lines of various lengths.

In [20] develops algorithmic implementations of syntax rules, used to constraint the possible locations
of various symbols. He makes a distinction between notational grammars (to recognize important music
relationships between the symbols of the music sample) and higher-level grammars for music (for phrases
and larger units of music).

In [19] the robot uses a musical grammar to correct errors such as missing beats or contradictory
repeat signs. Constraints applied to three-part organ music are:

• Each of the three parallel voices have the same total note duration.

• A fat double bar appears only at the end of each part.

• A treble or bass clef always appear right at the start of each sta�.

• The time and key signatures almost never change within a system, and can be determined by
majority rule.

• The number of beats in each ba should match the time signature.

In [32] a high-level reasoning module is developed. The system utilizes prior knowledge of music
notation to reason about spatial positions and spatial sequences of recognized symbols. This module
is composed of a connected components analysis and a reasoning module (that veri�es if every musical
symbol accomplishes its own constraints). The high-level module also employs veri�cation procedures
to check the veracity of the output of the morphological symbol recognizer.

In [14] a graph grammar for recognizing musical notation is presented. It is a programming style
that allows determination of the high-level meaning of music notation given the low-level recognition of
the musical symbols. The author comments that it is not clear how best to represent music as a graph,
because there are local and non-local interactions between primitives that must be considered in order
to obtain the semantics (such as pitch and duration of notes). To address this problem, the input graph
to the grammar is constructed as a set of isolated attributed nodes representing the musical symbols.
The grammar itself forms the edges representing the signi�cant associations between the primitives that
are necessary in determining the meaning. A graph representation of music provides a platform for
which the formation of all potentially signi�cant associations between primitives is quite natural; the
determination of the truly signi�cant associations occurs only after examination of the context. Although
the proposed approach relies on the ability to control the order of application of the productions, there
may be some portions of the grammar in which the order need not be speci�ed, so, potential parallelism
in the grammar is also made explicit. In this paper, a graph grammar for recognition of pitch, duration
and voice chords in music notation is fully presented.

Ng describes in [15] a rule-based system to process the primitives in three levels: local (note by
note), intermediate (bar level) and global (global information). Details can be found in next section.
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2.2 Key papers in OMR
In this section, the most relevant papers about OMR are presented.

OMR system for printed piano music In [18] a sophisticated recognition system for printed
piano music is developed. First, the spacing of sta� lines is estimated by scanning 10 evenly-spaced
columns in the image. Run-lengths are measured in each of these columns, and histograms of run
lengths are calculated. The maximum in the 0-pixel histogram is interpreted as the sta� spacing, and
the maximum in the 1-pixel histogram is interpreted as the sta�-line width. Once the sta� size has
been established, the sta� lines are located. Run-lengths in 10 evenly-spaced columns are used to get
accurate local estimates of sta�-line spacing and width. Next, small rectangular sections of the sta� are
analyzed, near the left and right ends of the sta�. Short horizontal runs are eliminated; this eliminates
most music symbols, but beams and portions of note heads and clefs remain. Next an X projection is
used to estimate the locations of the ends of the sta�, and a Y projection is used to obtain an accurate
height estimate. If the edge of the sta� is not found, the window is moved further toward the margin of
the page.

In this system, the distance between sta� lines is used to restrict the size of symbols, and the width
of the sta� lines is used to set thresholds for symbol recognition. Sta� lines are eliminated from the
image before recognition of music symbol begins. The sta� lines are tracked from the left, based on
initial estimates of their location. A sta� line is eliminated wherever the sta� width is below a threshold.

Bar lines are found using similar methods, tailored to the recognition of piano music. Rectangular
marks are placed on the right-hand sta� (top sta�), the left-hand sta�, and between the staves. Then
short vertical runs are eliminated, and hypothesized bar-line locations are extracted from a X projection.
The existence of a bar line is established if all three marks hypothesize a bar line at the same X location.

Concerning the symbol recognition stage, a to down approach is used, recognizing one measure of
music at a time. Because music symbols di�er greatly in size, position and frequency of appearance,
is di�cult to devise a single method for recognizing all symbols. For that reason, they use a collection
of processing modules that communicate by operating on a common working memory, which represents
information about the current bar of music at �ve levels of abstraction: pixel, primitives, music symbols,
meaning (pitch and duration of notes) and context information (interpretations). The four processing
modules (primitive extraction, symbols synthesis, symbol recognition and semantic analysis) are made
up of one or more recognition and veri�cation units. The primitive extraction module contains units for
recognizing stems, beams and note heads. Hypothesized primitives are removed from the pixel image.
Unacceptable hypotheses are rejected at higher layers, are sent back to lower layers for further processing.
Symbol recognition proceeds one measure at a time, and consists on pattern processing (what must cope
with overlap between symbols, breaks and unexpected ink spots) and semantic analysis (using context
information), required for solving ambiguities of complex notations. In this stage, attributive symbols
(clefs, key and time signature) and note symbols are recognized.

In the postprocessing stage, recognition of symbols that span measure boundaries is performed. The
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�nal image interpretation is formed by combining the partial results from each measure. This approach
obtains good recognition rates on complicated piano music.

Bainbridge and Carter's system In [6], [30] and [36] a system based on a Line Adjacency Graph
(LAG) is exposed. This system is also used to recognize ancient scores (see [37]): scores of madrigals (see
Fig. 2.5) notated inWhite Mensual Notation. Symbols are correctly segmented and an early classi�cation
stage has been implemented.

Figure 2.5: A madrigal score of the seventeenth century.

This system successfully identi�es tangential intersections of symbols with sta� lines, locates sta�
lines despite the image rotation of up to 10 degrees, copes with slight bowing of sta� lines and with local
variations in sta�-line thickness.

Region information, derived from the LAG, is used to determine whether a symbol has merged
with a sta� line. The LAG is formed directly from a vertical run-length encoding of a binary image.
A transformed LAG is formed by linking together neighboring segments (a segment is de�ned as an
individual vertical run of pixels) to form sections. Sections are formed using a left-to-right scan, in
which neighboring vertically-overlapping segments are linked. Junctions occur when a segment in one
column overlaps several segments in an adjacent column; sections are terminated at these junctions. In
the transformed LAG, each section is represented by a node in a graph, and junctions are represented
by edges in the graph. The nodes in the transformed LAG should correspond to structural components
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of musical symbols. A rule limiting the rate of change in section thickness helps accomplish this. The
rule states that the current section is terminated if its average height di�ers from the height of the next
segment by more than a factor of 2.5. This rule ensures that sta� lines and ledger lines are assigned to
di�erent sections than are portions of music symbols.

Similarly, a note head is assigned to a di�erent section than the note stem. Section formation is
also insensitive to small rotations. The author comments that the use of a LAG is preferable to other
common methods of data reduction and feature extraction, such as thinning. The LAG i equally e�ective
describing blobs and lines.

Noise removal on the transformed LAG proceeds by removing isolated or singly connected sections
with small area (for example, 5 pixels in a 400dpi image). If removal of these noise sections turns a
multi-way junction into a two-way junction, then the two remaining sections are merged provided their
heights di�er by less than a factor of 2.5.

The transformed LAG is searched for potential sta�-line sections (�laments): sections that satisfy
criteria related to aspect ratio, connectedness and curvature. Long beams may be included as �laments;
these are �ltered out using a histogram of �lament thickness to determine a threshold for maximum
sta�-line thickness. Roughly collinear �laments are concatenated together into �lament strings, thereby
bridging the gaps introduced by superimposed music symbols. The occurrence of �ve horizontally over-
lapping and roughly equally-spaced �lament strings is recognized to form a sta�. After sta� lines are
identi�ed, the transformed LAG is restructured: further merging of non-sta� sections takes place, now
that junctions with sta� sta�-line sections have been specially marked. At this point, musical sym-
bols are e�ectively isolated from the sta� lines. Connected non-sta�-line sections are combined to form
objects, which correspond to music symbols or to connected components of music symbols.

Concerning the classi�cation stage, after the extraction of sta� lines the system performs a de-
scription of objects which correspond to music symbols or connected components of music symbols.
These segmentation results are interpreted by a recognition system, where the objects resulting from
the segmentation are classi�ed according to bounding-box size, and the number and organization of
their constituent sections. The author comments that if there are overlapping or superimposed symbols
another algorithm will be required.

The Wabot-2 robot The �rst robot (see Fig. 2.6) that recognizes scores and plays the organ should
also be commented. The Wabot-2 robot [19] has a vision system capable of interpreting images taken of
sheet music placed on a music stand. The CCD camera is placed on the robot's shoulders; thus, while
the robot plays the keyboard, vibrations prevent the CCD camera from being used for score reading.
For that reason, the sheet music must be read and interpreted before the robot begins to play. Very fast
image interpretation is achieved in the Wabot design (10-15 seconds are needed to interpret one page of
music). Special purpose hardware and parallel processing are used to achieve such high speed. If simple
scores are used, the recognition rate is nearly 100%. The robot plays three-part organ scores, containing
relatively simple notation. There are three staves per system: the top sta� is for the right hand, the
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middle sta� is for the left hand, and the bottom sta� is for the feet. The robot's video camera captures
images of organ scores that have been placed on a music stand.

Figure 2.6: The WABOT-2 robot.

The following attributes of the imaging must be taken into consideration:

• Distortions occur when the page of music sags on the music stand.

• Some rotation may be present.

• Distance to the page may vary.

• The illumination is uneven.

The image is subdivided and each region separately thresholded to allow for uneven illumination.
After sta� detection, the image is rotated and normalized to compensate for distortions introduced by
scanning.

Musical symbols are recognized according to a two-level hierarchy, where the upper level is imple-
mented in hardware and the lower level in software. Sta� lines, note heads and bar lines, which can
occur in many places in the image, belong to the upper level. These are searched for using hardware-
implemented template-matching (using an AND operation). Eight standard templates for note heads
are used, and each template comes in nine di�erent sizes. The correct template size is selected on the
basis of the normalization parameters resulting from sta�-line detection. The lower level of the hierarchy
contains symbols whose possible locations are constrained by the recognition results for the upper level
symbols; these symbols are found using sw-implemented localized search. Lower level symbols include
rests, stems, �ags, repeat signs, staccato and marcato marks, accidentals, prolongation dots, clefs and
time signatures.
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Template matching to detect �lled note heads leads to incorrect matches. These are eliminated at
a later stage, using knowledge about the syntax of music notation. If this method were applied to more
complex notation, the problem of spurious matches might become more serious. As it stands, excellent
recognition results are achieved on organ scores containing relatively simple notation.

Couasnon: Polyphonic scores Coüasnon (see [13],[38]) proposes a grammar to formalize the
musical knowledge on polyphonic musical scores. The method proposed uses a grammar with operators
to de�ne the relative object positions on a score. The grammar can cope with full score, with di�erent
voices on a single sta�, chords.

Objects are divided in:

• constructs: elements composed of segments (e.g. stems, beams) and noteheads plus a set of
construction rules which apply to these segments.

• symbolics: symbols that can be considered as characters, such as clefs, accidentals, dynamics...

The graphical level of the grammar corresponds to the way notes and their attributes are formed
and adjusted on the score. An example of the grammar rules de�ned for a beamed eighth note can be
shown in Fig. 2.7

Figure 2.7: The grammar rules for a beamed eighth note.

The logical level corresponds to the syntactic way of using notes in music notation. A step is de�ned
as the smallest duration in a column of vertically aligned notes. This notion of step solves some of the
problems due to polyphony and full scores, because it can manage the simultaneity of notes on a same
sta� (polyphony) and on the di�erent staves of one system (full scores). An example of the grammar
rules of a bar system is shown in Fig. 2.8

A parser is implemented in λProlog, and a Delay operator is de�ned to modify the way a rule parses
the image, so it enables the segmentation of symbols which touch constructs.

The author claims that thanks to the separation between the operating part of the system and the
de�nition of musical rules, the system allows the modi�cation of rules and its adaption (de�ning a new
grammar) to another kind of structured document.
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Figure 2.8: The grammar rules for a bar system.

Kia Ng: Handwritten scores Kia Ng exposes in [15] a prototype for printed scores, followed
by a prototype for handwritten ones, discussing the limitations of the �rst one for handwritten scores
processing.

In the �rst one, after binarizing and correcting the skew of the image, stave line location is obtained
using horizontal projections. Afterwards, a line tracing algorithm with a local vertical projection window
is used to detect the average stave line thickness, and electively mark the pixels that belong to each sta�
line, and thereby removing the sta� lines. After that, a sub-segmentation algorithm disassemble musical
symbols into graphical primitives (e.g. note-heads, lines, curves, isolated rests and accidental signs),
and the classi�cation stage begins: the �rst iteration of the classi�cation module recognizes isolated
primitive musical symbols (dots and rests) and symbols located at certain positions (clef and time
signature). The recognition of other primitives is performed by interplay between the classi�cation and
the sub-segmentation modules (symbols not recognized are subdivided depending on its orientation).
The classi�cation module uses the aspect ratio of a bounding box, based on a pre-sampled training set,
using a k-nearest-neighbor classi�er. A screen of the application developed is shown in Fig. 2.9.

Concerning the prototype for handwritten scores, the skeleton of the binary image is obtained in
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Figure 2.9: A screenshot of the software developed for the recognition of printed scores.

order to transform musical symbols into a set of interconnected curved lines. Then, junction (which join
segments) and termination points are extracted from the skeleton representations.

In the sta� detection phase, all horizontal line segments are parsed to determine if they belong to
part of a stave line using basic notational syntax and an estimated sta� line height, which has been
obtained from the histogram of the number of pixels eroded during each skeletonisation iteration.

The sub-segmentation module does not detect joints that are smooth and form continuous curve
segments, hence an additional process using a combination of edges, curvature and variations in relative
thickness and stroke direction is required to perform further sub-segmentation and segregate the writings
into lower-level graphical primitives (lines, curves and ellipses). Afterwards, primitives are classi�ed
using a KNN classi�er (with appropriate training dataset) and additional feature vectors to make use
of information extracted during the skeletonisation process and the junction point distributions. Each
terminal point is parsed to search for any other nearby terminal points which are collinear with the current
segment or following a polynomial extrapolation from the terminal points of the current segment. The
author comments that a tracing routine using a database of isolated handwritten musical symbols would
improve the classi�cation stage.

After the classi�cation phase, these sub-segmented primitives are regrouped (applying basic syntactic
rules) to form musical symbols. Contextual ambiguities are resolved using relative positions of primitives
in the sta�, and between primitives. The reconstruction module o�ers an intermediate stage where
extensive heuristic, musical syntax and conventions could be introduced to enhance or con�rm the
primitive recognition and re-groupings. In fact, there is a rule-based system to process primitives in
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three levels:

• Local: At a note by note level. For example, a dot to the right of a note-head implies a dotted
note.

• Intermediate: At a bar level, with a database of frequently found rhythmical patterns and beam
groupings.

• Global: within an estimated sections with similar tonality (including clef and key information)
and timing information to clarify uncertainties.

The author comments that a graphical-user-interface with built-in basic musical syntax and some
contextual intelligence is under development to assist the transcription and output. Further work will
include formal approaches, such as the usage of graph-grammars, and global information (such as time
and key signatures) will help to solve ambiguities.

ROMA: Ancient Music Optical Recognition In [34], a OMR method to recognize ancient
musical scores (see Fig. 2.10) is described. This system copes with speci�c notation of ancient documents,
and is developed under the Portuguese project ROMA (Ancient Music Optical Recognition).

Figure 2.10: Ancient musical score.

After the preprocessing stage, the segmentation module divides the music sheet in sta� lines, bars
and musical symbols. The sta� lines are identi�ed using horizontal projections and small rotations of the
image. Then, segments of line whose thickness is not bigger than a certain threshold are removed. Bar
lines are located using vertical projections, and objects are segmented using morphological operations
and connectivity analysis.

The recognition process is based on a graph structure of classi�ers, divided into two steps: feature
extraction and classi�cation. The method includes the construction of a class hierarchy associated with
recognizers that distinguish between clusters of classes based on selected object features. Then, a method
for the search of optimal graph hierarchy (manual and automated) and for the classi�cation algorithms
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themselves is proposed. Finally, the reconstruction stage is needed to relate the recognized symbols with
each other and with its sta� lines and bars, creating the �nal description of the music.

The author exposes that future work includes the complete automation of recognition graph building
and the generalization of the developed techniques to other musical notations.

Identi�cation of a writer's hand in handwritten musical scores In [23] a system for the
identi�cation of a writer's hand in musical scores is described. Although the work is in a early stage, it
must be commented due to the interesting research �eld of digital music notation matching. The author
claims that an important problem of the current registration of old historical music scores lays in the
identi�cation of corresponding writer. This identi�cation is based on the automated analysis of notation
graphic features. The process of automated identi�cation requires a de�nite level of handwriting content
understanding. To extract a concrete feature of music objects means at �rst to recognize these music
objects. Only after the recognition of separate note symbols from the whole note graphics, for instance,
it is possible to describe them using characteristic feature sets.

The system of signi�cant features of handwriting required for the identi�cation process can not be
fully completed neither can all existing variances be included into a system (the more handwritings will
be analyzed, the more will the system be increased and adapted). Every note element will be represented
by its tree structure, which shows an ideal appearance of the object. The special stochastic rule-based
method will be developed to handle an uncertain recognition results. The goal of the recognition problem
is to relate the structures found in the image with the underlying object feature models. Once object
features are given in the form of structural descriptions, the matching algorithm must solve the following
three problems simultaneously: determine which image primitives belong to the same object feature,
determine the identity of the structure and assign the correct object features to each image primitive.

Because of the early development of the system (in fact, no results are shown in the paper), the
author concludes that further work must be done in the classi�cation stage, performing graph matching
techniques with the use of heuristic approaches.

2.3 Conclusions
In this section, main OMR systems have been described. Table 2.1 shows main techniques used in

sta� detection and removal, whereas table 2.2 shows the main techniques used in classi�cation of musical
symbols. The validation phase is performed basically using rules, grammars and graph grammars.

Finally, results of main systems exposed in last subsection should be commented:
The system de�ned in [24] only recognizes quarter notes, beamed note groups and chords, whereas

Prerau's approach [20] recognizes a more complete set of symbols (clefs, accidentals, half quarter and
eight notes) with good recognition rates. Andronico [35] describes a system that recognizes clefs, key
signatures, notes, rests and accidentals in simple monophonic music. In [21] a system with human inter-
action recognizes simple polyphonic music, whereas Clarke's system [26] recognizes single line melodies
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Sta� Detection: Author Techniques
Prerau Contour Tracking

Mahoney Construction of candidates, Sta� line descriptors
Carter and Bainbridge Projections, LAG

Kato, Lee, Dan, Clarke, Randriamahefa Histograms, Runlengths, Projections
Leplumey Runlengths, Reconstruction using a Graph
Roach Slide-window, Orientation of line segments

Table 2.1: Main Techniques used in Sta� Detection

Classi�cation: Author Techniques
Prerau Bounding-box, Matching

Mahoney Features of primitives, Descriptors
Carter and Bainbridge Bounding-box, LAG

Kato Pattern processing, syntax analysis
Lee Projections

Clarke Bounding-box, pixel analysis
Vuilleumier Hidden Markov Models

Randriamahefa Polygonalization, Attributed Graph
Ng Skeletons and Mathematical Morphology Operators

Coüasnon Grammars

Table 2.2: Main Techniques used in Classi�cation of musical symbols

with a 90% accuracy.
The Wabot-2 can perform fast, accurate recognition of simple three-part organ scores, recognizing

notes, clefs, accidentals, time signatures, bar lines, beams, rests, staccato and marcato marks, but it
does not recognize words, slurs, ties, expression marks, ornaments and tempo indications.

In [22] the system exposed recognizes sta� lines, bar lines, notes, chords and rests.
Carter [6] has developed a system that segments under di�cult imaging conditions, without an

excess of ad hoc rules. It recognizes solo instrument parts, solo instrument with piano accompaniment
and orchestra score with good tolerance to noise, limited rotation, broken print and distortion.

System exposed in [18] handles complex music notation (including two voices per sta� with chords
and shared note heads, slurs and pedal markings) with high performance rates.

OMR system for handwritten recognition exposed in [29] shows acceptable performance results. Due
to the low resolution of digitized images, it is di�cult to estimate how this method would compare to
others when applied to higher-resolution input.

The grammar formalized by Coüasnon in [13] can recognize notes, rests, chords, accents, clefs, key
and time signature, phrasing slurs, dynamic markings. Abbreviations, ornaments and lyrics are not
included. The classi�cation system for the symbols and the segmentation and merging of connected
components is under development, and no performance results are shown.
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The prototype for printed scores described in [15] recognizes 12 di�erent sub-symbols with a 95%
reliability. The output is expMIDI, which is compatible with the standard MIDI �le format, and capable
of storing expressive symbols such as accents and phrase markings. No recognition rates are shown in
the recognition of handwritten scores.

System proposed in [34] obtains high performance results (ancient scores are recognized with a 97%
of accuracy). The output of the system is a normalized music sheet with the original sta� printed using
straight sta� lines and normalized symbols.



Chapter 3

Methodology Fundamentals

In this chapter, document analysis techniques for pattern recognition used in our OMR system
are brie�y exposed: binarization is used to separate foreground from background in images. After
binarization, some noise removal techniques (such as �ltering and morphological operations) are required.
Segmentation can be done using contour detection, run length smearing, projections and connected
component labelling. For the classi�cation stage, some statistical classi�cation techniques are reviewed
(moments and zoning). Finally, the concepts of Graph Grammars and Graph Matching are exposed.

3.1 General Image Transformation Techniques
There are some general image techniques exposed in [39] and [40] to process a document image:

geometrical transformations (translation, rotation and scale) are commonly used to correct distortions
due to image acquisition (i.e. to deskew an image). Binarization separates foreground from background.
Also, di�erent sets of �lters have been proposed, either in the spatial or frequential domain to improve this
foreground-background separation, feature enhancement and noise reduction. Morphological operations
are commonly used to identify objects or boundaries within an image. Finally, thinning and contour
detection are used for reducing the image components into their essential information. Let us further
describe such techniques.

3.1.1 Binarization Methods
Binarization is an operation used for separating �gure (foreground) from background in graylevel

images. The aim in binarization is to mark pixels that belong to true foreground regions with a value,
and background regions with a di�erent value. Depending on the threshold used for the classi�cation
in foreground or background pixels, one can �nd global or local-adaptive binarization methods. While
global methods set up a unique threshold value for the whole image pixels, local adaptive methods decide
the threshold for each pixel in terms of its context. A full review of main binarization methods can be

39
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found in [41].

A Global binarization method: OTSU If the document is in good quality and the background
is uniform, the separation can be performed using a global binarization method, such as OTSU (see [42]).
This method uses a single threshold value for the entire image. Pixels with a gray level darker than the
threshold value are labelled black (foreground), otherwise are white (background). An histogram of the
gray levels of the image is performed, and after that, the value of the threshold will be the value that
divides the histogram for its valley (see Figure 3.1).

Figure 3.1: Otsu binarization method

A Local adaptive binarization method: Niblack In old documents, global binarization
techniques do not work because paper degradation causes non-uniformities within foreground and back-
ground. Documents are in poor condition and background has not an uniform greylevel. For that reason,
local adaptive binarization techniques are required, such as Niblack (see [43]), where di�erent threshold
values are used in the image: depending on the area, this threshold varies.

The idea of Niblack's method is to vary the threshold over the image, based on the local mean and
local standard deviation. The threshold at pixel(x,y) is calculated as follows:

T (x, y) = m(x, y) + k · s(x, y) (3.1)

where m(x,y) is the sample mean and s(x,y) is the standard deviation, in a local neighborhood of
(x,y). The size of the neighborhood should be small enough to preserve local details, but at the same
time large enough to suppress noise. The value of k is used to adjust how much of the total print object
boundary is taken as a part of the given object.

Gatos describes in [12] an adaptive binarization technique for low quality historical documents. The
proposed scheme consists of �ve distinct steps: a preprocessing procedure using a low-pass Wiener �lter,
a rough estimation of foreground regions using Niblack's approach, a background surface calculation by
interpolating neighboring background intensities, a thresholding by combining the calculated background
surface with the original image and �nally a post-processing step in order to improve the quality of text
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(a) (b) (c) (d)

Figure 3.2: Binarization method's: (a) Original image, (b) Otsu's method, (c) Niblack's method,
(d) Gato's method.

regions and preserve stroke connectivity. The author comments that this method works with great
success (see Fig. 3.2) even in cases of historical manuscripts with poor quality, shadows, nonuniform
illumination, low contrast, large signal-dependent noise, smear and strain.

3.1.2 Filters to denoise a document image
Digital images are prone to a variety of types of noise. In addition, the binarization techniques

can introduce noise. The most popular technique to reduce noise in images is �ltering, a neighborhood
operation consisting in the transformation of an input image Ii(k,l) into an output image Io(k,l). Every
output value is usually a function of input values in a local neighborhood around position (k,l). A pixel's
neighborhood is some set of pixels, de�ned by their locations relative to that pixel.

Filtering is also a technique for modifying or enhancing an image (i.e. for emphasizing certain
features or remove other features), and can be classi�ed in Linear Filters and Rank-Order Filters.

Linear Filtering Linear �ltering consists in �ltering using a linear function, in other words, the value
of an output pixel is a linear combination of the values of the pixels in the input pixel's neighborhood.

Linear �ltering of an image is accomplished through convolution or correlation:

• Convolution: In convolution, the value of an output pixel is computed as a weighted sum of
neighboring pixels. The matrix of weights is called the convolution kernel, also known as the
�lter. Steps followed are: Rotate the convolution kernel 180 degrees about its center element.
Slide the center element of the convolution kernel so that lies on top of the (i,j) element of the
image. Multiply each weight in the rotated convolution kernel by the pixel of the image underneath.
Finally, sum up these individual products.

• Correlation: The operation called correlation is closely related to convolution. In correlation, the
value of an output pixel is also computed as a weighted sum of neighboring pixels. The di�erence
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is that the matrix of weights, in this case called the correlation kernel, is not rotated during the
computation.

Linear �lters, such as Averaging or Gaussian �lters, are useful to smooth and remove certain types
of noise:

• Mean Filter (Average):
The idea of mean �ltering is the replacement of each pixel value in an image with the mean ("av-
erage") value of its neighbors, including itself. This has the e�ect of eliminating pixel values which
are unrepresentative of their surroundings. Mean �ltering is usually thought of as a convolution
�lter, and it is useful for removing grain noise from images, because each pixel gets set to the
average of the pixels in its neighborhood, so local variations caused by grain are reduced.

• Gaussian Filter:
The Gaussian �lter uses a statistical weighting function as the �lter kernel. Pixels closer to the
center pixel are given more weight than those at the extremities.
The Gaussian 1-D function is de�ned as:

p(x) =
1√

2πσ2
e−

x2

2σ2 (3.2)

The Gaussian 2-D function is de�ned as:

p(x, y) =
1√

2πσ2
e−

x2+y2

2σ2 (3.3)

where sigma is the standard deviation, sigma squared is the variance, and the distribution has a
mean of zero (it is centered).
The gaussian is very popular because the 2-D gaussian �lter can be implemented by convolving
two one dimensional gaussian �lters in X and Y with the image rather than one 2-D gaussian.
This results in signi�cantly reduced computation. Since the image is stored as a collection of
discrete pixels we need to produce a discrete approximation to the Gaussian function before we
can perform the convolution. In theory, the Gaussian distribution is non-zero everywhere, which
would require an in�nitely large convolution mask, but in practice it is e�ectively zero more than
about three standard deviations from the mean, and so we can truncate the mask at this point.

The both linear �lters have side e�ects in that they includes the value of the noise in the calculation
of the result non-linear �lters try to reject the noise from the calculation to preserve features important
for perception.

Rank-order �ltering: Median Filtering One of the most popular rank-order �lters (whose
functions are non-linear) is Median �ltering, because it can eliminate noise without blurring the input
image.
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Median �ltering is a speci�c case of order-statistic �ltering, a nonlinear operation often used in
image processing to smooth and reduce "salt and pepper" noise. Median �ltering is more e�ective than
convolution when the goal is to simultaneously reduce noise and preserve edges. In median �ltering, the
value of an output pixel is determined by the median of the neighborhood pixels: The pixels are rank
ordered in terms of their grey levels and the middle value of the distribution is selected.

As we can see, objects which are half the size of the median �lter or less will be rejected and larger
objects will remain intact. Thus the median �lter can reject binary noise while preserving edges.

The median is much less sensitive than the mean to extreme values (called outliers). Median �ltering
is therefore better able to remove these outliers without reducing the sharpness of the image. Unluckily,
the Median �lter is slower than convolution because of the requirement for sorting, and it does not
perform as well on Gaussian noise.

3.1.3 Morphological Operations
Mathematical morphology is a broad set of image processing operations that process images based

on shapes. Morphological operations apply a structuring element to an input image, creating an output
image of the same size. In a morphological operation, the value of each pixel in the output image is
based on a comparison of the corresponding pixel in the input image with its neighbors. By choosing
the size and shape of the neighborhood, one can construct a morphological operation that is sensitive to
speci�c shapes in the input image.

While point and neighborhood operations are generally designed to alter the look or appearance of
an image for visual considerations, morphological operations are used to understand the structure or
form of an image, such as the identi�cation of objects or boundaries within an image.

Although most morphological operations focus on binary images (zero as black or background, and
1 as white or foreground), some also can be applied to grayscale images. The most basic functions for
many morphological operators are erosion, dilation and hit-or-miss. Others are special cases of these
primary operations or are combinations of them. For a binary image we will de�ne:

• Hit of Miss: the input image is scanned and the neighborhood of each pixel is compared with
the structuring element. If there is a perfect match, a prede�ned value is assigned to the output
image at that pixel, otherwise the output is set to its input value. This operation is useful only
for simple tasks.

• Dilation: the dilated image of an object I with respect to a structuring element S, is the set of
all reference points for which I and S have at least one common point. The output image is an
"expansion" of the input image.

Dilation = I ⊕ S̆ = {~x− ~y|~x ∈ I ∧ ~y ∈ B} (3.4)

• Erosion: an eroded image of an object I with respect to a structuring element S, is the set of all
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reference points for which S is completely contained in I. The output image is a shrinking of the
original image.

Erosion = I ª S̆ = {~x|∀~y ∈ B : ~x− ~y ∈ I} (3.5)

• Opening: is de�ned as an erosion, followed by a dilation. Used for removing small elements and
separate those objects joint by thin necks.

Opening(I, S) = I ª S̆ ⊕ S (3.6)

• Closing: is de�ned as a dilation, followed by an erosion. Used for �ll small holes and join very
closed objects.

Closing(I, S) = I ⊕ S̆ ª S (3.7)

where I is the image, and S is the structuring element.

3.1.4 Thinning
In certain applications where the line thickness is of secondary importance, the reduction of the

image components into their essential information (performing a thinning or skeletonization process
of the image) can simplify many operations in structural analysis. The main idea of thinning is to
repeatedly delete object boundary pixels so as to reduce the line width to one pixel. This must be done
without locally disconnecting the object (breaking into parts) nor deleting line end points.

The thinning requirements are formally stated as follows:

• Connected image regions must thin to connected line structures. It is very important that the
results of thinning must maintain connectivity. This requirement guarantees the number of thinned
connected-line structures to be equal to the number of connected regions in the original image.

• The thinned result should be minimally eight-connected. The resulting lines should always contain
the minimal number of pixels that maintain eight-connectedness (a pixel is considered eight-
connected to another pixel if the second pixel is one of the eight closed neighbors to it).

• Approximate end line locations should be maintained. The locations of end lines should be main-
tained. Since thinning can be achieved by iteratively removing the outer boundary pixels, it is
important not to also iteratively remove the last pixels of a line. This removal would shorten the
line and not preserve its location.

• The thinning results should approximate the medial lines. The resultant thin lines should best
approximate the medial lines of the original regions.
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• Extraneous spurs (short branches) caused by thinning should be minimized. Although is obvious
that noise should be minimized, it is often di�cult to determine whether it is noise or not. For
that reason, it is best to perform thinning �rst and the, in a separate process, remove any spurs
whose length is less than a speci�ed minimum.

In the thinning algorithm, pixels are deleted if the following conditions are satis�ed:

P1 is deleted if





2 ≤ NZ(P1)

and

NT (P1) = 1

and

((P2 · P4 · P8 = 0) or (NT (P2 6= 1))

and

((P2 · P4 · P6 = 0) or (NT (P4 6= 1))

(3.8)

where:
NT = number of 0 to 1 transitions in the ordered sequence P2,P3,...,P9
NZ(P1) = number of nonzero neighbours of P1.
and the neighours of P1 can be seen in Fig. 3.3.

Figure 3.3: Neighbors of the pixel P1.

This process is repeated until there are no more changes in the image. For an example, see Fig. 3.4.

Figure 3.4: Thinning

In [44] an approach for the skeletonization of engineering drawings to achieve the data reduction goal
is presented. The basic idea consists in a contour vectorization process applied to the contour image of
a drawing, followed by a contour skeletonization process by matching the contour vector pairs to obtain
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the skeleton of the drawing.

3.1.5 Contour detection
Contour detection can be thought of as the reciprocal operation of thinning. Whereas thinning yields

the inside skeletons, contour detection yields the outside boundaries (contours or edges). Since a single
contour envelopes a single region, contour detection can be used for region detection. Contours are
comprised of boundary foreground pixels that border background pixels. These contours can be found
easily by examining each pixel within a 3x3 window; if the center pixel is a foreground pixel and at least
one of its neighborhood pixels is a background pixel, then the center pixel is a contour pixel.

The contour image can be used in a number of ways: the number of contours gives the number
of regions, the centroid of the boundary pixels gives a measure of the region location, the length of a
contour indicates the enclosed region size, the length and enclosed area can be used to give a measure of
how elongated or "fat" the region is, curvature and corner features can be determined from the contour
to determine the region shape.

Roberts The Roberts Cross operator performs a simple, quick to compute, 2-D spatial gradient
measurement on an image. It thus highlights regions of high spatial frequency which often correspond to
edges. In its most common usage, the input to the operator is a grayscale image, as is the output. Pixel
values at each point in the output represent the estimated absolute magnitude of the spatial gradient of
the input image at that point. The operator consists of a pair of 2x2 convolution kernels. One kernel is
simply the other rotated by 90 degrees.

Gx =

(
1 0

0 −1

)
Gy =

(
0 −1

1 0

)
(3.9)

These kernels are designed to respond maximally to edges running at 45° to the pixel grid, one kernel
for each of the two perpendicular orientations. The kernels can be applied separately to the input image,
to produce separate measurements of the gradient component in each orientation (call these Gx and
Gy). These can then be combined together to �nd the absolute magnitude of the gradient at each point
and the orientation of that gradient. The gradient magnitude is given by:

|G| =
√

Gx2 + Gy2 (3.10)

and the angle of orientation of the edge giving rise to the spatial gradient (relative to the pixel grid
orientation) is given by:

θ = arctan(Gy/Gx)− 3π/4 (3.11)

In this case, orientation 0 is taken to mean that the direction of maximum contrast from black to white
runs from left to right on the image, and other angles are measured clockwise from this.



CHAPTER 3. METHODOLOGY FUNDAMENTALS 47

Sobel The Sobel operator performs a 2-D spatial gradient measurement on an image and so em-
phasizes regions of high spatial frequency that correspond to edges. Typically it is used to �nd the
approximate absolute gradient magnitude at each point in an input grayscale image. The operator con-
sists of a pair of 3x3 convolution kernels. One kernel is simply the other rotated by 90 degrees. This is
very similar to the Roberts Cross operator.

Gx =



−1 0 1

−2 0 2

−1 0 1


 Gy =




1 2 1

0 0 0

−1 −2 −1


 (3.12)

As in Roberts's, these kernels are designed to respond maximally to edges running vertically and
horizontally relative to the pixel grid, and can be applied separately to the input image (to produce
separate measurements of the gradient component in each orientation) or combined together to �nd the
absolute magnitude of the gradient at each point and the orientation of that gradient. The gradient
magnitude and the angle of orientation of the edge are the same that in Roberts's.

Canny The Canny operator was designed to be an optimal edge detector (according to particular
criteria, there are other detectors around that also claim to be optimal with respect to slightly di�erent
criteria). It takes as input a gray scale image, and produces as output an image showing the positions
of tracked intensity discontinuities.

The Canny operator works in a multi-stage process. First of all the image is smoothed by Gaussian
convolution. Then a simple 2-D �rst derivative operator (somewhat like the Roberts Cross) is applied
to the smoothed image to highlight regions of the image with high �rst spatial derivatives. Edges give
rise to ridges in the gradient magnitude image. The algorithm then tracks along the top of these ridges
and sets to zero all pixels that are not actually on the ridge top so as to give a thin line in the output, a
process known as non-maximal suppression. The tracking process exhibits hysteresis controlled by two
thresholds: T1 and T2, with T1 > T2. Tracking can only begin at a point on a ridge higher than T1.
Tracking then continues in both directions out from that point until the height of the ridge falls below
T2. This hysteresis helps to ensure that noisy edges are not broken up into multiple edge fragments.

3.2 Image Segmentation Techniques
Segmentation is the process of dividing an image into regions, each susceptible to containing a simple

object or a group of objects of the same type. In order to segment elements of an image, several techniques
are commonly used: projection histograms, connected component labelling, Run Length Smearing (also
very useful for �lling gaps in the image), the Hough Transform. It must be said that morphological
operations (described in last section) can also be used in the segmentation stage of a OMR system.
Most of these image segmentation techniques are extensively described in [39] and [40].
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3.2.1 Projection Histograms
Projection Histograms are commonly used in OCR systems for segmenting characters, words and

text lines, or to detect if an input image of a scanned text page is rotated.
In a horizontal projection, y(xi) is the number of printed pixels in that column, whereas in a vertical

projection, x(yi) is the number of printed pixels in that row. In Figure 3.5, we can see horizontal and
vertical projection histograms of number 5.

Figure 3.5: Horizontal and vertical projection histograms

This method is very fast, and accumulative histograms can be very useful in printed characters. It
can be invariant to scale using a �xed number of bins on each axis and dividing by the total number
of printed pixels in the character image. It is important to remark that whereas the vertical projection
x(y) is slant invariant, the horizontal projection is not. In addition, the projection histograms are very
sensitive to rotation, variability in writing style, and important information about the character shape
seems to be lost.

3.2.2 Connected Component Labelling
Connected Component Labelling assigns to each connected component of the binary image a distinct

label. The labels are usually natural numbers starting from one to the total number to connected
components in the input image. The algorithm scans the image from left-to-right and top-to-bottom.
On the �rst line containing black pixels, a unique label is assigned to each contiguous run of black pixels.
For each black pixel of the next and succeeding lines, the neighboring pixels on the previous line and
the pixel to the left are examined. If any of these neighboring pixels has been labelled, the same label
is assigned to the current black pixel; otherwise the next unused label is used. This procedure continues
to the bottom line of the image. After the scanning process, the labelling is completed by unifying
con�icting labels and reassigning unused labels.

3.2.3 Run Length Smearing
It consists in the detection of all runs of a certain value (for example, runs of 0's) of every line (or

column) of the image. Then, those runs are converted to a certain value if its length is shorter than a
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prede�ned threshold. Notice that it requires a prior skew correction.
For example, in a binary image, a line with 0's and 1's, the result of applying a Run Length Smearing

algorithm with T=3 where 0's are converted to 1's is:
Input line....... 0 0 0 1 1 0 1 0 1 1 1 0 0 1 0 0 0 1 1 1 0 0
Output line.... 0 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 1 1
As we can see, those runs (segments) of 0's whose length is shorter than 3, are converted to 1's. It

is very useful for �lling gaps in the image.
The usage of this technique in segmentation, the algorithm is �rst applied line-by-line and then

column-by-column, combined by the logical AND operation. The result could be used as input to the
connected component labelling, yielding a set of regions of the image.

3.2.4 Hough Transform
The Hough Transform method is useful when the objective is to �nd lines or curves (such as circles or

ellipses) that �t groups of individual points on the image plane. It is robust against noise and is specially
useful for �tting unconnected points (it works although there may be small gaps). In addition, Hough
Transform works successfully even when di�erent objects are connected to each other. It is commonly
used in the analysis of engineering drawings, where most curves are line segments or circle arcs. It can
be used to �nd skew from text line components. Unluckily, it is costly in terms of computation.

This method involves a transformation from the image coordinate plane to parameter space, in other
words, it maps each point in the original (x,y) plane to all points in the (r,theta) Hough plane of possible
lines through (x,y) with slope theta and distance from origin r. In the case of searching lines, the method
works as follows:

The equation of a line can be expressed as

r = x · cos θ + y · sin θ (3.13)

where r is the distance from the origin of the (x,y) space to the line, and theta is the angle of the
normal to the line. This produces a sinusoidal curve in the (theta,r) parameter space for each point
(x,y).

Each (x,y) location of a foreground pixel in the image plane is mapped to the locations in the
transform plane for all possible straight lines through the point (for all possible values or r ant theta).
When multiple points are collinear, their transformations will intersect at the same point on the transform
plane. Therefore, the (r,theta) locations having the greatest accumulation (maximum) of mapped points
indicate lines with those parameters.

Figure 3.6 shows a line and its Hough Transform plane, where an accumulation maximum shows
that there is a line, oriented 20 degrees, in the original image.

In [45] one can �nd an example of the usage of the Hough Transform and other techniques for the
automatic baseline extraction in check bank images.
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Figure 3.6: A line and its Hough Transform plane

3.3 Statistical Classi�cation
A subject of study in pattern recognition is feature extraction, because it helps in the classi�cation

of characters and symbols into classes. Feature extraction is divided two approaches: statistical and
structural. In this section, we will expose some descriptors used in statistical classi�cation: geometrical
features, moments, Zernike moments and Zoning. These techniques can be found in [46].

3.3.1 Geometrical Features
Simple geometrical features can be very e�ective in many applications. For instance, the sizes in the

x- and y-directions of a connected component may be su�cient to distinguish characters from graphical
parts. Geometrical features are:

• Sizes in x and y direction, and their aspect ratio.

• Perimeter

• Area

• Maximum and minimum distances from the boundary to the center of mass

• Number of holes

• Euler number: number of connected components minus number of holes.

• Compactness:
Perimeter2

4 · π ·Area
(3.14)

• Signatures: horizontal and vertical projections of black pixels.

In document image analysis, these features are commonly used for the pre-classi�cation of objects
into broad categories, such as characters and graphics.
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3.3.2 Geometrical Moments
Objects can also be described by their moments, de�ned by

Mp,q =
∫ ∫

D

i(x, y) · xp · yqdxdy (3.15)

where p and q are the non-negative integer degrees of the moment, i(x,y) is the gray-level image of
the object, and D is the spatial extend of the object. If the image is binary, and takes on the value 1 for
black and 0 for white pixels, then:





M0,0 = Area

M1,0 = x-coordinates of the center mass.
M0,1 = y-coordinates of the center mass.

(3.16)

For large values of p and q, he moments become very sensitive to noise and in practice, only small
values of p and q are used.

3.3.3 Zernike Moments
Because geometrical moments are not orthogonal, polar coordinates are used to manage orthogonality

and invariance to rotations. Zernike moments are de�ned over a set of complex polynomials which forms
a complete orthogonal set over the unit disk:

x2 + y2 ≤ 1 (3.17)

Polynomials of Zernike are denoted by:

ZP = {Vnm(x, y)|x2 + y2 ≤ 1} (3.18)

The form of the Zernike polynomial basis of order n an repetition m is:

Vnm(x, y) = Rnm(x, y) exp(jm arctan(y/x)) (3.19)

with the condition
n ∈ N+,m ∈ N |(n− |m|)even, and|m| ≤ n (3.20)

The radial polynomial is de�ned as

Rnm(x, y) =
(n−|m|)/2∑

s=0

(−1)s (n− s)!

s!(n+|m|
2 − s)! · (n−|m|

2 − s)!
· (x2 + y2)(n−2s)/2 (3.21)
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where: {
r =

√
x2 + y2, length of the vector from the origin to the pixel (x,y)

θ = arctan(y/x), the angle between that x-axis and that vector
(3.22)

and

Rnm(r) =





the polar coordinate representation of Rnm(x, y),

a polynomial of degree n in r containing terms in rn, rn−2, ..., r|m|.

contains no power of r less than |m|
(3.23)

Then, an image can be expanded using the Zernike polynomial:

f(x, y) =
∑

n

∑
m

Anm · Vnm(r, θ) (3.24)

where the Zernike moments of order n with repetition m is a complex number given by:

Anm =
n + 1

π

N−1∑
x=0

M−1∑
y=0

f(x, y)[Vnm(x, y)]∗ (3.25)

with * denoting the complex conjugated, and

x2 + y2 ≤ 1 (3.26)

The orthogonality property of Zernike polynomials over the unit disk allows the reconstruction of the
original image to an approximate image from a �nite number of Zernike moment orders. The existence
of such reconstruction is important even when it is not intended to be used explicitly in the recognition
process. It provides a measure of the representation power of the utilized features, and suggests non-
arbitrary matching in the invariant feature space. The reconstructed image can be computed from:

f(x, y) =
nmax∑
n=0

∑
m

Anm · Vnm(x, y) (3.27)

with
m ∈ N |(n− |m|) even, and|m| ≤ n (3.28)

Figure 3.7 shows an image reconstruction of an object using Zernike moments. Low order moments
encode information about the global shape of an object. The higher the order moments, the �ner the
details captured by the reconstruction, such as edges and corners. Although higher order moments
are more sensitive to noise (due to the increasingly oscillatory nature of the Zernike polynomials with
increasing order n) their use is generally desirable in object recognition as they capture the �ne details
of the image, and may lead to better discrimination among the di�erent classes of objects. For those
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Figure 3.7: Image reconstruction using Zernike moments

reasons, there must be an optimal maximum number of moments which best characterize an image in any
given application. Notice that while one might need a large number of moments to achieve an acceptable
image reconstruction, a lower number of moments may be enough for the task of object recognition.

3.3.4 Point distribution descriptors: Zoning
Zoning can be used to extract data from speci�c areas on an image. The method (see [47]) computes

the percentage of black pixels in each zone: an m x n grid is superimposed on the character image, and
for each of the nxm zones, the average gray level is computed, giving a feature vector of length nxm.

This method is fast and very useful in the recognition of printed characters. Figure 3.8 shows a
number 5 and its zoning-matrix.

Radtke exposes in [48] the use of multi objective evolutionary algorithms (MOEAs) applied to
the zoning technique for handwritten recognition. A MOEA is a search method based on Darwin's
evolutionary theory applied to a population of possible solutions. The algorithm proposed selects suitable
zoning strategies (without the requirement of domain expert feedback during the process) using a MOEA,
based in genetic algorithms.
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Figure 3.8: Zoning

3.4 Graph Grammars and Graph Matching

3.4.1 Graph Grammars
Graph grammars provide a useful formalism for describing structural manipulations of multi-dimensional

data. A full review of graph rewriting can be found in [49]. In the OMR �eld, a problem to solve is
how represent context information associated to music notation. Several authors, such as Fahmy and
Baunmann (see [14], [50] and [51]), propose the usage of attributed graph grammars to capture the
notational conventions of music in an intellectually manageable way.

In a graph, nodes represent objects (primitives) and edges represent relationships among them (such
as is right of, is below). Auxiliary information can be expressed by adding attributes to nodes or edges.
Grammatical manipulation of graphs permits convenient processing of multi-dimensional pattern classes,
nevertheless, picture processing applications of graph grammars remain surprisingly rare. This is due
to a variety of factors, including the di�culty of constructing large grammars that are intellectually
manageable, and the absence of methods for processing noisy and uncertain data.

These problems could be remedied by the development of readable graph-grammar notations, the
provision of graph-grammar construction and debugging tools, and the emergence of techniques for
constructing robust graph-grammars.

A graph grammar is speci�ed by a start graph and a set of production rules. The role of the
production is to replace one subgraph by another. This process depends on a speci�cation of the desired
embedding: edges to/from the old subgraph must be transformed into edges to/from the new subgraph.
Figure 3.9 shows an example of an embedding production rule applied to a note symbol with two stems:
The embedding speci�es that an edge incident on node 1 of the �rst graph is transformed into two edges,
incident on nodes 1' and 4' of the second graph. An edge incident on node 2 is transformed into an
edge incident on node 2'; similarly a node-3 edge is transformed into a node-3' edge. This production
duplicates doubly-stemmed noteheads to allow subsequent processing as two independent notes.
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Figure 3.9: An example of embedding rule applied to a note symbol with two stems

3.4.2 Graph Matching
If graphs are used to represent objects of a particular domain, then graph matching will be a suitable

strategy for classi�cation, detection or comparison of such structures. In general, graphs may be matched
by comparing vertices and edges according to their distribution to a relational distance metric.

Following a mathematical formulation, a matching between two graphs is performed by a graph
isomorphism, in other words, a bijective mapping that associates the nodes of the �rst graph to the
nodes of the second graph. The mapping must also preserve the structure so that any pair of adjacent
nodes in the �rst graph are also adjacent in the second one under the mapping. For attributed graphs,
it is also required that both node and edge attributes be maintained by the mapping.

Thus, the similarity between attributes must be considered when de�ning the relational distance
metric and, generally, it is application-dependent. If one of the graphs involved in the matching is
larger than the other, in terms of the number of nodes, then the matching is performed by a subgraph
isomorphism. For example, a subgraph isomorphism from G1 to G2 means �nding a subgraph G3 of G2
such that G1 and G3 are isomorphic.

Due to the computational complexity of graph matching, some tractable graph-matching algorithms
are developed, using heuristics to cut down the computational e�ort to a manageable size. In [52]
and [53] some of these algorithms are reviewed: optimal algorithms (such as backtrack tree search,
forward checking and discrete relaxation), error-tolerant algorithms (branch and bound, random graphs),
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approximate algorithms (using probabilistic relaxation), algebraic algorithms (using weight graphs) and
indexed search.



Chapter 4

Optical Music Recognition: Our
approach

In this chapter, our approach to the recognition of handwritten scores is presented. First, our
preliminary work with modern handwritten scores is described. Secondly, limitations of this system
when working with old handwritten ones are commented, and new techniques are used to cope with the
di�culties in the recognition of old documents.

4.1 Modern Handwritten Scores
Initially, we have been working with modern handwritten musical scores, where paper is in good

condition, there is a standard of musical notation and most of sta� lines are printed. Here, the early
stages (see Figure 4.1) of the OMR system proposed consists in the following: preprocessing (the input
image is binarized and deskewed), sta� removal and detection of graphical primitives (such as vertical
lines and head notes).

Figure 4.1: First stages of the OMR system for modern handwritten scores.

57
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(a) (b)

(c) (d)

Figure 4.2: (a) Original Image (b) Hough Transform space: yellow points show lines (c) Detected
lines (d) Deskewed image

4.1.1 Preprocessing
Binarization First of all, the gray-level scanned image (at a minimum resolution of 300 dpi) must
be binarized to separate foreground from background and make the recognition process easier. Thanks
to the fact that scores are modern and the music sheet is in good condition (paper sheet is relatively
new), the input gray-level image can be e�ectively binarized with a global binarization method, such as
OTSU's method (see Chapter 3 for details): It obtains only one threshold and uses this value to separate
all pixels in the image into two categories (pixels whose grey-level is under the threshold and pixels whose
value is over this threshold). After that, the image is negated so that white pixels (value=1) will contain
information (foreground) and black pixels (value=0) will be the background. It must be said that in this
report, �gures are drawn in a non-negated way in order to make their visualization easier.
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Deskewing The second step consists in deskewing the image, so that sta� lines would be horizontal
and make their recognition easier. The Hough Transform method can be used to detect lines, so if this
technique is applied to the image, several dots (corresponding to sta� lines) will show the orientation of
the sta�, and consequently, the orientation of the music sheet. If the orientation of these lines is di�erent
from 90 degrees (which corresponds to horizontal lines in the Hough Transform space, see equation 4.1),
the rotation angle is calculated and the image is rotated.

r = x · cos θ + y · sin θ (4.1)

Figure 4.2(a) shows a skewed image, and how in the Hough Transform space (Fig. 4.2(b)) the sta�
lines and their orientation are obtained. In Fig. 4.2(c) the sta� lines are drawn in red color, applying
the equation 4.2 to convert these points in the Hough Transform into the cartesian space. The deskewed
image is shown in Fig. 4.2(d).

y =
r − x · cos θ

sin θ
(4.2)

4.1.2 Sta� detection and removal
As it has been exposed in Chapter 3, sta� lines play a central role in music notation because they

de�ne the vertical coordinate system for pitches, provide horizontal direction for the temporal coordinate
system and give a size normalization useful for symbol recognition (size of musical symbols is linearly
related to the sta� space). Unluckily, sta� causes distortions in musical symbols (connecting objects
that should be isolated), making di�cult the recognition process. For that reason, sta� removal must
be performed in order to isolate musical symbols.

Once the image is deskewed, horizontal projections can e�ectively be used to detect sta� lines: every
row whose value is over a certain threshold (depending of the size of the musical score) is likely to contain
a sta� line (see Fig. 4.3(b)).

In the sta� analysis, hypothetical rows detected are grouped (a sta� is composed by 5 sta� lines),
the width of sta� lines is set as the average of widths of every line, and the distance between sta�
lines is set as the average of the distances between every line in every 5-grouped lines. Knowing these
parameters, a run-length smearing process deletes sta� lines (Figure 4.4 shows the score after the sta�
removal process).

It must be said that this process can provoke broken objects: when a musical symbol crosses a sta�
line, the removal of these line can erode also a part of this musical symbol. For that reason, the sta�
removal process must try to keep unbroken symbols: a pixel of the sta� line will be deleted if pixels
connected to it in the previous row are zero (see Fig. 4.5(a)). In addition, a module that joins segments
of lines is implemented to reconstruct hypothetical broken lines: a slide-window follows the sta� line
analyzing its area. Wherever the are of the slide-window is over a certain threshold (it means that there
is a symbol), the Hough Transform is performed locally in it. The maximum in the Hought Transform
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Figure 4.3: (a) Deskewed Image; (b) Horizontal Projections.

space is found and the line is reconstructed. This technique can join some segments of broken lines, but
it also paints pixels that should not be painted (see Fig. 4.5(b)). In order to deal with this problem,
pixels painted in the reconstruction module only will change to 1 if in the original image they were 1:

Output Image = Original Image ∩ Reconstructed Image (4.3)

Finally, morphological closing and run length smearing are performed to reduce noise.

4.1.3 Detection of Graphical Primitives
In the primitive detection stage, vertical lines and head notes are the �rst graphical primitives to

recognize (they form notes, which are the most important musical symbols). After that, the remaining
image can be processed to obtain other graphic primitives.

Detection of Vertical Lines

Detection of vertical lines in printed scores can be easily implemented using projections (because
lines are perfectly verticals), whereas their recognition in handwritten ones requires the use of other
techniques, because lines are rarely perfectly vertical. First, the input image (without sta� lines) is
prepared for the recognition of vertical lines:

• Making verticals thicker: A vertical Run Length Smearing process is used to �ll gaps (whose
length is lower than the width of sta� lines) of background color.

• Removing horizontal lines and hypothetical headnotes: In order to remove vertical-short segments
(whose lenght is lower than the distance between sta� lines), a vertical Run Length Smearing
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Figure 4.4: Image without sta� lines.

(a) (b)

Figure 4.5: (a) In the slide-window, a pixel A with value of 1 will be removed if pixels X,Y,Z are
0; (b) The reconstruction of hypothetical lines: Sta� lines are drawn in blue color, reconstructed
segments in red color, the arrow shows that some lines with gaps are not reconstructed

process is used for �lling gaps in foreground color.

The prepared image will be the input for the following method:

1. Apply Hough Transform method, allowing a skew of 20º (from -20 degrees to +20 degrees).

2. In the Hough Transform space, �nd values under a certain threshold and change their values to
zero. Then, �nd shapes similar to a bow tie (see Fig. 4.6(a)) and detect their center of mass (x,y),
which corresponds to the line found:

GeometricalMoments = mp,q =
N∑

x=1

M∑
y=1

f(x, y) · xp · yq (4.4)
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(a) (b)

Figure 4.6: (a) In the Hough Transform space, if (values < threshold) are changed to zero, then
shapes similar to a bow tie show a line. The center of mass shows the line found; (b) Pixels
between blue lines are analyzed to know which ones belong to the red line

x =
m1,0

m0,0
=

∑N
x=1

∑M
y=1 f(x, y) · x
area

(4.5)

y =
m0,1

m0,0
=

∑N
x=1

∑M
y=1 f(x, y) · y
area

(4.6)

3. Draw the line in the cartesian space. Then, a region parallel to the line drawn (see Fig. 4.6(b)) is
analyzed in order to decide which painted pixels belong to this line L. Two algorithms have been
tested:

• Measure the distance of the line L to the line that forms every pair of pixels: Every pair of
pixels ((x1,y1) and (x2,y2)) inside the region is used to form a new line N. Then, the equation
in polar coordinate system (see eq. 4.1 and eq. 4.7) of this line and its value in the Hough
Transform space is obtained. If the distance between both lines is under a certain threshold,
then both points belong to the line L.

{
θ = arctan(x1−x2

y1−y2
), if y1 6= y2;

θ = 0, if y1 = y2;
(4.7)

• Measure the distance of every pixel to the line L: The distance of every point of the region
to the line is obtained and only those points near the line are marked as pixels belonging to
the line L:

if |r − x · cos θ − y · sin θ| < threshold ⇒ (x, y) ∈ L (4.8)

Both options get similar results, so the �rst option (distance of the line L to the line that forms
two points) has been discarded due to its high computational cost.
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Figure 4.7 shows vertical lines detected in the musical score.

Figure 4.7: An example of the detection of vertical lines: verticals in blue color.

Detection of Filled Headnotes

For the detection of �lled headnotes, a �rst attempt was the use of an edge detection algorithm to
convert those �lled headnotes in circumferences, so the detection of �lled headnotes could be changed
into the detection of circles. Two options have been contemplated for detecting circles:

• Hough Transform for detecting circles: As we know, The Hough Transform algorithm can be
used for detecting lines and curves, including circles.

• Fast Radial Symmetry: This method (described in [54]) uses local radial symmetry to extract
points of interest within the scene using gradients.

Unluckily, both options fail in the detection of such circles, because headnotes are not bigger enough
for being e�ectively detected.

Figure 4.8: An example of the detection of headnotes: hypothetical headnotes in blue color.

For that reason, context information is used to help in their recognition: a �lled headnote has always
a beam. Thus, a headnote is a �lled circle that has a beam in their extreme.
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The strategy followed consists in obtaining hypothetical �lled circles (see Fig. 4.8) and then, look if
they have beams in their extremes. Hypothetical �lled circles are obtained performing a morphological
opening with a disk (radius = w/3, where w is the distance between sta� lines). Due to the fact
that this operation �nds all objects bigger than the structuring element (including real headnotes and
others), a module must verify if the shape of hypothetical �lled circles is similar to the shape of a circle,
accomplishing these rules:

• Circularity: a �lled circle must have its circularity parameter near to 1 (a perfect circle has
circularity = 1):

Circularity =
perimeter2

4π · area
' 1 (4.9)

• Area: The area of the �lled circle (radius = r) must be between certain thresholds (a perfect
headnote should has an area of π · w2, where w is the width of sta� line):

π · (0′5 · w)2 ≤ π · r2 ≤ π · (1′5 · w)2 (4.10)

• Compactness (no concavities): A �lled circle has no concavities, so, the area of the convex covering
of the �gure, must be similar to the area of the �lled circle:

Compactness =
Area Convex Covering

Area Filled Circle
' 1 (4.11)

An easier way to verify compactness is performing a morphological closing and compare with the
area of the object:

Compactness =
Area Closing

Area Filled Circle
' 1 (4.12)

• One connected component: The �lled circle must not be broken. If it has several parts, then,
circularity and compactness are useless.

Classi�cation of Vertical Lines

Once we have detected vertical lines and �lled head notes, lines must be classi�ed, see Fig. 4.9, in
beams (which have one or more head notes), bar lines (longer than beams, without head notes) and
others (e.g. lines that are part of another kind of symbols, such as �ats, sharps or naturals). Bar lines
are the most important vertical lines, because they divide scores in bar units. Once we have isolated
every bar unit, we can process them in an independent way, looking for musical symbols using grammar
rules.

The input for the classi�cation stage of vertical lines, is the matrix containing all vertical lines
detected and the image with hypothetical headnotes. Then, every vertical line V is classi�ed in:
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Figure 4.9: Verticals in scores: Beams have a headnote in the top-right or in the bottom-left.
Bar lines cover the sta�

Figure 4.10: Classi�cation of Vertical Lines: Notes with �lled headnotes in black color, bar lines
in blue color

1. Beam: If V has a headnote in its extremes (in the top-right or in the bottom-left) and the length
of V is over the double of the distance between sta� lines, then V is a beam. The hypothesis here
is that the length of beam is usually three of four times the distance between sta� lines.

2. Bar line: If V is not a beam, and it covers the sta� (its length is over four times the width of
sta� lines), then V is a bar line.

3. Others: If V is not a beam nor a bar line, then V is a part of a musical symbol.

In Fig. 4.10 we can see the classi�cation of vertical lines and the detection of notes with �ll headnotes:
head notes and vertical lines are in black color, and bar lines are drawn in blue color. The remaining
score is in grey color.
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(a) (b)

Figure 4.11: (a) Half notes: The circumference of two half notes in the top are incomplete
because they have gaps; (b) A circle crossing a sta� line that has not been completely removed

Detection of white headnotes

Extraction of whole and half notes is reduced to �nd circumferences in the score, but apart from the
fact that circles are very little, the module must cope with:

• Gaps: Circles are handwritten, so the circumference frequently is incomplete or has gaps in its
contour (see Fig. 4.11(a)).

• Two semicircles: When a circle is drawn over a sta� line (crossing it), the sta� removal process
sometimes does not remove completely the line inside the circumference (see Fig. 4.11(b)). Thus,
the detection of circles becomes a problem of detecting two semicircles.

Due to the di�culties commented, a possible solution is to �ll these circumferences and recognize
�lled circles using the module that recognizes �lled headnotes:

• Prepare the input image: The image I without �lled headnotes (see Fig. 4.12(a)) is prepared
to obtain hypothetical white headnotes performing a morphological closing with a structuring
element circular, and then removing foreground pixels of the input image I to delete verticals and
contour of symbols (see Fig. 4.12(b)).

• Recognize �lled circles: As it has been commented in the recognition of �lled headnotes, parameters
of circularity, area and compactness will be the key for determining which objects are �lled circles.

Fig. 4.13 shows detected white headnotes (in blue color). As we can see, not only there are a lot of
false positives, but also there is one half note missing (this half note is formed by two semicircles). For
that reason, context information will be required here:

• Half note: A half note has a beam with a white headnote. So, if it has a beam in its extremes,
then it will be a half note.

• Whole note: A whole note does not have a beam, so the only way to verify if it is a whole note
is to count the number of beats in the measure. For example, in a score with the time signature
of 4/4 (it means that every measure will have notes whose sum is 4 times), whether there is only
one note between two bar lines, then this note should be a whole note (because a whole note has
a duration of 4 times).
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(a)

(b)

Figure 4.12: (a) Image without �lled headnotes ; (b) Input image of the module: Hypothetical
white headnotes are �lled. The red arrow shows that a circle has been converted into two
semicircles

Due to the need of a grammar for the recognition of whole notes, this part will be treated in future
stages of the recognition process.

4.2 Old Handwritten Scores
As it has been said in Chapter 1, a growing interest in the Document Analysis area is the recognition

of ancient manuscripts and their conversion to digital libraries. Nowadays, our work is focused on the
recognition of old handwritten scores (XVIII-XX centuries) so that these scores of unknown composers
could be edited and published (contributing to the di�usion and preservation of artistic and cultural
heritage).

Working with old scores makes the recognition task more di�cult due to:

• Paper degradation: most musical scores are in poor condition, so there is an important problem
of low level processing, because it must cope with transparencies, spots, stains and low contrast
(examples shown in Fig. 4.14).
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Figure 4.13: Detection of white headnotes: candidates in green color, detected white headnotes
in blue color. The red arrow shows that a white headnote (formed by two semicircles) has not
been detected.

(a) (b)

Figure 4.14: (a) Image with stains. ; (b) Image with transparencies

• The lack of a standard notation in last centuries: there is not a standard in the shape of musical
symbols, neither in the graphical relation between primitives. An example of this fact is shown
in Fig. 4.15(a), where several notes are drawn with the headnote in the top-left side of the beam,
instead of being in the top-right side. The writer style is also important: in Fig. 4.15(b) both
notes are the same, but they look di�erent. For those reasons, the creation of a graph grammar
becomes more di�cult.

• Sta� lines are often handwritten (lines with gaps and rarely straight), so, their recognition and
removal is hard to achieve.

• Broken and touching symbols as well as high density of symbols make the recognition of musical
symbols more di�cult.

For those reasons, the preprocessing and segmentation phases described for the recognition of modern
scores, must be modi�ed and adapted to this kind of scores: A good solution to paper degradation is
the use of local binarization techniques, �ltering and morphological operations, whereas sta� detection
can be performed using a contour tracking process. In order to cope with the lack of standard notation,
an expert system will be required to learn every new way of writing, and arti�cial intelligence based
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(a) (b)

Figure 4.15: (a) No Standard in musical notation: some beams have their headnote in the
incorrect side; (b) writer style: both notes are the same, but they look di�erent.

techniques will take advantage of higher level musical information.
In the following sections, the method proposed to detect and extract sta� lines and graphical prim-

itives is exposed. Figure 4.16 shows the steps followed in the early stages of the system.

Figure 4.16: Preprocessing Stages of the system.

4.2.1 Preprocessing
As in the recognition of modern scores, the gray-level scanned image (at a minimum resolution of 300

dpi) must be binarized to separate foreground from background, but with such these old scores, global
binarization techniques do not work because of degradation of the scores. Thus, adaptive binarization
techniques are required, such as Niblack binarization method (see Chapter 3 for details): the threshold
used to classify pixels in black or white varies over the image, based on the local mean and local
standard deviation of the neighborhood of every pixel (the size of the neighborhood rectangle has been
experimentally set to 21x21 pixels). Then, �ltering and morphological operations are used to reduce
noise.

After binarizing the image (see Fig. 4.17), the image must be deskewed in order to make the recog-
nition of sta� lines easier. As in the OMR for modern scores, the the Hough Transform method is used
to detect lines, obtaining the orientation of the music sheet, and rotating the image if necessary.
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(a)

(b)

Figure 4.17: (a) Original Image; (b) Binarized image using Niblack's method

4.2.2 Sta� detection and removal
The detection of sta� lines is more di�cult due to distortions in sta� (lines present often gaps in

between), and contrary to modern scores, sta� lines are rarely perfectly horizontal. This is caused by the
degradation of old paper, the warping e�ect and the inherent distortion of handwritten strokes (sta� lines
are often drawn by hand, see Fig. 4.18). For those reasons, a more sophisticated process is followed (see
Fig. 4.19): After analyzing the histogram with horizontal projections of the image, detecting sta� lines,
a rough approximation of every sta� line is performed using skeletons and median �lters. Afterwards,
a contour tracking algorithm is performed to follow every sta� line and remove segments that do not
belong to a musical symbol.

Figure 4.18: Sta� written by hand.

Detection of �ve grouped lines

Due to the fact that there are deviations in the sta�, the detection of sta� lines can not be done
using horizontal projections (see Fig. 4.20(a)), because sometimes, local maximums do not correspond
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Figure 4.19: Stages of the extraction of sta� lines.

to sta� lines (e.g. two local maximums correspond to one sta� line, see Fig. 4.20(b)).
Thus, the solution proposed consists in the following steps:

1. Perform a horizontal projection (obtaining an histogram) of the entire score.

2. Smooth the histogram until there is only one oscillation (hill), with only one maximum, for every
sta� (see the red line in Fig. 4.20(a)).

3. For every oscillation, determine which ones correspond to sta�s (a sta� has �ve peaks, correspond-
ing to the �ve sta� lines):

• If the maximum of a hill is too low, then it is not a sta�.

• Smooth the segment of the histogram (SH ) corresponding to this sta� until there are only
�ve hills, corresponding to the �ve sta� lines.

• If there are not �ve hills, then, it is not a sta�.

• If there are �ve hills but the distance between them is not constant, then it is not a sta� (a
sta� has �ve equidistant sta� lines).

4. For every sta� detected:

• Obtain �ve maximums and six minimums in the smoothing histogram (SH ) corresponding
to this sta�.

• Get the maximum M of the histogram between every two minimums of the smoothing image.
Also, this maximum M must be near every peak of the hill. Every maximum M correspond
to a sta� line (see the red dots in Fig. 4.20(b)).

Determining pixels belonging to sta� lines

Once we have a rough approximation of the location of every sta� line, pixels belonging to every
sta� line must be determined. Some failed attempts to solve this problem were:
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(a) (b)

Figure 4.20: (a) Histogram of the Horizontal Projection of the musical score: the red line
corresponds to the smoothing process of the histogram; (b)A segment of the histogram: There
are several local maximums corresponding to a sta� line, and the red dot corresponds to the
sta� line.

• Evaluate a window containing the sta� line, and mark those pixels that are near the sta� line.
But this method does not work when the sta� has deviations in its lines.

• Use the structural tensor to detect orientations of lines, and then, follow those segments that
belong to the same orientation. This method (described in [55]) performs smoothing and partial
derivatives to obtain vectors and orientation of lines. Unluckily, these method does not work when
the sta� has high density of musical symbols, because in such cases, orientation of horizontal
segments results to be very similar to the orientation of symbols.

• Calculate gradients of the image in order to obtain horizontal segments. Then, obtain a poly-
nomial function for the curve that goes through those segments (notice that the function is a
curve because it must allow deviations). Then, join those segments closer to that curve. This
option has been discarded for two reasons: it requires a polynomial of high degree (minimum 12º),
so the computational cost is too much expensive; and it is extremely di�cult to decide which
horizontal segments must belong to the same function (distance between sta� lines is small, so
when distortions are present, segments of di�erent sta� lines are very closed).

The method proposed consists in the use of horizontal runs as seeds to detect a real segment of every
sta� line. Afterwards, a contour tracking process is performed in both directions following the best �t
path according to a given direction. In order to avoid deviations (wrong paths) in the contour tracking
process, a coarse sta� approximation needs to be consulted.
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Reconstruction of the hypothetical sta� lines

The steps applied to obtain an image with horizontal segments (which will be candidates to form
sta� lines) are:

1. Obtain the skeleton of the image.

2. Use a median �lter with a horizontal mask.

3. Go to step 2 until last two images are similar.

Thanks to the usage of median �lters with a horizontal mask, most symbols are deleted from the
skeleton of the image, and only sta� lines and those horizontally-shaped symbols will remain. Median
is less sensitive than mean in front of outliers (extreme values) in the image. Notice that the fact of
working with binary images, simpli�es the computation of the �lter, because the possible values of the
pixel are 0 or 1. For that reason, to compute the output value it is only necessary to count the number
of 0's and 1's in the neighborhood and choose the greater value:

Output(i, j) =

{
0, if number of 0's is greater than number of 1's;
1, otherwise;

(4.13)

The size of this horizontal mask is constant (experimentally, the best dimensions in pixels are: 1
width × 9 height), because in the skeletonized image, each line is one pixel-width, so the width of lines
in the original image is irrelevant. The process applies median �lters deleting iteratively segments that
are not horizontal until stability (last two images are similar).

Once the image with horizontal segments is obtained, these segments must be used to reconstruct
sta� lines. The method chosen for discarding or joining segments basically looks the orientation, distance
and area of segments:

Figure 4.21: Reconstruction of sta� lines: Blue segments are chosen to be part of the sta� line;
the red segment is the actual segment, and the next segment will be chosen between segments
inside the green square. Segments inside the blue square will be used to calculate the mean of
the orientation.

1. Remove little segments with a morphological opening with a structuring element circular.

2. Obtain connected components of the image.



CHAPTER 4. OPTICAL MUSIC RECOGNITION: OUR APPROACH 74

3. For every sta� line:

(a) Chose the initial segment as the larger one.

(b) Calculate the slope and the orientation (in degrees) of the segment: Obtain the equation of
the line that �ts the segment, the vector director, and �nally, its orientation:

y = m · x + n ⇒ α = arctan(m); (4.14)

(c) Reconstruct the sta� line, joining segments that are in the left side of the segment. Repeat
until the sta� line is reconstructed:

i. Obtain the statistical mean of the orientations of segments inside a window which con-
tains the segments belonging to the sta� line: In order to make comparisons between
orientations of segments, the orientation of the next segment chosen must be compared
to the orientation of the last segments which belong to the line (see Fig. 4.21). Thus, the
orientation of a single segment will not be so important in order to make comparisons.
The mean α orientation of n segments can be calculated as follows:

α = [
∑n

i=1 cos(2 · αi)
n

,

∑n
i=1 sin(2 · αi)

n
]; (4.15)

ii. Choose the next segment belonging to the sta� line:
• For every candidate segment in the search window, calculate the area, distance

to the actual segment A, position of their extremes, orientation of the candidate
segment, and orientation J of the line that joins every candidate with the actual
segment.

• Calculate the distance d between orientations of candidates segments and actual
segment. The range of the angle of orientations is between [-180,180], so the distance
d will be:

d = min{abs(α1 − α2), 180− abs(α1 − α2)} (4.16)

• Return a segment R that complies:




distance(R → A) < threshold; and

area(R) > threshold; and

orientation(R) ' orientation(A); and

orientation(J) ' orientation(A);

(4.17)

where A is the actual segment, R is the candidate segment,and J is the line that
joins R with A.
If no segment complies these rules, then return ∅.
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(a)

(b)

(c)

Figure 4.22: (a) Original Image; (b)Horizontal segments of the score; (c) Reconstruction of the
hypothetical sta� lines.

iii. If there is not a segment inside the window, then, paint the window with a line according
to the mean α orientation.

iv. If there is a segment chosen inside the window, then mark those segment as belonging
to the sta� line and paint the line that joins the actual segment with the chosen one.

(d) Reconstruct the sta� line, joining segments that are in the right side of the segment: The
method is identical to the one described in (c).

(e) Delete those segments discarded that are near the sta� line.

Fig. 4.22(a) shows the original score su�ering from a warping e�ect and Fig. 4.22(b) shows horizontal
segments obtained using skeletons and median �lters. The reconstruction of sta� lines joining segments
is shown in Fig. 4.22(c).

If there are big gaps in sta� lines in presence of horizonal symbols this method could fail and follow
a segment of this symbol instead of a segment of the sta� line. Figure 4.23(c) shows a big gap with a
crescendo marking and Fig. 4.23(d) shows its reconstruction. An initial solution to this problem consists
in increasing the size of the slide-window, but it could not work in scores with large deviations in sta�
lines.
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(a)

(b)

Figure 4.23: (a) Original Image (b) Line segments of sta� lines with gaps and horizontal symbols

Contour Tracking

After the obtention of the reconstructed sta� lines, the contour tracking process can be performed
following the best �t path according to a given direction. The aim is to remove pixels belonging to sta�
once their location is roughly determined.

For every sta� line:

1. Take a window that includes the sta� line and obtain the width of this sta� line: perform a Run
Length Smearing vertical and catch the longer segment. The width of that sta� line W will be
the statistical mode of the width of this segment.

2. Perform a Run Length Smearing vertical with a segment of length = W, and detect a segment SG
longer and closer to the horizontal line detected in the histogram of horizontal projections.

3. Take the segment SG and perform the contour tracking towards the left direction. Repeat until
the beginning of the image:

(a) Take a little column in the left side of the segment, and detect positions of the pixels which
belong to the contour in that column:

• If there is no pixel in the little column but there are pixels in a section near it, then
determine if there is a change of line or not (depending on the distance and orientation).

• Chose the connected component in the column with bigger area and closer to the actual
positions of the segment. Then, calculate its extremes. If those positions are too far
from the positions of the actual segment, or they are too far from the hypothetical
reconstructed sta� line, then reject those component.

(b) If points are returned, mark them as belonging to the sta� line. If no points are returned,
then mark next points, depending on the hypothetical reconstructed sta� line.
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4. Take the segment SG and perform the contour tracking towards the right direction until the end
of the image: The method is identical to the one described in (c).

As it has been described, if there is no presence of sta� line (a gap), the contour tracking process
will be able to continue according to the location of the reconstructed sta� line.

Sta� Removal

Concerning line removal, we must decide which line segments can be deleted from the image, because
if we delete sta� lines in a carelessly way, most symbols will become broken. For that reason, only those
segments of lines whose width is under a certain threshold (experimentally set to 1'2 * width of sta�
lines) will be removed. As it has been commented, width of sta� lines has been calculated in the contour
tracking process, using the statistical mode of line-segments. Figure 4.24 shows some examples of line
removal: Figure 4.24(a) is the original image, where in Fig. 4.24(b) we can see how in presence of a gap,
the process can detect next segment of sta� line to continue; in Fig. 4.24(c) a symbol crossing the line
will keep unbroken, because the width of the segment is over the threshold.

(a) (b) (d)

Figure 4.24: Examples of Line Removal in Contour Tracking process. a) Original Image, b)
Gap in line, c) Symbol crosses the sta� line, d) Symbol is tangent to sta� line: Symbol becomes
broken

In this level of recognition, it is almost impossible to avoid the deletion of segments of symbols that
overwrite part of a sta� line (they are tangent to sta� line, see Fig. 4.24(d) and whose width is under
this threshold, because context information is not still available.

Fig. 4.25 shows an example of the results of the sta� removal module, which can cope with deviations
in sta� lines.
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(a)

(b)

Figure 4.25: (a) Original Image; (b) Image without sta� lines.

4.2.3 Graphical Primitive Detection
After removing the sta� from the image and calculating the width of sta� lines and distance between

them, vertical lines and head notes are the �rst graphical primitives to recognize. The input image for
the primitive detection module is the image without sta� in which some morphological operations and
run length smearing techniques are applied to reduce noise.

Recognition of vertical lines

The main idea for the detection of vertical lines is the usage of median �lters with a vertical struc-
turing element, so only symbols with vertical shape will remain (see Fig. 4.26):

1. Perform a thinning process of the image, so the width of strokes will not be determinant.

2. Obtain vertical segments performing the median �lter operation with a vertical element (whose
length is experimentally set to 0'4 * distance between sta� lines).

3. Filtrate results: Perform a morphological closing and a run length smearing process. Then, discard
vertical segments with little area.

Contrary to extraction of sta� lines, here the size of the structuring element depends on the distance
between sta� lines. We have also tested Hough Transform to detect vertical lines (as we do in modern
scores), but results using median �lters are better and the algorithm is faster.

Recognition of �lled head notes

Working with printed scores makes this process easier, because all head notes have similar shape. A
morphological opening operation (with a circular structuring element), and choosing the ones with ade-
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Figure 4.26: Vertical lines detected are in black color.

quate circularity and area, does not work with handwritten scores, because there is too much variability
in ways of writing to perform a process that detects exactly all head notes.

The method proposed performs a morphological opening with elliptical structuring element (whose
size depends on the distance between sta� lines), oriented 30 degrees. After that, elements with large
area are discarded. This approach gets all �lled head notes and false positives (see Fig. 4.27), but it is
better to discard false positives in next stages than forgetting real head notes.

Figure 4.27: Filled head notes detected in black color.

Because of the lack of a standard notation in old scores, some modern rules of musical notation are
not applied in old scores: For example, in modern musical notation if a head note is allocated under
the third sta� line, it has a beam on the right side; otherwise, it has a beam on the left (see Fig. 4.28).
In some old scores, notes have the beam on the right side whatever their allocation on the sta�. In
addition, several musical notes has the headnote in the top-left side of the beam, instead of being in the
top-right side.

For those reasons, the classi�cation of notes (�lled head notes with beams) will be performed in
higher-level stages, using grammar rules and the knowledge of time signature.
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Figure 4.28: Positions of beams in the notes of a musical scale.

Recognition of bar lines

As it has been exposed in the recognition of modern musical scores, the detection of bar lines is very
important because they divide the score in measures.

A �rst approximation of bar lines is performed assuming these two hypotheses: bar lines cover all
sta� and there are no head notes in their extremes. The input of the module are vertical lines and �lled
headnotes detected in last stages. Then, for every vertical line, mark it as a bar line if it satisfy these
constraints:

• The vertical line is longer than 4 * distance between sta� lines.

• There is no headnote in its extremes.

• If covers the sta� at those position: Due to distortions in sta�, in order to know if a bar line covers
the sta�, it is necessary to look the real sta� location in that section to decide (see Fig. 4.29).

Figure 4.29: Bar lines in black color.

Figure 4.30 shows results of the bar line detection module. As it can be seen, there are some false
positives, which will be detected in higher layers.

Once every bar line is obtained, the musical score can be divided into measures (see Fig. 4.31), and
every one can be sent to the classi�cation module of musical symbols, where grammar rules will be used.

4.2.4 Classi�cation of clefs
As it has been said in last section, once every measure of the score is obtained, it is processed

independently in order to recognize and classify all musical symbols. The heading of every score is
formed of the clef (treble, alto or bass clef), time signature (commonly formed by two numbers that
indicate the measure) and key signature (�ats, sharps or naturals, which indicate the tonality of the
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Figure 4.30: Bar lines in black color.

Figure 4.31: Measures of the musical score in blue color.

score). Because the clef of the score labels every note with his pitch (every note will be labelled as a Do,
Re, Mi...), should be one of the �rst elements to recognize.

In old handwritten scores, styles in writing are very important, so there is a lot of variations in clefs
(see printed clefs in Fig. 4.32(a) and see variations in handwritten clefs in Fig. 4.32(b)).

Di�erent approaches are proposed in the literature to recognize shapes in image documents, including
OCR techniques (see [2], [34], [7], [46]). Among these techniques, an initial attempt to classify clefs of
the score (into treble, alto and bass clef) using horizontal and vertical projections have failed due to
the enormous variations in handwritten clefs. The solution proposed consists in the usage of Zernike
moments and Zoning. Zernike moments has been tested because it is a typical feature descriptor which
maintains properties of the shape, being invariant in front of deformations (as happens in handwritten
documents). Zoning has been also tested because it is easy and has low computational cost.

Zernike moments The main idea of our approach to classify clefs is the usage of Zernike moments
(the computation of Zernike moments is fully described in Chapter 3) to construct the feature vector
of a model for every class; then compare this vector with the feature vector obtained from the clef to
classify and choose the class whose distance is minimum. The more moments used, the most accurate
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(a) (b)

Figure 4.32: (a) Printed Clefs; (b) Handwritten clefs: there are important variations in style
notation.

will be the reconstruction of the clef (see Fig. 4.33). Experimentally, 12 moments are used (less moments
are not enough to classify e�ciently, but the computation of more moments implies high computational
cost) and 8 model classes. The steps followed by the module proposed are:

Figure 4.33: Clefs and its reconstruction using Zernike moments.

1. Normalize the image of every model of the class.

2. Compute the Zernike moments (or order 12) for every model of the class.

3. Get the feature vector of every model using the moments just obtained.

4. Normalize, compute the Zernike moments (real and imaginary) and the feature vector of the new
clef C to be classi�ed.

5. Compute the euclidean distance between the clef C and the model of every class.

6. The clef C will be labelled as the clef whose class has minimum distance to the clef C :
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class = min{distance(FeatureV ector(clef), F eatureV ector(models)}; (4.18)

Figure 4.34: Models used in the classi�cation.

The rate classi�cation of treble and alto clefs is quite good (see Chapter 5), but low rates in the
classi�cation of bass clefs must be improved combining results with Zoning.

Zoning As it has been said, Zoning has been also implemented because of its low computational cost,
and the fact that it is able to codify shapes based in statistical distribution of points in a compact and
easy way.

Thanks to the fact that in bass clefs, the top of the clef has the bigger area, so the zoning algorithm
will be useful to improve the recognition of bass clefs. Thus, it will be used for a initial classi�cation of
bass clefs. Then, clefs not classi�ed will be sent to the Zernike module to further classi�cation.

For using the fact that a bass clef has the bigger area in the top, the image must be divided in several
rows but only one column. The method consists in the following steps:

1. Normalize the image of the clef, resizing it.

2. Divide the image in sections (3 rows and 1 column, see red lines dividing every clef in Fig. 4.35).

3. Fill the zoning vector (3x1) with the normalized area of every row i :

mZoning(i) = area(section i)/area(image); (4.19)

4. If the �rst row (mZoning(1)) is the biggest area of the vector(the white square in Fig. 4.35), then
the clef is a bass clef.

Further work will be focused in the combination of Zoning and Zernike moments to improve the
performance rates.
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Figure 4.35: The application of Zoning technique to clefs using 3 �les and 1 column to divide
the images.

4.2.5 A syntactic approach for the modelization of the score structure
As it has been exposed in Chapter 1, formal language theory provides useful tools to recognize and

solve ambiguities in terms of context-based rules or semantic restrictions using attributes. Grammars
are usually used to describe the score structure. Therefore, parsers guide the recognition and validation
process. Informally speaking, a grammar describing a score consists of three blocks G: S → H[B]E,
whereH is the heading with the attribute symbols: treble, alto or bass clef, time signature (two numbers),
and key signature (�ats, sharps or naturals). All these symbols are very important to provide the meaning
of musical symbols. Then, the score is discomposed in bar units B, in which notes and rests are written
down. The amount of notes and rests in every bar unit depends on the time signature, so it will obviously
help to solve ambiguities in the recognition of notes and rests. Finally, there is an ending measure bar
(E).

The grammar formalized to help in the recognition and classi�cation stage is fully described in the
Appendix of this dissertation.



Chapter 5

Results

In this chapter, results of the optical music recognition system are shown: �rst, results in the
recognition of sta�, notes and white headnotes in modern handwritten musical scores are exposed;
secondly, results of the recognition of sta� and graphical primitives in old handwritten musical scores
are described.

5.1 Modern Handwritten scores: Results
Results on the segmentation and primitive extraction of modern handwritten scores is presented.

The OMR system is tested with a set of modern images extracted from [56] and other scores written for
performing tests.

5.1.1 Sta� removal
The sta� removal process detects the sta� lines using Hough Transform and Horizontal Projections

(see Fig. 5.1(a)). Because sta� lines are perfectly horizontal, they are always detected (100% detection).
The removal process only removes those rows which value in the histogram is over a threshold. For

that reason, if width of the sta� line is not constant, some parts of the sta� line are not perfectly removed
(see Fig. 5.1(b))

5.1.2 Detection of graphical primitives
Several modern scores have been tested. Apart form the examples shown in chapter 4, another

example of the graphical primitive detection is shown in Fig. 5.1. As it can be seen, most notes (�lled
headnotes plus a beam) are correctly detected, whereas the detection of white headnotes (in green color)
has a lot of false positives and sometimes a false negatives.
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(a)

(b)

Figure 5.1: Modern handwritten score: (a) Original Image with detected Sta� lines in red color;
(b) Image without sta� lines.

In table 5.1 we can see tests performed with modern scores: detection of verticals, notes (�lled
headnotes with beams), and white headnotes. For the �rst two, recognition rates are shown, whereas
for white headnotes, the percentage of false positives is a more signi�cant parameter due to the large
number of false positives. As it has been discussed, the use of context information will improve the
performance rates (implemented in high-level layers).

5.2 Old Handwritten scores: Results
We have tested our method with a set of images of several composers, which have been obtained

through the archive of Seminar of Barcelona. Results are divided in two subsections: results from sta�
removal and results from graphical primitive detection.
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Figure 5.2: Graphical Primitive detection in modern handwritten score: notes (beam plus �lled
headnote) are drawn in blue color; verticals (not beams) in red color; white headnotes in green
color;

Nº Verticals: Notes: White Headnotes:
sta�s Detected/Existing, (%) Detected/Existing, (%) Detected/Existing, (%FP)
3 112 / 118 , 94% 60 / 63 , 95% 70 / 10 , 85%
4 76 / 80 , 95% 39 / 39 , 100% 43 / 8 , 81%
2 42 / 46 , 91% 23 / 29 , 79% 31 / 1 , 96%
3 141 / 150 , 94% 126 / 139 , 90% 38 / 0 , 100%
2 128 / 141 , 90% 93 / 107 , 87% 25 / 3 , 88%

Table 5.1: Results in the detection of graphical primitives in Modern Scores: Notes and Verticals
(with their recognition rates); White headnotes and its percentage of False Positives(FP)

5.2.1 Description of the ground truth
Experimental framework has been obtained from images of scores scanned from the archive of Sem-

inar of Barcelona, where hundreds of old handwritten scores have never been edited or published. For
performing tests, 19 images of old scores (from the XIX century) of three di�erent authors have been
scanned at a resolution of 300dpi. In these images one can see the lack of standard in musical notation
in old scores.

The execution of the system proposed has been performed using those scores, and the evaluation of
the results in detection of sta� and graphical primitives are discussed in next sections.

5.2.2 Sta� removal
The detection of sta� lines is performed using Hough Transform, Horizontal projections and an

analysis of the maximums in the histogram, trying to �nd �ve local maximums equidistant and located
between local minimum (see Fig. 5.3).

Sometimes, when the author has used a sta� to write down lyrics of the musical score, some strokes
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Figure 5.3: (a) Original Image (b) Binarized Image (c) Histogram with horizontal projections
(d) Detected sta� lines

cause too much distortion in sta� lines. Then, the sta� detection module can fail in the search of �ve
maximums in the histogram and could not be able to detect a sta� with text (see Fig. 5.4).

Concerning sta� lines reconstruction, in table 5.2 we can see that most sta� lines are perfectly
reconstructed, but not everyone because in some cases a horizontal symbol is drawn over a sta� line and
causes the sta� reconstruction to follow wrongly this symbol. An example of sta� reconstruction can be
seen in Fig. 5.5, where the system correctly detects those pixels belonging to sta� lines although there
are distortions and oscillations in the sta� lines.

It must be said that whether the score is in very bad condition (and some sections of the sta� can be
missing), it could not reconstruct the whole sta� correctly (see Fig. 5.6). Then, sta� will not completely
removed.

The sta� deletion process (see Fig. 5.7) depends on the perfectly reconstruction of hypothetical sta�
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Staff Lines

Figure 5.4: Detected Sta� lines: There is one sta� missing

lines, and then, in the number of symbols that are tangent to the sta� line. In table 5.2 it can be seen
how performance rates of sta� removal depend on the sta� reconstruction.

5.2.3 Detection of graphical primitives
In chapter 4 we have shown some results from a section of the Requiem Mass of the composer Aleix.

In Figure 5.8 results from a section of a score of several composers are shown: Sta� is removed, verticals
are shown in green color, bar lines in blue color, and �lled headnotes in red color.

In table 5.3 we can see that head notes, vertical and bar lines detected and the percentage of false
positives (which will be detected in high-level layers). As it can be seen, most verticals are correctly
recognized using �lters, and some false positives are due to the verticals in lyrics (text). The detection
of bar lines is also good, and false positives can be detected easily when two bar lines are very closed.
Performance in detection of �lled head notes decreases when strokes are very thick, so in such cases,
other objects (e.g. half notes and rests) are also detected as �lled head notes. Although there are many
false positives, it is better to discard them in next stages than having false negatives (�lled head notes
in thin strokes that are not detected).
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Page Number of sta�s Perfectly Reconstructed / Total, (%) Perfectly Removed / Total, (%)
1 10 49 / 50 , 98% 48 / 50 , 96%
2 10 50 / 50 , 100% 50 / 50 , 100%
3 10 45 / 50 , 90% 45 / 50 , 90%
4 10 49 / 50 , 98% 48 / 50 , 90%
5 12 54 / 60 , 90% 53 / 60 , 88%
6 14 70 / 70 , 100% 70 / 70 , 100%
7 14 69 / 70 , 98% 69 / 70 , 98%

Table 5.2: Sta� removal results: When lines are not perfectly reconstructed, it is impossible to
reach rates of 100% in sta� removal

Page Nº sta�s Verticals: Correct / Detected, (%FP) Bar lines, (%FP) Head notes, (%FP)
1 10 236 / 352 , 33% 71 / 80 , 11% 99 / 462 , 78%
2 10 177 / 237 , 25% 54 / 57 , 5% 96 / 465 , 79%
3 7 225 / 269 , 16% 40 / 43 , 7% 135 / 382 , 64%
4 7 218 / 284 , 23% 48 / 49 , 2% 128 / 365 , 65%
5 6 227 / 271 , 16% 38 / 41 , 7% 110 / 390 , 71%
6 6 180 / 254 , 29% 37 / 48 , 23% 122 /435 , 72%

Table 5.3: Results in the recognition of graphical primitives: 100% of Head notes, Vertical and
Bar lines detected. FP= % of False Positives

5.2.4 Classi�cation of clefs
Some tests have been done using di�erent models for every clef. Firstly, the use of 4 models for 3

clefs will not produce good rates (almost half the number of treble and bass clefs are misclassi�ed), due
to the enormous variation in writing styles. For that reason, 4 models have been added to the system,
producing better results (see table 5.4). Finally, the addition of zoning improve the classi�cation of
bass clefs, and the �nal module obtains classi�cation rates of 86%.
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Number of Treble clefs Alto clefs, (%) Bass clefs, (%) Total
models Detected/Existing, (%) D/E (%) D/E (%) D/E (%)

4 12 / 26, 46 % 3 / 14 , 21% 10 / 11 , 91% 25/51, 49%
8 22 / 26, 85 % 7 / 14 , 21% 10 / 11 , 91% 39/51, 76%

8 & zoning 22 / 26, 85 % 12 / 14 , 86% 10 / 11 , 91% 44/51, 86%

Table 5.4: Results in the classi�cation of clefs: Classi�cation of Treble, Alto and Bass Clefs and
its performance rates. More number of models normally help to reach higher performance rates.

5.3 Conclusions
As it can be seen, in modern handwritten musical scores, good performance rates are reached in the

detection of sta�s, lines and �lled headnotes, whereas the detection of white headnotes requires the use
of grammars and will be further treated (in higher layers).

In the recognition approach for old handwritten scores, although it is in a preliminary stage, we have
obtained high performance rates. False positives in the recognition process are due to the enormous
variation in handwritten notation and the lack of a standard notation commented. Thus, the use of
context information will be used into the recognition module for reducing the number of false positives
and misclassi�ed elements.
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(a)

(b)

Figure 5.5: Sta� Removal: (a) Original Image (b) Pixels belonging to sta� lines which will be
removed from the image
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(a) (b)
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Figure 5.6: Sta� reconstruction: (a) Original Image; (b) Binarized image; (c) Sta� reconstruc-
tion: The �nal part is not correctly reconstructed; (d) Sta� Removal: The end of section is not
completely removed

(a) (b)

Figure 5.7: Sta� Removal: (a) Original Image (b) Image without sta� lines
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(a)

(b)

Figure 5.8: Graphical primitive detection: (a) a section of the Requiem Mass of the composer
Aleix; (b) a section of "Salve Regina" of the composer Aichinger. Verticals in green color, bar
lines in blue color, �lled headnotes in red color.



Chapter 6

Conclusions and Future Work

In this chapter, conclusions of the Optical Music Recognition system developed is presented. After
that, future work to improve the system is brie�y presented.

6.1 Conclusions
In this work an approach to segment primitive elements in handwritten musical scores has been

presented. Preliminary work has been performed in the recognition of modern handwritten scores: sta�
detection has been performed using Hough Transform, and projections; �lled headnotes are detected
using morphological operators and parameters of circularity, area and compactness; vertical lines have
been detected using Hough Transform and classi�ed in beams, bar lines and others. The detection of
white headnotes is performed using morphological operations to �ll circles, and then, applying a method
similar to the detection of �lled headnotes.

Good performance rates are reached in the detection of sta�s, lines and �lled headnotes, whereas
the detection of white headnotes requires the use of grammars and will be treated in higher layers.

The system proposed has been adapted to the di�culties of the recognition of old handwritten scores:

• Old documents: working with old documents means dealing with distortions and degraded pa-
per, so adaptive binarization techniques, morphological operations and �lters must be used to
preprocess the image.

• Handwritten documents: the writer style and the lack of a standard in musical notation requires
the use of context information (formalized using grammars) and an expert system to cope with
variations in notations.

The strategy of old handwritten scores consists of the following steps: �rst, score line detection and
removal has been performed using Hough Transform and projections to obtain the rough approximation
of the location of sta� lines; then thinning and �lters are used to obtain horizontal segments, and the
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reconstruction of sta� lines is performed joining segments according to their area and orientation. Finally
a line tracking algorithm marks every pixel belonging to the sta� line.

Second, the detection of vertical lines uses median �lters and run length smearing; third, circular
primitives corresponding to �lled head notes have been extracted using morphological operators, and
bar lines have been detected from the reconstruction of sta� lines and head notes. Finally, classi�cation
of clefs is performed using zoning and Zernike moments.

Our work with old handwritten scores is in a preliminary stage, but we have obtained high perfor-
mance rates in this primitive segmentation stage. False positives in the recognition process are due to
the enormous variation in handwritten notation and the lack of a standard notation commented. Thus,
the use of context information is the key to improve the recognition module and reduce the number of
false positives.

6.2 Future Work
Further work will be focused on improving the reconstruction of sta� lines and obtaining other

graphic primitives and combining them to classify musical symbols. An important task will be the
segmentation of text from musical symbols, because sometimes they are touching (see blue items in
Fig. 6.1).

In front of ambiguities in the recognition process, the system could be semi-assisted. So, if there
is any symbol di�cult to recognize, the system could prompt for help to the user.

Figure 6.1: Old Score with sta� lines written by hand. There are di�culties in the recognition
of graphical primitives: some eighth notes (�lled headnote + beam + �ag) whose beams are not
lines in red color; text connected to notes in blue color; white headnotes (with the circle not
closed) inside an orange rectangle.

6.2.1 Sta� Removal
In old handwritten scores, an important task is the detection and removal of sta� lines, dealing with

distortions and oscillations in lines. The contour tracking process will success wherever the hypothetical
sta� lines are perfectly reconstructed. Due to the fact that the reconstruction of horizontal segments
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into sta� lines can fail if there are big gaps or distortions in the sta�, this method should be improved
in order to reach higher performance rates. Possible solutions could be:

• Looking the �ve parallel sta� lines at the same time when reconstructing. Thus, if there are
deviations or ambiguities, the system can look which path the other four lines follow and then
choose a path trying to keep �ve lines equidistant. This solution will improve the reconstruction
module when working with scores with distortions and warping e�ect. Contrary, this constraint
must be relaxed with sta� lines written by hand, because sometimes, �ve lines are not equidistant
enough (see Fig. 6.1).

• Constructing a graph with horizontal segments as nodes. Then, every reconstructed sta� line will
be the output of an algorithm which follows the best �t path (with backtracking). An example of
contour tracking as a best �t path is described in [57].

6.2.2 Recognition of Attribute symbols
The recognition of attribute symbols at the beginning of the score (key, clef and compass signature)

will require an expert system to learn every way of writing. As it has been said in the dissertation,
Zernike Moments and Zoning are used to classify clefs; and they could also work in the detection of key
and compass signature.

In addition, a learning module with clustering could learn every writing style: every similar unknown
item could be grouped in the same class; then, when an item (belonging to this class) is recognized (using
context information), automatically, all elements in this class are also labelled as the same musical
symbol. For example, in Fig. 6.1, when one blue item is recognized as an eighth note, then other blue
elements will also be labelled as eighth notes.

6.2.3 Recognition of Text and Lyrics
In order to cope with the extraction of text (lyrics), several possibilities could be tested:

• Look the shape of bounding box of connected components: The size of bounding box for text is
di�erent from the size of musical symbols.

• Orientations of strokes in text are changing constantly, so the Structural Tensor could be used to
�nd sections with a lot of changes in orientation in their strokes.

• Fractal Dimension: A graphic with the area and number of dilations (iterations) will show that
lines have a function di�erent from the function of text.

Another subject is determining which text corresponds to musical notation (e.g. dynamics such as
allegro, adagio, forte, mf, coda, ritardando...). Thanks to the fact that there are a �nite set of words
in musical notation (less than 200 words), a dictionary could be used to distinguish musical words from
lyrics.
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(a) (b) (c)

Figure 6.2: Solving ambiguities: (a) Filled black circles inside a red rectangle are not �lled
headnotes; (b) Each note in the �rst sta� has a corresponding note in the second sta�: notes
in the second sta� are the ones in the �rst one, but transposed two tones in a descendent way;
(c) Three chords inside the red rectangle are the same; Notice that �lled headnotes are not
physically joined to their correspondent beam.

6.2.4 Grammars for the Graphical Primitive Detection stage
The detection of white headnotes (whole and half notes) is more di�cult than �lled headnotes,

because handwritten circles are often broken or incomplete (see white headnotes in Fig. 6.1), so mor-
phological operations cause too many false positives. In addition, di�erent styles in the writing make
the symbol recognition extremely di�cult (e.g. a beam is a vertical line, but some beams have a semi-
circular shape, see red beams in Fig. 6.1). For those reasons, the grammar described in the Appendix
will be used to detect white headnotes and other graphical primitives. It could also used to discard false
positives in elements that look like others: in Fig. 6.2(a) we can see that some �lled black circles inside
a red rectangle are not really �lled headnotes (they are duration dots and others).

Finally, the use of stochastic grammars with harmonic musical rules will also be very useful in front
of ambiguities: In scores with several voices, the recognition can be made in parallel. For example, in
Fig. 6.2(b) we can see that each note of the �rst voice (in the �rst sta�) has its corresponding note
in the second voice (second sta�), where notes in the second sta� are the ones in the �rst one but
transposed two tones in a descendent way. Thus, if a note is not clear, the system can notice that two
voices are played together and be treated in parallel. Another example is shown in Fig. 6.2(c) , where
three chords inside the red rectangle are the same, so if some notes are not very clear, the other chords
can be consulted.

Notice that these rules should work with classical scores, but in modern scores (XX century) harmonic
musical rules are more free, so dissonances are allowed: e.g. in piano scores, if the sta� for the right
hand has a Do note, then it is possible that in the sta� for the left hand, a note that seems a Si or
Do, will probably be a Do note. Contrary, in XX and XXI century, a Si and a Do note can be played
together.



Appendix A: Grammar formalized

As it has been discussed in the dissertation, context information has been formalized using a grammar
to help in the recognition and classi�cation tasks ([ ] means optional, * means repeat zero or more times,
+ means repeat one or more times):

• <Score = <Heading with time signature> <Section> [<Final> <Heading> <Section>]* <Con-
clusive Ending>.

• <Section> = <Measure> [<Bar line> <Measure>]*.

• <Heading with time signature> = <clef> [<initial key signature>] <time signature>.

• <Heading> = <clef> [<key signature>] [<time signature>].

• <Final> = <double bar line> | <beggining repeat bar line>| <ending repeat bar line>.

• <Conclusive Ending> = <double bar line> | <ending repeat bar line>.

• <Clef> = <Treble> | <Alto> | <Bass>.

• <Initial Key signature> = [[]* | []]* .

• <Key signature> = [[]* [\]* | []]* [\]* | [\]* [ [[]* | []]* ].

• <Time Signature> = 2/4 | 3/4 | 4/4 | C | 2/2 | 3/8 | 6/8 | 9/8 | 12/8 ...

• <Measure> = [<Note> | <Rest>]+.

• <Note> = <White headnote> | <Headnote with a beam> | <beamed notes>.

• <Rest> = <whole rest> | <half rest> | <quarter rest> | <eighth rest> | <sixteenth rest>.

• <beamed notes> = [<headnote with a beam> <joining bar>]+.

• <Headnote with a beam> = <beam> <headnote> | <headnote> <beam>.

• <headnote> = [accidental] <circle> <duration dot>.

• <beam> = <vertical line> [<�ag>]*.

• <circle> = <white circle> | <�lled circle>.
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• <accidental> = <[> | <\> | <]> | <[[> | <×>.

• <accidental> = <[> | <\> | <]> | <[[> | <×>.

• <duration dot> = [<dot>]+.



Appendix B: Publications

• "Sta� and graphical primivite segmentation in old handwritten music scores". Alicia Fornés,
Josep Lladós, Gemma Sánchez. Congrés Català d'Intel.ligència Arti�cial (CCIA), October 2005,
Alghero, Italy.

• "Primitive segmentation in old handwritten music scores". Alicia Fornés, Josep Lladós, Gemma
Sánchez. International Workshop on Graphics Recognition (GREC), August 2005, Hong Kong,
China.
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