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Abstract. Optical Music Recognition refers to the task of transcribing
the image of a music score into a machine-readable format. Many music
scores are written in a single staff, and therefore, they could be treated
as a sequence. Therefore, this work explores the use of Long Short-Term
Memory (LSTM) Recurrent Neural Networks for reading the music score
sequentially, where the LSTM helps in keeping the context. For training,
we have used a synthetic dataset of more than 40000 images, labeled
at primitive level. The experimental results are promising, showing the
benefits of our approach.
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1 Introduction

Sheet music uses music notation to encode information on how to interpret a
piece. It is one of the most considered means for the transmission of music.
With the advent of the digital era, there is a number of computational tools for
working with musical scores. However, to take advantage of these benefits, it is
necessary to transcribe sheet music into a digital format that can be processed
by a computer.

The transcription process can be carried out manually. However, the wealth
of music notation inevitably leads to burdensome software for music score edit-
ing, which makes the whole process very time-consuming and prone to errors.
Consequently, automatic transcription systems for musical documents represent
interesting tools. The field devoted to address this task is known as Optical
Music Recognition (OMR) [1–3]. Nowadays, there exist many commercial OMR
tools, like PhotoScore3 or SharpEye4.

3 http://www.neuratron.com/photoscore.htm
4 http://www.visiv.co.uk/



Typically, an OMR system takes an image of a music score and automatically
exports its content into some structured format such as MEI or MusicXML. In
addition to the automatic transcription of sheet music, the OMR field comprises
many other applications such as writer identification, graphic reconstruction of
old music scores, generation of audio files from images, or retrieval of the same
piece from different authors.

The process of recognizing the content of a music score from its image is
complex because it has to deal with many music-specific difficulties [2], such
as the two-dimensional nature of the notation, the double component of music
symbols,5 the presence of the staff lines, and so on.

Traditionally, OMR has been approached considering multi-stage systems [1].
The different stages comprise several small sub-tasks such as image binarization
[4], staff-line removal [5], or music symbol classification [6]. Our work, however,
focuses on directly recognizing the music content appearing on an image.

We do assume that the image depicts a single staff section (e.g. scores for
violin, flute, etc.), much in the same way as most text recognition research focuses
on recognizing words appearing in a given line image [7]. Note that this is not a
strong assumption, as there exist algorithms that achieve good performance for
both isolating staff sections [8] and separating music and lyrics (accompanying
text) [9]. For this reason, one can assume that staves are already segmented and,
therefore, can be processed as a sequence.

To address this specific task, the proposed architecture is based on Recurrent
Neural Networks (RNN), since they have been applied with great success to many
sequential recognition tasks such as speech [10] or handwriting [7] recognition.
Specifically, to avoid the vanishing gradient problem, Long Short-Term Memory
(LSTM) units are considered. Moreover, Bidirectional LSTMs are used to benefit
from context information.

As a scientific novelty, we address the OMR by separating the two compo-
nents of the musical symbols: duration and pitch, both in terms of training and
evaluation. This provides the RNN with greater robustness, as they can focus
on the specific aspects that concern each component. Our experimental results
demonstrate the viability of this approach, obtaining results that are close to
optimal on an exhaustive set of musical staves.

The rest of the paper is organized as follows. Section 2 explores the state of
the art. Section 3 describes the method, whereas Section 4 analyzes the results.
Finally, conclusions and future work are drawn in Section 5

2 Related Work

This section overviews the key approaches in Optical Music Recognition, and
also, overviews the Deep Learning architectures applied to music research that
are relevant to the present work.

5 Symbols appear with specific duration (rhythm) and pitch (melody).



2.1 Optical Music Recognition

An OMR system aims to recognize each element located in the music score.
Figure 1 illustrates the usual pipeline from a scanned music score to a machine-
readable format. The steps are the following. First, the image is preprocessed to
reduce problems in segmentation. Usually, before segmenting the musical sym-
bols and/or primitives, the staff lines are removed. Hence, the segmentation
task is simplified. Afterwards, the primitives are merged to form symbols. Some
methodologies use rules or grammars in order to be able to validate and solve
some ambiguities from the previous step. Finally, the musical description file
(e.g. MusicXML, MEI) is created with the information of the previous steps.
These steps are described in more detail next.

Fig. 1. Typical OMR pipeline.

The first stage is devoted to preprocessing and layout analysis. The most
common techniques are binarization, noise removal and blur correction. However,
other techniques as enhancement, skew correction or deskewing, among others
have also been proposed. In music scores documents it is important to segment
the document into regions. Authors in [11] propose a new algorithm to segment
the regions that include text and regions containing music scores. Normally,
the staff removal algorithm are based on projections and run-length analysis,
contour-line tracking, or graphs.

The recognition of music symbols consists in the recognition of isolated and
compound music symbols. Figure 2 shows examples of isolated and compound
music symbols. This classification is done because the techniques are usually
different. For example, isolated music symbols are usually detected by symbol
recognition methods [12–15], grammar/rules [16], sequence analysis (e.g. Hidden
Markov Models) [17,18], graphs [19], Multilayer perceptron [14] and deep neural
networks [6, 20, 21]. In the case of compound music symbols, most methods are
based on grammars or rules [22]. It must be noted that the combination of
compound music symbols is large, so it is impossible to have examples of all
these possible combinations. This limitation must be taken into account when
developing learning-based approaches.

The validation stage is related to the previous one. Usually grammars or rules
are defined to make more robust the recognition step in front of ambiguities.
Some works [16, 22, 23] propose the use of grammars to correct any mistakes as
repeating or missing symbols. Another aspect that could be verified is whether
the number of beats match the time signature.



(a) Isolated Music Symbols. (b) Compound Music Symbols.

Fig. 2. Examples of music symbols.

OMR systems typically provide an output file at the end of the process.
The most common output files are MIDI6, MusicXML7 or MEI8. MIDI (Musical
Instrument Digital interface) is a communication technical standard used in
electronic music devices. MusicXML is an open musical notation format based
on Extensible Markup Language (XML). MEI is an open-source effort to define
a system for encoding musical documents in a machine-readable structure.

2.2 Deep Learning in Music

According to Goodfellow, Bengio and Courvill [24], Deep Learning appeared
between 1940s-1960s. However, it has become popular quite recently due to,
among others, the technological advances in Hardware. In the last decade, several
deep learning techniques have been applied to music or audio processing. For
example, CNNs have been applied to audio processing in order to detect and
recognize the sound of certain objects and scenes in videos. In [25] they use CNNs
to compensate differences between video and audio sampling rates, whereas, the
authors in [26] use CNN in order to process sounds. The authors of [27,28] have
applied RNNs to MIDI generation, specifically LSTM in order to produce new
music files taking advantage of sequence model of the music input files. In [29]
RNNs are used in polyphonic music in order to make predictions.

As far as we know, there are very few deep learning-based systems that cover
the whole stages of Optical Music Recognition. For example, a very recent OMR
work which uses a Convolutional Sequence-to-Sequence network for recognizing
printed scores has been published [30]. Then, Calvo-Zaragoza et al. [31] use an
end-to-end architecture based on a Recurrent Convolutional Neural Network in
order to recognize monophonic music scores. Finally, Pacha et al. [32] proposes
a first step towards OMR developing a handwritten music symbol classifier.
However, it is still far from a complete OMR system.

3 Methodology

Single staff sheet music can be seen as a sequence. In this way, a music score is
read from left to right. In order to automatically process the music score and
take into account the sequence of music symbols, a Recurrent Neural Network
(RNN) seems an appropriate tool. In this work, we propose to make use of Long

6 https://www.midi.org/
7 http://www.musicxml.com/
8 http://music-encoding.org/



Short-Term Memory (LSTM) [33] networks. LSTMs have the ability to decide
which information has to be kept as context and which information has to be
removed, i.e. forgotten.

Figure 3 shows the different stages of our proposed pipeline. Firstly, the
input music scores are preprocessed (Subsection 3.1). Afterwards, each column
of the image is processed by an LSTM network (Subsection 3.2). The output
of the LSTM is passed by two fully connected layers in order to distinguish
between rhythm and pitch (Subsection 3.3). Finally, the output of the system
is the recognition of symbols, including rhythm and pitch (Subsection 3.4). The
different steps of this pipeline are explained in the following sections.

Fig. 3. Architecture of the network

3.1 Input

The proposed architecture is trained by batches of images that are resized to a
fixed height of 50 pixels. Then, these images are fed into the proposed model
using pixel-wise columns. The maximum width can be variable depending on the
widest image in the batch. Therefore, images with a shorter width are padded
with 0’s to the maximum width of the batch. In this work, the staff lines have
not been removed in order to avoid noise and distortions in the musical symbols.
In addition, staff lines provide useful information in terms of the pitch. Note
that features are not extracted from the image in order to maintain the spatial
information and the spatial order as much as possible.

3.2 Long Short-Term Memory

A LSTM network has been used in order to recognize the elements of the sheet
music. In this work, we use a bidirectional network to increase the performance
and reduce ambiguities when recognizing some symbols. The combination of
forward and backward pass allows to recognize symbols that may be confused if
only one direction is used.

The proposed LSTM network is composed by 3 recurrent layers with a hidden
state size of 128. We have trained our architecture for 100 epochs with a batch
size of 128 or 64 for LSTM and BLSTM respectively. These values have been
experimentally set. It must to be said that the network is trained column by
column so it predicts one output per column. In other words, the output will
end up being as long as the input image.



3.3 Fully Connected Layers

At the end of the LSTM network, we propose to use two heads in order to
separately predict rhythm and melody. Therefore, after the LSTM output, two
fully connected layers (FC) are used to obtain two different outputs. The reason
to split the output in two parts is that the number of combinations between
melody and rhythm is very high. In case of using a single output, all possible
combinations of rhythm-melody must be created as possible classes. Therefore,
we propose to exploit the idea that rhythm and pitch can be independent. Thus,
rhythm is decided by the symbol whereas the pitch depends on the position with
respect the staff lines. Following this idea, many more examples are available to
train our system.

3.4 Output

After the FC layers, the next step is to calculate the loss and backpropagate
the errors. Even though two heads are used to separate between rhythm and
pitch, the output of our system should be able to deal with multiple classes
per time step. Therefore, in validation and test, a threshold is applied to both
outputs (Rhythm and Pitch) in order to obtain the corresponding classes. The
outputs and the ground-truth of each music score is represented by two binary
matrices, one for the rhythm and another for the melody or pitch. Horizontally,
it corresponds to the width of the input image whereas the vertical axis tells the
different classes for symbols and pitch, 54 and 26 respectively. Pitch corresponds
to locations in the staff. Figure 4 shows the structure of the matrix for both
melody 4a and rhythm 4b and Fig. 5 shows a real example with its corresponding
groundtruth. The corresponding pixels where the symbol is located in the music
score will be activated in both matrices indicating which symbols are activated
in each time step i.e. pixels. The following symbols have been manually added
to ease the recognition task:

– Epsilon(ε) is used to know where each symbol starts and ends, as it is used
in text recognition. This symbol can be seen as a separator. Wherever this
symbol is activated, it means that it is not possible to have any other symbol
activated as well (see Figure 4c blue marks). This symbol appears in both
the rhythm and pitch ground-truths.

– No note is used to indicate that a symbol has not any pitch. This symbol
only appears in the pitch ground-truth.

Finally, these outputs are converted into an array. One with the detection of the
rhythm, another for the pitch and the last one with the combination of rhythm
and pitch. These arrays will be used to evaluate the method.

3.5 Loss Function

In music, we can find one or more symbols in one instance of time, for example,
chords or time signature (see Figure 4c red marks). Therefore, a multilabel loss



(a) (b)

Fig. 4. Output representation for Rythm (a) and Pitch (b).

Fig. 5. Example of Music Score and the corresponding Ground-truth in a Binary Ma-
trix. The first row is the music score. The second row is the Rhythm Ground-truth.
The third row is the Pitch Ground-truth.

function has to be chosen to deal with the before-mentioned problem. In other
words, the loss function must allow more than one activation per time step. Thus,
the softmax activation function cannot be used because it is thought for single-
label classification problems. In this work, two different loss functions have been
used: On the one hand, SmoothL1Loss creates a criterion that uses a squared
term if the absolute element-wise error falls below 1 and an L1 term otherwise
(Equation 1). On the other hand, MultiLabelSoftMarginLoss creates a criterion
that optimizes a multi-label one-versus-all loss based on max-entropy (Equation
2). The loss is calculated independently for rhythm and melody. Once both losses
are calculated, they are summed and backpropagated.

SmoothL1Loss(x, y) =
1

n

∑{
0.5(xi − yi)2, if |xi − yi| < 1

|xi − yi| − 0.5, otherwise
(1)



MultiLabelSoftMarginLoss(x, y) =−
∑
i

y[i] · log
( 1

1 + e−x[i]

)
+ (1− y[i]) log

( e−x[i]

1 + e−x[i]

)
(2)

4 Experiments and Results

This Section presents and discusses the experimental results.

4.1 Dataset

A Synthetic dataset has been used to train the network. This collection is com-
posed of more than 50000 music scores with 3 different typographies. The dataset
corresponds to incipts from the RISM catalog 9. It is composed of almost 50000
music scores with 3 different typographies. The staffs are divided in 60% (29815)
for training, 20% (9939) for validation and 20% (9939) for test.

4.2 Evaluation

The evaluation of a complete OMR system is not well defined in the literature.
Thus, we propose to follow the evaluation described in [30]. The authors proposed
to evaluate three aspects of the framework; pitch, rhythm and their combination.
Note that the combination of pitch and rhythm corresponds to the performance
of the whole system. The chosen evaluation metric is the Symbol Error Rate
(SER) applied to an array produced by the system. Note that a threshold is
applied to convert the output of the FC layers to an array of symbols.

Fig. 6. Example of music score.

An example of the format of the three output arrays, corresponding to Figure
6, is the following.

– Rhythm: [gClef, accidental sharp, accidental sharp, accidental sharp, quarter
note, eight note, bar line].

9 http://www.rism.info/



– Pitch: [noNote, L5, S3, S5, L4, S1, noNote]10.
– Rhythm+Pitch: [[gClef, noNote], [accidental sharp, L5], [accidental sharp,

S3], [accidental sharp, S5], [quarter note, L4], [eight note, S1], [bar line,
noNote]].

Symbol Error Rate (SER) This metric is based on the well-known Word
Error Rate (WER) metric [34] used in speech and text recognition. SER also
uses the Levenshtein distance. The main difference between them is that the
Levenshtein distance computes the differences at character level, WER does it at
the word level and SER does it at symbol level. In the case of music scores, given
a prediction and a reference ground-truth, the SER is defined as the minimum
number of edit operation i.e. insertions, substitutions and deletions, to convert
one array into the other.

SER =
S +D + I

N
(3)

where S, D and I are the number of substitutions, deletions and insertions re-
spectively and N is the quantity of symbols in the groundtruth. Dynamic pro-
gramming is used to find the minimum value.

SER(i, j) = min

 SER(i− 1, j) + 1
SER(i, j − 1) + 1

SER(i− 1, j − 1) +∆(i, j)
(4)

where ∆(i, j) is 0 if the symbols predictedi and referencej are the same and 1
if these symbols are different.

Output’s Threshold Evaluation A threshold is applied to decide which sym-
bols are activated at each time step. Note that this threshold is needed because
we have no knowledge about the number of symbols appearing at each time step.
This threshold has been experimentally set using a grid search from 0 to 1 and
step of 0.1. We have selected the combination of rhythm and pitch Error Rate as
a metric to choose the best threshold. Figure 7 shows the evolution of the error
rate depending on the threshold. As we can see, the best threshold is 0.5 even
though 0.4 achieves similar results.

4.3 Results

All the results that are shown in this section are obtained using Adam as opti-
mizer with a learning rate of 10−4. In this work, the PyTorch 11 library has been
used in order to build the proposed framework.

Table 1 shows an error rate comparison in terms of the average and standard
deviation among 5 runs. In this comparison, single directional and bidirectional

10 L = Line; S=Space; L1 is the bottom line on the staff and S1 is the space between
line 1 and 2

11 http://pytorch.org/



Fig. 7. Evaluation of the best threshold in terms of Error Rate: Rhythm, Pitch and
Rhythm+Pitch.

LSTM are analyzed with the two described loss functions. The first column
shows the loss function and the network that has been used, the second one
shows the error rate of the rhythm, the third one the results concerning the
pitch; and the last column shows the results when considering the rhythm and
pitch jointly. Note that the BLSTM produces better results. Moreover, regarding
the loss function, the Smooth L1 function obtains better results with 1.5% SER
when recognizing the pitch, 2% SER when recognizing the rhythm and 2.8% SER
when recognizing the pitch an rhythm jointly. Using a bidirectional network, the
input is processed in both directions. Thus, it obtains information of the whole
symbol, and becomes more accurate. For example, if one direction recognizes a
note-head, the other direction can discard that the vertical line that it is reading
is a bar line, but instead a note stem (both stems and bar lines are straight
vertical lines).

In Figures 8 and 9 we can see some qualitative results. First subfigure shows
the input of the system. The second, third and fourth subfigures correspond to
the Rhythm ground-truth, output and thresholded output respectively. In the
fifth, sizth and seventh subfigures we can see the Melody ground-truth, output
and thresholded output respectively.

4.4 Comparison with a commercial OMR software

The proposed method has been compared with PhotoScore 12, a commercial
OMR software able to recognize printed and also handwritten music scores.
Figure 10 show qualitative results. Note that this comparison might not be
completely fair. PhotoScore has some features to improve its performance that
are not considered in our method. PhotoScore probably uses syntactic rules for
validation. For instance, the commercial system can recognize the time signature
and then validate the amount of music notes at each bar unit (which is used to

12 http://www.neuratron.com/photoscore.htm



Table 1. Results using LSTM and BLSTM. All results are between [0-1] given in error
rate (ER). The first number is the mean of the five executions and the number between
parenthesis is the standard deviation

Rhythm (R)
Symbol ER

Pitch (P)
Symbol ER

R + P
Symbol ER

LSTM
Smooth L1

0.326 (± 0.007) 0.293 (± 0.008) 0.426 (± 0.009)

BLSTM
Smooth L1

0.020 (± 0.001) 0.015 (± 0.001) 0.028 (± 0.002)

LSTM
Multi Label
Soft Margin

0.431 (± 0.017) 0.567 (± 0.051) 0.747 (± 0.063)

BLSTM
Multi Label
Soft Margin

0.027 (± 0.002) 0.023 (± 0.002) 0.036 (± 0.003

solve ambiguities). Contrary, in our work, no syntactic rules have been applied.
This is an important difference because we do not correct any miss-classification
using music notation rules.

Figure 10 shows that, even with a very simple music score, PhotoScore has
produced two errors. First, it has confused the time of silence (5-10), and second
it has added a duration dot at the end. It must be said that the method proposed
in this work has correctly recognized all the music symbols.

5 Conclusion and Future Work

In this work, we have proposed an optical music recognition method that deals
with single staff sheet music as a sequence making use of (B)LSTM networks.

The obtained results show that single staff music scores could be recognized
by means of RNN. We have also shown the benefits of using a BLSTM instead
of an LSTM applied to musical images. However, the recognition of scores as
sequences has some limitations. For instance, more complex music scores (e.g.
scores with multiple voices) require further research.

Future work will be focused on investigating transfer learning methods to rec-
ognize handwritten music scores. Moreover, we would like to incorporate musical
rules or semantics as in our previous work [22] in order to solve ambiguities. In
addition, we plan to investigate more suitable techniques for recognizing complex
polyphonic music scores such as CNNs and attention mechanisms. In addition,
we would like to convert the output of the architecture into a MIDI file, able to
be listened, or to convert it into a sheet format as PhotoScore does.



(a) Input image

(b) Rhythm ground truth

(c) Rhythm Output

(d) Rhythm Output with threshold higher than 50%

(e) Melody ground truth

(f) Melody Output

(g) Melody Output with threshold higher than 50%

Fig. 8. Qualitative Results Example using LSTM.
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(a) Input image

(b) Rhythm ground truth

(c) Rhythm Output

(d) Rhythm Output with threshold higher than 50%

(e) Melody ground truth

(f) Melody Output

(g) Melody Output with threshold higher than 50%

Fig. 9. Qualitative Results Example using BLSTM.

(a) Original Image

(b) Visual Result of PhotoScore

Fig. 10. Recognition of a music score using the PhotoScore Commercial OMR software.
The errors are shown in red color.
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