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Abstract—This paper presents a graph-based word spotting
for handwritten documents. Contrary to most word spotting
techniques, which use statistical representations, we propose a
structural representation suitable to be robust to the inherent
deformations of handwriting. Attributed graphs are constructed
using a part-based approach. Graphemes extracted from shape
convexities are used as stable units of handwriting, and are
associated to graph nodes. Then, spatial relations between them
determine graph edges. Spotting is defined in terms of an
error-tolerant graph matching using bipartite-graph matching
algorithm. To make the method usable in large datasets, a graph
indexing approach that makes use of binary embeddings is used
as preprocessing. Historical documents are used as experimental
framework. The approach is comparable to statistical ones in
terms of time and memory requirements, especially when dealing
with large document collections.

I. INTRODUCTION

Word spotting has emerged in the last years as a highly
effective technique for large scale document image retrieval
in manuscript databases. In some cases, in particular in his-
torical documents, a strategy based on full transcription using
handwriting recognition approaches, and a subsequent search
is nowadays far from being feasible, hence word spotting is a
pratical alternative. Most of the existing word spotting tech-
niques use statistical representations (e.g. SIFT, HOG) of the
word images [1], [2]. However, some structural representations
have been recently proposed. The main motivation is that the
nature of handwriting suggests than the structure is more stable
than the pure appearance of the strokes. This is especially im-
portant when dealing with the elastic deformations of different
handwriting styles. As stated in the comparison of statistical
versus structural representations for handwritten word spotting
reported in [3], the main disadvantages of structural approaches
are the time complexity and scalability to large document
collections.

Graphs are robust representations able to describe shapes
in terms of the relationships between constituent parts or prim-
itives. Several graph matching algorithms have been proposed
in the literature [4]. In the particular case of handwritten word
images represented by graphs, error-tolerant or inexact graph
matching is required to cope with the deformation of the
strokes. Roughly speaking, the problem consists in finding
the minimum transformation cost of one of the graphs such
that an isomorphism exists between the transformed graph
and the second one. One of the most popular error-tolerant
graph matching methods is based on graph edit distance [5],
but inexact (sub)graph isomorphism computation is a known

NP-Complete problem. Approximate or suboptimal variations
of graph edit distance have been proposed to overcome this
difficulty [6]. One of the first attemps to use graph matching
for word spotting was proposed by Fischer et al. [7] defining
a HMM model on a graph structure, but since only the graph
nodes are used the structure is not accurately matched. Wang
et al. [8] proposed a coarse-to-fine graph matching. First a
bag-of-small-graphs approach is used to find words likely to
be the query one, afterwards an inexact matching algorithm is
employed to verify the true positives. Riesen et al. [9] study
if graph matching techniques can be beneficially employed for
keyword spotting. These approaches are still far away of being
able to cope with large databases in an efficient way.

In general, the use of graph matching for word spotting
has to deal with two factors. First, a robust representation
able to tolerate the deformations of handwriting without los-
ing the expressiveness in terms of the topology. Second, to
overcome the computational cost of traditional graph matching
algorithms. In this work we propose contributions to tackle
the two problems. First, we propose a graph representation
in terms of a codebook of graphemes, the stable constituent
units of handwriting, and their spatial relationships. Second
an error-tolerant graph matching is used to spot query words.
Word spotting can be considered segmentation-free, i.e. words
do not have to be segmented in document images, since the
query word graph is found as a subgraph of the large graph
representing the whole document. To speed up the process
and be able to cope with large scale graphs, an indexation
strategy is used. Thus, local configurations of graph nodes are
represented as binary codes so a hashing strategy can locate
subgraphs likely to match the query word graph.

The rest of this paper is organized as follows. First, section
II describes the graph model used to represent handwritten
words. In section III the approach for word spotting based on
graph matching is presented. Section IV presents the proposed
indexation method. Section V reports on the experimental
evaluation. Finally section VI draws the conclusions.

II. GRAPH CONSTRUCTION

An attributed graph G is defined as a 4-pla G =
(V,E, LV , LE) where V is the set of nodes; E ⊆ V ×V is the
set of edges; LV and LE are two labeling functions defined
as LV : V → ΣV ×Ak

V and LE : E → ΣE ×Al
E , where ΣV

and ΣE are two sets of symbolic labels for vertices and edges,
respectively, AV and AE are two sets of attributes for vertices
and edges, respectively, and k, l ∈ IN. We will denote the



Fig. 1. Outline of the graph construction.

number of vertices in a graph by |V | and the number of edges
by |E|. We use for the sake of simplicity G = (V,E) instead
of G = (V,E,LV , LE). To keep the graphs stable against the
deformations of handwriting but robust enough to represent
the topology of words in terms of their constituent primitives,
we proposed a representation based on graphemes graphs. A
grapheme is the smallest unit used in describing the writing
system of a language. Several works in the literature represent
handwriting in terms of graphemes [10] or allographs [11].
Thus, a codebook of graphemes is extracted after text images
are oversegmented at subcharacter level. Graph nodes are
associated to grapheme codewords, and graph edges represent
adjacency and proximity relations.

The graph is extracted as follows (see Fig. 1). First, the
codebook of graphemes is extracted. The graphemes have been
defined as a convex path in the vectorial approximation of
the skeleton graph (see Fig. 2). To extract the convex paths,
the mathematical definition is used, hence for every pair of
points within the convex group, the straight line segment
that joins them is also within the object. Graphemes are
defined as the part of the image foreground extracted from the
geodesic reconstruction from the convex groups. A codebook
of graphemes is defined according to a clustering in terms of
the Blurred Shape Model (BSM) descriptor [12]. The clusters
have been generated using all the graphemes in the database
and the k-means algorithm with 20 different classes.

Fig. 2. Graphemes are extracted from convex groups of the skeleton.

As a result, a graph G is generated. Graph nodes corre-
spond to graphemes, attributed with the corresponding label
codeword of the codebook of graphemes. Graph edges rep-
resent adjacency relations between nodes (the corresponding
graphemes are adjacent). The edge attributes are: the number
of points in common between the corresponding convex groups
(we will refer it as edge weight) the angle and the length.

III. GRAPH MATCHING FOR WORD SPOTTING

Error-tolerant matching aims to establish a (sub)graph
isomorphism that may include some distortions. The type of
distortions that are considered are application dependent. A
typical distortion model is based on string matching. It includes
the insertion, deletion and substitution of both vertices and
edges. These distortions are called edit operations which have
an associated cost. Error-tolerant graph matching is computed
by searching the sequence of edit operation with minimum cost
that transforms one graph into another. Usually, branch and
bound techniques are used to compute the minimum cost edit
sequence from one graph to another. Bipartite graph matching
[6] is one of the most efficient methods for error-tolerant graph
matching. It is based on defining a matrix of edit costs between
the nodes of both graphs. The best correspondence between
nodes is found by a linear assignment method.

The matrix definition for the bipartite graph matching takes
into consideration both the local structure of the vertices and
their attributes. Let Gw = (Vw, Ew, LVw , LEw) be the graph
of the query word and Gt = (Vt, Et, LVt , LEt) be the target
graph with Vw = {u1, . . . , un} and Vt = {v1, . . . , vm},
respectively. The cost matrix C is defined as:

C =



c1,1 c1,2 · · · c1,m c1,ε ∞ · · · ∞

c2,1 c2,2 · · · c2,m ∞ c2,ε
. . .

...
...

...
. . .

...
...

. . . . . . ∞
cn,1 cn,2 · · · cn,m ∞ · · · ∞ cn,ε
cε,1 ∞ · · · ∞ 0 0 · · · 0

∞ cε,2
. . .

... 0 0
. . .

...
...

. . . . . . ∞
...

. . . . . . 0
∞ · · · ∞ cε,n 0 · · · 0 0


where ci,j denotes the cost of a node substitution c(ui → vj),
ci,ε denotes the cost of a node deletion c(ui → ε), and cε,j
denotes the costs of a node insertion c(ε→ vj). A suboptimal
graph edit distance between Gw and Gt is computed by a linear
assignment algorithm [6]. A key decision in the matching
algorithm is the definition of the cost functions. In this work,
the cost functions are defined as follows:

Insertion and deletion costs. Both, node insertion and
deletion costs are computed in the same way (both can be
seen as deletions in one graph or the other). Intuitively, the



cost is computed in terms of the local configuration of the
node defined by the incident edges. If the node is strongly
connected the cost will be higher than for example a simple
node that appears disconnected. Thus, the insertion cost has
three terms:
c(ε→ vj) = c(ui → ε)

= we0CweightEdges + we1Cedges + we2tvertices
(1)

where wei are weighting factors; CweightEdges is the sum of
the attributes of the edges incident in the node being deleted,
indicating how much the node is sharing part of its grapheme
with the neighboring ones; Cedges is a measure of the density
of the node computed as the ratio between the number of
incident edges and the total number of graph nodes; tvertices
is a constant value experimentally set as a baseline cost for
the edit operation.

Substitution costs. Computed in terms of the position
of the nodes, their label according to the codebook and
the similarity of the local structure. The different terms are
weighted by factors denoted with wni. Formally:

c(ui → vj) = wn0Di,j + wn1CBSM + wn2Clocal structure

(2)
where wni are different weights. Di,j is the euclidean distance
between the spatial position of the nodes ui and vj position.
This distance is normalized by the maximum node position
of the both graphs. CBSM is the L1 distance between the
corresponding BSM shape descriptor of the node graphemes.
The value CBSM is computed with the distance between the
centroids of the k-means clustering when the codebook is
extracted. Finally, Clocal structure is the edit operation cost
on the incident edges.

Matching of the incident edges. In order to compute the
edit cost on the adjacent edges (Clocal structure), the Bipartite
Graph Matching algorithm has been used. Firstly a matrix of
edit costs between the adjacent edges of both nodes is defined
Ce with the same structure as C. In this case the cost of edge
insertion and deletion is a constant tedges. The substitution
costs are computed in terms of the edge attributes. i.e. weight,
angle and length for the both edges to substitute.

c(ei → fj) = we0Cweight + we1Cangle + we2Clength (3)

where wei are weighting factors, Cweight is the difference
between the weight of the two edges, Cangle is the angle
between them and Clength is equivalent to 1 − eshort/elong
where eshort denotes the length of the shorter edge and elong
the length of the longer one.

The values of the weights and the constant values have
been empirically set as follows: tvertices = tedges = 0.5 and
wn0 = 2/5, wn1 = 1/5, wn2 = 2/5, we0 = 1/5, we1 = 2/5
and we2 = 2/5. All the cost computations are scaled into the
range (0, 1), and the sum of the partial costs involved in the
computation of any cost is 1.

With the above considerations, given a query word repre-
sented by a graph Gw and a set of target images of hand-
written documents represented by graphs Gi

t, word spotting
is computed as an inexact subgraph matching where several
subgraphs of Gi

t Gw are found as being similar to Gw.
The edit cost is computed using the bipartite graph matching

algorithm with the costs defined before. In terms of size,
graphs corresponding to query words have an average of 25
nodes, and a graph representing a page of a document has an
average of 4,500 nodes. It means that since graph matching is
a computationally costly process, it might result in unrealistic
elapsed time responses from the application point of view.
To tackle this problem, we propose a graph indexing process
previous to the graph matching.

IV. GRAPH INDEXING

As it has been mentioned before, error-tolerant graph
matching is a computationally costly process. Spotting words
represented by graphs in large scale document collections
would require an individual matching between the query graph
and all the ones of the database. To speed up this process we
propose a graph hashing approach. It can be seen as a prepro-
cess that given a query word graph, retrieves subgraphs of the
targets graphs (documents) likely to be similar. This indexation
strategy is designed with the aim to achieve a maximum recall.
Afterwards, the matching algorithm described in section III
filters out the retrieved subgraphs discarding the false positives.
This coarse-to-fine strategy has two advantages. First, it allows
to compute the spotting in a fast way. Second, word spotting
can be considered as segmentation free, i.e. it is not necessary
to segment the words in the document prior to the matching.

The indexation approach is constructed in terms of a hash-
ing architecture defined as graph node binary embeddings [13].
Thus, graph node attributes are complemented by vectors of
attributes characterizing their context. We refer to the context
of a node as the local topology of it. In graph theory, the
Morgan index is a well-known feature to compute the local
context of a node. The Morgan index of order k associated to
a given node v counts the number of paths of length k incident
in node v and starting somewhere in the graph. Let us denote
as Ml(v, k) the Morgan index of node v, order k and label l
which counts the number of paths of length k incident at node
v and starting at nodes labeled as l. The label l of a node is
the label codeword as it has been defined in section II. Hence,
the context of a node v is defined as:

ν(v) = [Ml1(v, 1), . . . ,Ml1(v,K),Ml2(v, 1), . . . ,

Ml2(v,K), . . . ,Ml|ΣV |(v,K)],

where K is the maximum length of the paths incident in v that
is considered. The value of K depends on each experimental
setup. In this work we have set K = 3. Each context
attribute vector is converted to a binary code applying a
thresholding function. Thus, graph indexing is formulated in
terms of finding target graphs in the database whose nodes
have a small Hamming distance from the query nodes. This
process is implemented with an inverted file indexing structure
with binary-valued hash functions. In other words, the binary
vectors attributing the nodes of the query word graph Gw are
used as hashing keys into the inverted file indexing structure,
retrieving those nodes of the target graphs Gi

t with a small
Hamming distance.

The final step consists in finding the retrieved subgraphs
of the target graphs in terms of the retrieved nodes. We
define a partition P of a graph G as a decomposition of it
in n small subgraphs. With this idea, the node indexing in



terms of binary codes is reformulated as a voting process
into the partitions of the target graphs, seen as voting bins,
previously defined. The final subgraphs that are retrieved are
those induced by the partitions that receive a high number of
votes. These subgraphs can be seen as candidates to contain the
query word that is spotted. Thus, the definition of partitions
is important so they represent graphs associated to potential
words. In the experiments described in section V we have
defined as partitions the subgraphs induced by a rough word
segmentation using the method described in [14]. As it has
been mentioned, the indexing step is seen as a preprocess to the
matching described in section III with the aim of speeding up
the process and selecting the regions of interest of the images
(subgraphs) candidate to contain the query word.

V. RESULTS

The proposed approach has been evaluated in two differ-
ent scenarios: segmentation-based and segmentation-free word
spotting. The first experiment consists in a segmentation-based
word spotting scenario. We have used a set of pre-segmented
words with the aim of comparing our approach with other
methods in the literature [3], [15]. In particular, we show
that a graph-based word spotting achieves good performance
in comparison to other well-known approaches. The second
experiment is addressed to evaluate the complete pipeline,
using a graph indexation based on binary embedding to boost
graph-based word spotting method in large datasets. In both
experiments, we have used a subset of the Barcelona His-
torical Handwritten Marriages Database (BH2M) [16], which
was written in the 17th century. The performance has been
measured by the mean Average Precision (mAP), which is
defined as follows:

mAP =

∑|ret|
n=1 P@n× r(n)

|rel|
where P@n is the precision at n, r(n) is a binary function on
the relevance of the n-th item in the returned ranked list, rel
is the set of the relevant objects with regard to the query, and
ret is the set of retrieved elements from the dataset.

A. Graph-based word spotting performance

In this experiment we have evaluated the performance of
our method using the 27 pages used in [3]. This set contains
6,544 segmented words from 1,751 different transcriptions. All
the words having at least three characters and appearing at least
ten times have been selected as queries. Thus, there are 514
queries corresponding to 32 different words.

Table I shows the quantitative results and compares them
to some other methods in the literature. The proposed ap-
proach outperforms most of the methods representing classical
families of approaches in the literature (statistical, structural,
pseudo-structural). We must notice that the aim of this work
is to propose graph matching as a valid alternative for word
spotting, in front of the more widespread techniques usually
inspired by statistical pattern recognition.

Some qualitative results are shown in Fig. 3. It is interest-
ing to notice that most words have been correctly retrieved.
This example takes the name Farrer as a query. The system
correctly retrieves the first 11th words, whereas the 12th

Method mAP
DTW [3] 19.20

Graph-based [15] 24.60
BoVW [3] 30.00

Loci-based [17] 40.06
nrHOG [18] 56.06

Proposed 51.62

TABLE I. WORD SPOTTING RESULTS.

retrieved word corresponds to the name Barrer. This word
indeed corresponds to a very similar word: it has the same
character length, and only one different letter.

Query:

Results:

Fig. 3. Qualitative results for the query Farrer.

B. Word Spotting indexed for large documents

In this second experiment graph indexation based on bi-
nary embedding has been applied to boost the word spotting
method, with the aim of dealing with large datasets, reducing
the complexity inherent to graph matching. For this exper-
iment, we have selected 11 pages, containing 3,609 words.
From them, we have randomly chosen 5 instances for each
one of the 8 different words, obtaining a total of 40 query
words.

For each one of the query words, the fast matching is
used to select the candidate regions in the pages. In this way,
only the areas that receive a minimum amount of matches
are considered as candidate regions, which is then matched
using the bipartite graph-matching. In our experiments, thanks
to the indexation and detection of the candidate regions, for
each query, we can reduce from 3,609 to an average of
1,254 the number of regions to compare. From these 1,254
candidate regions, an average of 40 regions contain the desired
word, whereas 10 words have been missed. In summary, the
indexation allows to reduce by 3 the number the volume of
target graphs to be matched to the query word graph, showing
that the graph-based method can be used in large datasets.

Table II presents the Precision, Recall and the mean Aver-
age Precision using the indexation step. Note that in this case,
we only compute the matching distance between the query
word and the candidate regions. Looking only to the mAP
column, we notice that two queries are generating a lower
value than the others. The special queries are Eularia and
defunct. Studying these particular cases, some typical problems
appear:

Binarization Problem: The binarization step can provoke
degradations in the generation of the graph. This problem
appears in one of the queries Eularia (Fig. 4(a)).

Sharing Parts: Two different words that share most of their
letters may have a smaller cost than the correct word with a



Query Transcription Precision Recall mAP

Eularia 0.0080 0.8462 0.7959

Hieronyma 0.0118 0.7875 0.9329

Jua$ 0.0149 0.5389 0.8490

defunct 0.0271 0.7886 0.6372

donsella 0.0420 0.8215 0.9454

pages 0.0590 0.9352 0.9463

rebere$ 0.0645 0.7676 0.9815

viudo 0.0133 0.6455 0.9231

Total 0.0301 0.7664 0.8764

TABLE II. WORD SPOTTING RESULTS BASED ON GRAPH INDEXING.

(a) (b) (c)

Fig. 4. Problems of the word spotting: (a) Binarization, (b) Shared letters,
(c) Lexical variations.

different writing style. For example, Maria is retrieved when
searching the query Eularia (Fig. 4(b)).

Lexical Variations: This problem is similar to the last one.
In this case, the word appears with different lexical variations,
for example for plural or feminine. The query defunct has a
lower performance than the others due to this fact. (Fig. 4(c)).

In terms of computational cost, although the implementa-
tion is not optimized, the elapsed time for indexing a graph
corresponding to a page is around 0,02 seconds (target graph
of 4,500 nodes). For a query that is searched inside 11 pages,
the elapsed time is 0.021 seconds for the indexation and 4.85
seconds for the standard implementation of a bipartite graph-
matching. Hence, the time is drastically reduced.

VI. CONCLUSION

In this paper we have proposed a word spotting method
based on graph-representations. First, we have shown that
graphemes based on convexities can be stable under the
deformations of handwriting. Second, we have shown how the
graph indexing approach using binary embeddings can deal
with large collections and avoid the segmentation of words at
the same time. The experimental results demonstrate that our
structural approach is comparable to statistical approaches in
terms of performance and time requirements.

Future work will focus on the evaluation of the stability
of graph-based representations in large multi-writer document
collections.

ACKNOWLEDGMENT

This work has been partially supported by the Span-
ish project TIN2012-37475-C02-02 and the European project
ERC-2010-AdG-20100407-269796.

REFERENCES

[1] J. Almazán, A. Gordo, A. Fornés, and E. Valveny, “Word spotting and
recognition with embedded attributes,” IEEE Trans. on Pattern Analysis
and Machine Intelligence, vol. 36, no. 12, pp. 2552–2566, Dec 2014.
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