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ABSTRACT
The automatic processing of handwritten historical docu-
ments is considered a hard problem in pattern recognition.
In addition to the challenges given by modern handwritten
data, a lack of training data as well as effects caused by the
degradation of documents can be observed. In this scenario,
keyword spotting arises to be a viable solution to make docu-
ments amenable for searching and browsing. For this task we
propose the adaptation of shape descriptors used in symbol
recognition. By treating each word image as a shape, it can
be represented using the Blurred Shape Model and the De-
formable Blurred Shape Model. Experiments on the George
Washington database demonstrate that this approach is able
to outperform the commonly used Dynamic Time Warping
approach.

Categories and Subject Descriptors
I.5.4 [Pattern Recognition]: Applications—Text Process-
ing ; I.5.2 [Pattern Recognition]: Design Methodology—
Feature evaluation and selection

1. INTRODUCTION
The fully automatic recognition of handwritten text is after
decades of research still a very challenging field [25]. The
large variety of different writing styles as well as degraded
documents in case of historical data pose several challenges.
Common approaches make use of learning-based systems
that require large amounts of annotated images to train a

recognition engine. For historical documents, however, such
training data may not exist, or its creation may be tedious
and costly, since it has to be done manually. Nevertheless,
libraries all over the world store huge numbers of handwrit-
ten books that are crucial for preserving the world’s cultural
heritage.

In such a scenario, keyword spotting and retrieval [4, 5] –the
task of retrieving all instances of a given word– offers a vi-
able solution to make documents amenable to searching and
browsing. Certain efforts have already been put into word
spotting for historical data [20, 16]. Another related appli-
cation is the segmentation of images of historical documents
into meaningful regions, which can be improved with key-
word spotting. In [12] the keyword “Fig.” is spotted in the
images to help identifying figures and their corresponding
captions. Finally, it is worth mentioning that Google and
Yahoo have announced their intention to make handwritten
books accessible through their search engines [14]. In this
context, keyword spotting will be a valuable tool for users
browsing the contents of these books.

The field of keyword spotting can be divided into query-
by-example (QBE) and query-by-string (QBS) approaches.
QBS describes the setup in which the user enters an ar-
bitrary character string into the system. Although it al-
lows maximum flexibility as far as the set of keywords is
concerned, this approach requires at least a small correctly
transcribed training set. If no such data is available, QBE
can be applied. The user selects one or a few words by look-
ing at the data set and the system retrieves all words with
a similar shape. Hence, this approach can also be seen as
a special case of the general image retrieval problem. The
most prominent technique for QBE is dynamic time warp-
ing [20].

In this paper we propose to use shape descriptors for the
task of keyword spotting. The rational is to consider the
word image as a shape, and consequently, describe it us-



ing shape descriptors. Among the shape descriptors able
to cope with the variabilities of handwriting styles, Shape
Context [3], Blurred Shape Model [7] and the recently pro-
posed Deformable Blurred Shape model [2] have shown to
be a good choice for recognizing hand-drawn symbols. For
a more extensive list on shape descriptors see [26].

The Shape Context descriptor concatenates global histograms
for corresponding points to include the context of the shape.
This has been been shown to perform well when used for
highly distorted hand-drawn symbols. The matching, how-
ever, requires a point-to-point alignment of two shapes using
a graph-matching algorithm. The high computational costs
involved renders this approach unsuitable for word spotting
applications.

The Blurred Shape Model (BSM) descriptor encodes the
spatial probability of appearance of the shape pixels and
their context information, and extracts a feature vector which
describes the shape. The Deformable Blurred Shape model
(DBSM) is an improved version of the BSM, allowing a
higher degree of deformation by the integration of a de-
formable model into the BSM descriptor. Contrary to Shape
Context, both BSM and DBSM descriptors allow the fast
comparison of two shapes by directly comparing their fea-
ture vectors, e.g., using the Euclidean distance.

Both descriptors, BSM and DBSM are designed for symbol
recognition and are therefore scale invariant. For words,
however, the length of the words is an important property
for computing their similarity. Consequently, we present a
modification of the BSM and DBSM descriptors for keyword
spotting and further describe the keyword spotting approach
based on these descriptors. We demonstrate the superior
performance compared to a common, state-of-the-art DTW
reference system.

The rest of the paper is structured as follows. After the pre-
processing step described in Section 2, the BSM and DBSM
descriptors are introduced in Sections 3 and 4. The adapta-
tion of BSM and DBSM to word spotting is described in Sec-
tion 5. In Section 6 the DTW reference system is reviewed.
The experimental evaluation of the proposed system is pre-
sented in Section 7 and, finally, in Section 8, conclusions are
drawn.

2. PREPROCESSING
The segmented text lines are normalized prior to recognition
in order to cope with different writing styles. First, the skew
angle is determined by a regression analysis based on the
bottom-most black pixel of each pixel column. Then, the
skew of the text line is removed by rotation. Afterwards
the slant is corrected in order to normalize the direction of
long vertical strokes found in characters like ’t’ or ’l’. After
estimating the slant angle based on a histogram analysis,
a shear transformation is applied to the image. Next, a
vertical scaling is applied to obtain three writing zones of the
same height, i.e., lower, middle, and upper zone, separated
by the lower and upper baseline. To determine the lower
baseline, the regression result from the skew correction is
used, and the upper baseline is found by vertical histogram
analysis. For more details on the text line normalization
operations, we refer to [17].

Finally the width of the text is normalized. For this pur-
pose, the average distance of black/white transitions along
a horizontal straight line through the middle zone is deter-
mined and adjusted by horizontal scaling. An example of a
preprocessed word image is shown in Figure 1.

(a)

(b)

Figure 1: Preprocessing. (a) Original word (b) Pre-
processed word.

3. BLURRED SHAPE MODEL
The Blurred Shape Model (BSM) descriptor [7] is proposed
for the recognition of hand-drawn symbols in historic doc-
uments. Similar to the recognition of handwritten words,
hand-drawn symbol recognition is a hard task due to the
high variability of symbol appearance encountered within
different writing styles. Furthermore, historic documents
are more prone to artifacts such as noise, torn paper, de-
graded ink, or bleed-through.

BSM encodes the spatial probability of appearance of the
shape pixels and their context information in the following
way. The image is divided into a grid of n× n equally-sized
subregions. For each grid element a weighted sum of all
pixels in the surrounding grid elements is computed. Thus,
each foreground pixel contributes to a density measure of
grid element it lies in and its neighboring ones.

In Figure 2, a letter shape parametrization is shown. Figure
2(a) shows the distances estimation of a shape point respect
to the nearest centroids. To give the same importance to
each shape point, all the distances to the neighbors centroids
{d1, d2, d3, d4} are normalized so that 1

d1
+ 1

d2
+ 1

d3
+ 1

d4
= 1.

The output descriptor is a vector where each entry corre-
sponds to the number of pixels in a sub-region. Afterwards
it is normalized, so that all entries are in the range [0, 1]
and sum up to 1. Hence, a vector can be considered as a
probability density function (pdf) of n × n bins. This way,
the output descriptor represents a probability distribution of
the object shape. Since a shape is represented as a vector,
two shapes can be compared efficiently by computing their
(Euclidean) distance.

BSM is scaling and (x, y)-stretching invariant because of the
fixed size of the n × n grid. The selection of the grid size
is an important parameter, which defines the region of ac-
tivity of the symbol’s pixels (see Fig. 3), and consequently,
the resolution by which the shape is sampled (also denoted
as the blurring degree). The optimum grid size depends on
the dataset and must be able to reflect the difference be-
tween inter-class and intra-class variability. The algorithm
is summarized in table 1. For further details, see [7].



a)

b)

Figure 2: BSM density estimation example. (a) Dis-
tances d1..d4 of a given shape pixel to the neighboring
centroids. The regions are numbered r1 to r16. (b)
The contribution of the pixel indicated above to the
corresponding grid elements.

(a) (b) (c) (d)

Figure 3: BSM with different grid sizes. (a) Input
image. (b) 32x32 regions. (c) 16x16 regions. (d)
8x8 regions.

Given an image I:
1. Obtain the shape S contained in I.
2. Divide I in n × n equal size sub-regions R =
{r1, ..., rn2}, with ci the center of points for each region
ri, i ∈ [1, .., n2].
3. Let N(ri) be the neighbor regions of region ri, defined
as N(ri) = {rk|rk ∈ R, ||ck − ci|| < 2|g|}, where g is the
cell size.
4. Let rxi be the region which contains the point x.
5. Initialize the probability vector v as v(i) = 0,
∀ i ∈ [1, .., n2].
6.

For each point x ∈ S,

D = 0

For each ri ∈ N(rxk ),

di = d(x, ri) = ||x− ci||2
D = D + 1

di

End For

Update the probability vector v as v(ri) =

v(ri) + 1
diD

End For

7. Normalize v as: v(i) =
v(i)∑n2

j=1 v(j)
∀ i ∈ [1, ..., n2]

Table 1: Blurred Shape Model description algo-
rithm.

4. DEFORMABLE BSM
The Blurred Shape Model (BSM) has shown to be tolerant to
distorted shapes. However, it is not robust enough in case of
large deformations. In this case, the integration of the BSM
with a deformable model arises as an appealing alternative.
The Deformable Blurred Shape Model (DBSM) described in
[2] integrates the BSM descriptor with non-linear deformable
model, the Image Distortion Model (IDM) [11]. This new
model is based on deforming the grid structure of the BSM
in order to adapt it to the given shape.

First of all, and in order to allow deformations of the grid,
instead of the BSM regular grid of size k × k, a set of k × k
points (named focuses) are equidistantly distributed over the
image. These focuses correspond to the centroids of the orig-
inal regular grid and, as in the BSM approach, accumulate
votes of the neighboring pixels weighted by their distance.
Instead of defining the neighborhood as a set of fixed cells of
the grid, it is defined as an arbitrary influence area centered
on the focus, in order to provide flexibility. The deformation
of the grid is obtained by moving independently each of the
focuses along with their respective influence area. In order
to limit the amount of deformation, each focus is allowed to
move only inside a pre-defined deformation area. Figure 4
shows an example of the focus representation and their influ-
ence and deformation areas. This resulting representation
provides more flexibility and allows the focus deformation
tracking.

(a) (b) (c)

Figure 4: Deformable Blurred Shape Model repre-
sentation (extracted from [2]). (a) Focuses repre-
sentation. (b) Influence area. (c) Deformation area.

Afterwards, every focus is moved independently inside the
deformation area to maximize its accumulated BSM value.
Therefore, the final position of each focus is the local max-
imum of the density measure within its deformation area.
Figure 5 shows an example of this process. As a result,
every image is represented with two output descriptors: a
vector v which contains the BSM value of each focus, and
the vector p containing the (x, y) coordinates of each focus.

In this paper, we use the second matching technique pro-
posed in [2], where the focuses move to maximize its own
BSM value (note that this process is independent of the
training image). Firstly, it allows the independent compu-
tation of the feature vectors for all images in the database,
and secondly, it allows a fast comparison among the different
feature vectors using Euclidean distance. Given two shapes
I and J , let the vectors vI and vJ contain the BSM val-
ues of the focuses of I and J , and the vectors pI and pJ

contain the position coordinates of the focuses. After nor-
malizing the vectors, the distance between two shapes can
be computed via



(a) (b) (c)

Figure 5: Example of the focuses deformation (ex-
tracted from [2]). (a) Initial position of the focuses.
(b) Final position of the focuses after the maximiza-
tion of their values. (c) Deformation area used.

distance(I, J) = d(vI,vJ) · α+ d(pI,pJ) · (1− α) (1)

where d is the Euclidean distance between two vectors, and
α is a weighting factor. For further details, see [2].

5. ADAPTATION TO WORD SPOTTING
As it has been mentioned in the introduction, we need to
adapt the BSM and DBSM descriptors for keyword spot-
ting. For this purpose, the descriptors should also reflect
the length of a word. The length of a word plays a cru-
cial role in estimating similarity. This is contrary to symbol
recognition, where size invariance is usually desired because
it allows to cope with differences in symbol size. In Figure 6
we can see how the BSM grid is correctly adapted to the two
segmented symbols, resulting in very similar feature vectors
although their size is different.

(a) (b)

Figure 6: Two examples of the same architectural
symbol, and their BSM grid.

The following example illustrates the problem that arises
when using the BSM or DBSM descriptors without any mod-
ifications. Given a grid size of 4× 14, the word Instructions
(Fig.7(a)) is distributed along 4×14 = 56 cells. This means
that about 1-2 columns of the cells are used for encoding
each character. However, if the word and is described using
the same grid size of 4×14 (Fig.7(b)), instead of 1-2 columns,
4-5 columns of cells are used to encode each character. Con-
sequently, it may occur that two words with different lengths
could obtain similar feature vectors.

The straight-forward approach of using a different grid size
for each word results in feature vectors of different size and
sophisticated matching techniques are needed. Hence, the

(a)

(b)

Figure 7: Two words with the same grid size. Here,
the number of columns used for describing each
character is different.

comparison between different words in the database can not
be performed using Euclidean distance.

(a)

(b)

(c)

Figure 8: Words located in a blank template image.
Here, the number of columns used for describing
each character is similar.

In order to cope with this problem, we propose to create
a template blank image, where every word image of the
database will be located in the center of this template image,
according to its own centroid (see Fig.8).

Using the template, we obtain three important advantages:



• The same number of cells will be used for describing
the characters of each word.

• The feature vector of a short word (see Fig.8(a)) will
be completely different (e.g. more cells containing 0
values) from that of a long word (see Fig.8(b)).

• Using the center of gravity the approach is robust to
noise. Even incorrectly segmented word images are
correctly located in the center of the template, as shown
in Fig.8(b), where some noisy pixels or punctuation
marks can be seen.

6. DTW REFERENCE SYSTEM
Dynamic Time Warping (DTW) is a dynamic programming
approach that finds an optimal alignment between two se-
quences by a pairwise comparison of elements of the first
sequence to elements of the second sequence. Each element
in the one sequence can be assigned to several consecutive
elements in the other sequence. In [6], DTW was proposed
for word spotting in speech recognition, and also the first ap-
proaches to word spotting for handwritten text used DTW
representing text as a sequence of features vectors. Various
features have been proposed in conjunction with DTW [24,
21, 19]. We use the nine features proposed in [17], extracted
via a sliding window moving from left to right over the im-
age. At each of the N positions of the sliding window, n
features are extracted. The sliding window has a width of
one pixel. It is moved in steps of one pixel, i.e., N equals the
width of the text line. From each window, n = 9 geometric
features are extracted, three global and six local ones. The
global features are the 0th, 1st and 2nd moment of the black
pixels’ distribution within the window. The local features
are the position of the top-most and that of the bottom-most
black pixel, the inclination of the top and bottom contour
of the word at the actual window position, the number of
vertical black/white transitions, and the average gray scale
value between the top-most and bottom-most black pixel.
To compute the inclination of the top and bottom contour,
the sliding window to the left of the actual one is considered.

Our DTW implementation, similarly to the one described
in [20], makes use of a Sakoe-Chiba band [23] to speed-up
the computation. The only pruning criterion we used was
the length of the word, i.e. one word image must not be
more than twice as long as the other.

In order to spot a certain keyword, all instances of that word
occurring in the training set are compared to all words in
each text line. In this paper, we consider a perfect, man-
ually corrected word segmentation in order to rule out the
influence of segmentation errors on the word spotting per-
formance. The minimum of all these DTW distances serves
as a distance function of the keyword’s word class to the text
line. If the DTW distance of a keyword to the text line is
below a given threshold, the text line and the word having
the minimum distance is returned as a positive match.

7. EXPERIMENTAL EVALUATION
In this section we will describe the database, metrics, com-
paratives and the experiments performed.

7.1 Database
In order to validate the proposed approach, we use the George
Washington Dataset (GW DB) because it is frequently used
for keyword spotting [18, 20, 22, 24, 15, 10, 13, 1, 8]. It
consists of 20 pages of letters, orders and instructions of
George Washington written in the year 1755. One example
of these letters is shown in Figure 9. The pages originate
from a large collection with a variety of images, the qual-
ity of which ranges from clean to very difficult to read. In
our experiments, we have used the same pages as used by
Rath and Manmatha in [20], which are: George Washington
Papers at the Library of Congress from 1741-1799, Series 2,
Letterbook 1, pages 270-279 and 300-309 (to be found at
http://memory.loc.gov/ammem/gwhtml/gwseries2.html).

The selected pages we use are relatively clean. The text is
part of a larger corpus, written not only by George Washing-
ton but also by some of his associates. It inhibits some vari-
ations in writing style. However, the writing on the pages
we consider is fairly similar. The considered pages include
4,894 words on 675 text lines. The GW DB contains the
same pages as the one in [13], but we found the automat-
ically segmented and extracted words to be too erroneous.
Hence, we decided to use the already preprocessed (see Sec-
tion 2) and manually segmented and labelled word images
used in [9].

7.2 Metrics
A retrieval system returns for each document a similarity
measure that indicates how relevant the document is. Given
a query word image, the BSM, DBSM and DTW approaches
return the distance to the nearest word image among of the
reference word images. All of these scores can be trans-
formed into a relevance measure r ∈ [0; 1] where a higher r
value indicates that a document is more relevant.

The performance of a single system can be measured by ap-
plying a threshold θ ∈ [0, 1] to the document score. Those
with r > θ are returned as positive matches, the rest are
rejected as negative matches. For various different thresh-
olds θ we can hence compute the number of true positives
(TP ), true negatives (TN), false positives (FP ), and false
negatives (FN). Given these values, precision and recall of
a system can be estimated. Precision is defined as the num-
ber of relevant objects found by the algorithm divided by
the number of all objects found, while recall is defined as
the number of relevant objects found divided by the number
of all relevant objects in the test set:

precision =
TP

TP + FP

recall =
TP

TP + FN

To compare several systems, a system’s performance should
be expressed by a single value. The average precision (ap) is
the average over all recall values, and the evaluation measure
used in this paper is the mean of all average precisions over
all queries, called Mean average Precision (MaP).

7.3 Comparatives



Figure 9: George Washington example page.

As it has been mentioned before, the methods to be com-
pared are BSM, DBSM and DTW. The details of the de-
scriptors used in the comparison are the following. For the
BSM we have used two different grid sizes, where in the first
one each cell is about 4 × 4 pixels, and in the second case,
each cell is about 5 × 5 pixels. For a fair comparison with
DBSM, we have located a focus each 4×4 pixels, and in the
second configuration, one every 5×5 pixels. With these two
configurations, we tested the performance of the approach
with two different blurring degrees.

Concerning the DBSM approach, four different values of α
are proposed for weighting the differences in the BSM values
(also called intensity values) and the changes in the posi-
tions of focuses. In case of α = 0, only the differences in
the position of the focuses are used for computing the sim-
ilarity between two words. The value α = 0.3 means that
the differences in BSM values account for 30% of the final
distance and the focuses positions 70%, whereas α = 0.7
means that the differences in BSM values account 70% and
30% the positions. Finally, when α = 1, only the BSM
values are taken into account for computing the similarity
between two words.

7.4 Results and Discussion
Figure 10 shows the mean average precision (MaP) of the
BSM and DBSM with a cell size of 5× 5, whereas Figure 11
shows the mean average precision with a cell size of 4×4 pix-
els. The BSM with a cell size of 5×5 pixels obtains a MaP of
54.79%, whereas it increases to 56.41% in case of a cell size
of 4 × 4. Similarly, the DBSM results are higher when the
grid resolution is higher, increasing from 56.15% (5-pixels
distance) to 58.16% (4-pixels distance). These results show
that, on this specific dataset, the higher the sampling res-
olution, the better the performance. Notice that in other
databases, the optimal resolution could be different.
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Figure 10: Results for a cell size of 5x5 pixels:
Mean average precision for different values of α =
Position/Intensity-Mixing parameter.
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Figure 11: Results for a cell size of 4x4 pixels:
Mean average precision for different values of α =
Position/Intensity-Mixing parameter.

Concerning the weighting of the DBSM, the intensity values
are more discriminant than the positions of the focuses, ob-
taining the best results with α = 0.7. When only the focuses
positions are taken into account, the MaP dramatically de-
creases to 43%. Not surprisingly, if only the BSM values are
taken into account, the DBSM performance (56.5%) is very
similar to the BSM approach (56.41%).

It is important to remark that both BSM and DBSM ap-
proaches outperform the DTW method, with a mean aver-
age precision of 53.14%. In addition, one important advan-
tage of the BSM and DBSM approaches compared to the
DTW method is the lower computational cost. The DTW



method requires the computation of a matrix for comparing
each pair of words, which has a complexity order of O(n2).
In contrast, in the BSM and DBSM approaches, the feature
vectors can be compared using Euclidean distance, which
has a complexity order of O(n), and consequently, allowing
faster keyword spotting systems. Note that all descriptors
can be computed off-line in a preprocessing step.

Referring to the comparison between the BSM and DBSM
approaches, results show that DBSM obtains slightly bet-
ter results (58.16% compared to 56.41%), especially when
both position and intensity values are taken into account.
However, the computation of the BSM descriptor is much
faster than the DBSM descriptor and thus, the BSM ap-
proach seems to offer a good trade-off between complexity
and performance increase.

Concerning the comparison between words, however, the
BSM approach only requires to compare the BSM vectors,
whereas the DBSM approach requires to compare more than
one vector; viz. the BSM values and the focuses position (x,y
coordinates). Therefore, the final decision should be made
depending on the database at hand.

Although both proposed systems, BSM and DBSM, have a
mean average precision of below 60%, this is the best cur-
rently reported performance for the given setup. Other ex-
periments have demonstrated that it is possible to obtain
higher performance on this dataset for training based sys-
tems, e.g. in [9]. In contrast, the BSM, DBSM and DTW
proposals do not require any training data, which renders
them suitable for searching in databases when no ground
truth is available.

8. CONCLUSIONS
In this paper we have proposed a shape-based keyword spot-
ting approach, which makes use of the Blurred Shape Model
(BSM) and the Deformable Blurred Shape Model (DBSM).
We have also described the adaptation required for dealing
with word images instead of symbols.

Experimental results show that both BSM and DBSM ap-
proaches outperform the DTW method, and also, they are
faster to compute. When compared to BSM, it can be con-
cluded that the slightly higher performance of the DBSM
comes at the cost of an increased computational complexity.
Thus, the final choice should be made depending on the size
of the database and the performance requirements of the
final user.

Further work will be focused on the exploration of other
shape descriptors suitable for handwritten text. Especially
a fast way to compute Shape Context descriptor or approx-
imations thereof are promising research directions for key-
word spotting.
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