
Election Tally Sheets Processing System
Juan Ignacio Toledo∗, Alicia Fornés†, Jordi Cucurull∗and Josep Lladós†

∗Scytl Secure Electronic Voting
Barcelona, Spain

Email: {JuanIgnacio.Toledo,Jordi.Cucurull}@scytl.com
†Computer Vision Center
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Abstract—In paper based elections, manual tallies at polling
station level produce myriads of documents. These documents
share a common form-like structure and a reduced vocabulary
worldwide. On the other hand, each tally sheet is filled by
a different writer and on different countries, different scripts
are used. We present a complete document analysis system
for electoral tally sheet processing combining state of the art
techniques with a new handwriting recognition subprocess based
on unsupervised feature discovery with Variational Autoencoders
and sequence classification with BLSTM neural networks. The
whole system is designed to be script independent and allows
a fast and reliable results consolidation process with reduced
operational cost.

I. INTRODUCTION

Over 300 nationwide elections are held yearly. This sums up
to approximately 3600 million registered voters per year, with
an average spending of 5 USD per voter, elections constitute
a potential market of 18 billion dollars per year. Most of these
elections are paper based and they produce a huge amount of
documents suitable for automatic processing.

There are mainly two different approaches to electronically
produce election results in paper based elections. The first
approach is to detect the marks made by voters to each ballot
(See Figure 1). Optical Scan machines have been used for that
purpose since the 50’s. It can be considered a solved problem
if we know where to look for the mark and users are required
to use a prescribed mark (i.e filling in an oval). That is the
case in educational testing, that was the first field to develop
Optical Scanners. Nowadays, there is little on this subject,
and it is focused on building low cost alternatives to optical
scan machines with non-dedicated devices. A threshold on the
average gray level of each target area can be enough to decide
if it’s filled or empty [10].

Since most electoral laws allow different kind of marks
besides the prescribed mark (like X or check marks), Optical
Mark Recognition becomes more challenging. A first approach
to detect marks is performing a difference between previously
aligned marked ballots and a blank ballot, usually with some
preprocessing like smoothing or mathematical morphology
operations [12], [14]. Instead of just detecting a dark patch,
we could make the assumption that each voter makes coherent
marks in a single ballot and train specific classifiers for X,
check marks, or filled ovals in order to increase the accuracy

Fig. 1. An example of a ballot to be processed with OMR technology.

of our mark detector [18]. There has also been some research
on how to detect the position of the voting targets. Some
authors propose detecting a grid for possible positions of
marks by analyzing the geometry of the ballot [13]. Others
simply require user collaboration to tag a blank voting target
and then locate the rest using pattern matching techniques like
Lucas-Kanade; after knowing where voting targets are, they
sort them by the number of dark pixels and ask the user to
select a boundary [6], [16].

Another very extended way of conducting paper based
elections consists in a manual tally at polling station level.
After performing the tally, election officers at each polling
station must fill in and sign a tally sheet document that will



be the base for the results consolidation process. A tally sheet
is a form-like document combining printed information such
as text, barcodes or ROI marks with handwritten text or digits
(See Figure 2). Several electoral commissions from different
countries have shown interest in a system that can reduce the
time required to process all the tally sheets that can seamlessly
integrated into their traditional election processes. To our
knowledge, a document analysis system specially designed to
process handwritten tally sheets has not been described in the
literature, so we decided to design one. Such a system should
be able to deal with an extreme multi-writer scenario, given
that each tally sheet will be written by a different writer we
might have to deal with tens of thousands of different writers,
on a country-wide election. In addition, the system should also
be able to work with different scripts.

In this paper we present a system that is able to automati-
cally process this kind of document, reducing the operational
costs and greatly speeding up the results consolidation process.
Section 2 is an overview of the whole system, from the
preprocessing steps performed on the original scanned image
to the digit and handwriting recognition. In Section 3 we
discuss the main contribution of the paper, a combination
of unsupervised feature learning with a Bidirectional Long
Short Term Memory recurrent neural network for handwriting
recognition. In Section 4 we show the experiments performed
and the results obtained. Finally we present some conclusions
and future work on Section 5.

II. SYSTEM DESCRIPTION

In this section, we present a system for tally sheet pro-
cessing. Each tally sheet page is uniquely identified by a bar
code, this allows us to retrieve from a database the candidates
corresponding to each line of the tally sheet. From a document
analysis perspective, it is only needed to extract all the lines
in each tally sheet, since we already have the mapping to the
candidates from the database. Finally, for each line, the goal
is to recognize both the handwritten text and the digits.

A. Preprocessing

The preprocessing process consists of skew removal and
the extraction of the different lines corresponding to each
one of the different candidates. In order to perform the skew
correction we will look at the different fiducial marks on the
document (See Figure 2. The biggest fiducial mark allows us
to detect if the page is upside down, while the smaller marks
are used to correct rotations.

1) Orientation and skew removal: The first thing to check
is the size of the image. Since we are working with vertical
tally sheets, we expect the height of our image to be larger than
its width. If this is not the case (possibly due to wrong scanner
configuration), the image has to be rotated by 90 degrees. Once
we have a vertical image we perform a template matching with
a rectangle of size 244x64 pixels in order to detect the biggest
fiducial mark. If it is found on the first quadrant of the image
we already have the correct orientation while if it is found on
the fourth quadrant, we must rotate our image by 180 degrees.

Fig. 2. The fiducial marks in a tally sheet (highlighted in red) used to detect
the orientation and skew also allow us to segment the Region of Interest for
later handwriting and digit recognition steps.

This step is required because images scanned upside-down are
a fairly common.

The next step is finding the smaller marks in order to fix the
skew. Using a convolution of the negated image and models of
the different fiducial marks we can detect them. If we can not
find all of the fiducial marks (usually due to the paper being
misplaced on the scanner or partially folded) an error is raised.
Using the Hough transform on the image containing only the
detected fiducial marks we can find the skew and correct it if
necessary.

2) Region of interest extraction and noise removal: Once
we have corrected the orientation and the skew of the image,
we can select the area delimited by the big fiducial mark and
the ones on the lower part of the sheet. This area will be then
divided in several lines using a fixed parameter. And each
line will be again divided into different fields. Noise removal
based on morphological operations is then applied on each
one of the negated images of these regions. First we perform
an opening with a 3x3 square structuring element, in order to
remove noise from the image. On the result we apply a dilation
with a rectangular structuring element to obtain the minimum



number of connected components of 23 pixels height and
width depending on the region. Finally we perform an opening
with a 31x31 structuring element to remove regions that can
not be considered digits or characters. Finally we will keep the
regions with height bigger than a threshold t1=40 pixels and
a width bigger than one fifth of the region. These parameters
have been determined empirically.

B. Intelligent Character Recognition

The Intelligent Character Recognition subsystem receives
an individual character image from the cropping module and
computes a description of the image based on Histogram of
Oriented Gradients (HOG) features [5]. The feature description
is then fed into a support vector machine based classifier that
predicts the most likely with a confidence measure on that
prediction.

C. Handwriting Recognition

The most challenging scenario is handwriting recognition
due the huge variation in writing style. In order to be able
to deal with the variation from thousands of writers and
different scripts we propose a handwriting recognition sub-
process based on unsupervised feature discovery with varia-
tional autoencoders. The sequence alignment and recognition
is performed with BLSTM (Bidirectional Long Short Term
Memory) recurrent neural network with CTC (Connectionist
Temporal Classification) [3] and the output of the recognizer
is mapped to the word of the dictionary with smallest string
edit distance. Handcrafted features are usually designed for a
specific alphabet and they lack a clear justification.

A similar approach using unsupervised feature learning has
been recently published for alphabet independent OCR [11]
with promising results. In their case they use Restricted Boltz-
man Machines, while we use Variational Autoencoders. Both
perform similar tasks but following quite different approaches.
The approach of Variational Autoencoders allows a faster and
simpler training, with traditional backpropagation and has also
shown to achieve lower reconstruction error. Figure 3 shows a
schematic view of the handwriting recognition process, which
is described in more detail in the next section.

III. HANDWRITING RECOGNITION SUBPROCESS

In this section we discuss one the most important con-
tributions of the paper, an Handwriting Recognition module
that performs an unsupervised feature discovery and sequence
classification.

A. Unsupervised Feature Learning

Autoencoders are neural networks trained to reproduce its
inputs at the output layer. In their most basic implementation,
they consist of two layers, the encoder that takes us from
image space into an internal representation and the decoder
that does the opposite. In the most common scenario we want
to learn an internal representation that is a lower dimensional
representation of our data. This process can be seen as a
feature extraction process [15] and has also been used in

Fig. 3. A sequence of image patches is passed through the encoder
of a Variational Autoencoder to get a latent variable representation. This
representation is then fed into a bidirectional long short term memory neural
network to perform the final recognition.

deep learning as an ”unsupervised pretraining”. Different
architechtures for autoencoders have been proposed recently,
denoising autoencoders, sparse autoencoders, convolutional
autoencoders, etc. One of the most promising at the moment
is the Variational Autoencoder [7], [9] which has yielded
impressively low reconstruction error with a really fast training
times.

Variational Autoencoders: In order to learn about the struc-
ture of our data x, in Variational Autoencoders we assume that
it was generated by an unobserved random variable z. Since
the marginal likelihood p(x) =

∫
p(z)p(x|z)dz is generally

intractable, we can use variational inference in order to learn
an approximation qφ(z|x) of the true posterior p(z|x).

The log-likelihood of each datapoint can then be expressed
as

log pφ(x) = KL(qz‖pz|x) + L(θ, φ;x),

where

L(θ, φ;x) =
∫
qφ(z)(log pθ(x, z)− log qφ(z))dz

= Eqφ(z|x) [log pθ(x, z)− log qφ(z|x))]

That is, a sum of the KL divergence term between the
true posterior p(z|x) and our approximation qφ(z|x) , which
is always positive, and L(θ, φ;x) a lower bound of the log
likelihood of our data. Thus our goal will be maximizing this
L(θ, φ;x). We can do this with standard gradient ascent algo-
rithm using backpropagation thanks to the “reparametrization
trick” proposed by the author in the orignal paper [7].

This “reparametrization trick” consists in modeling
q(z|x) ∼ N (µ(x), σ(x)2), and generating random perturba-
tion ε ∼ N (0, I). By doing so, we are to sample from
z = µ(x) + σ(x)ε in a way that is efficient and appropiate
for differentiation with respect to our parameters.

In other words, we use Variational Autoencoders to learn
a generative model of character parts or pseudo strokes. And
we use the representation of those character parts in the latent
variable space z as our features.



We perform a height normalization on all the text lines of
our training dataset, and we use a sliding window approach
with a step to extract 20 pixel width, 120 pixel high, image
patches from our dataset ignoring all label information. We
then feed them to a Variational Autoencoder in order to find a
lower dimensional latent representation. Once the autoencoder
is trained, we can use the encoder weights to move from image
space to this generative latent space that will constitute our
features. It is worth noting that in this step, each image patch
is treated as an independent example of a handwriting pseudo
stroke.

B. Sequence Alignment and Recognition

After the unsupervised training has finished we use the same
sliding window approach that we used to train the autoencoder
to get a sequence of image patches that represents each text
line. Each of the image patches is then fed to our encoder
to perform forward propagation in order to get a sequence
of observations in latent space. Each sequence, along with its
transcription is now fed to a Bidirectional Long Short Term
Memory (BLSTM) network with a Connectionist Temporal
Classification (CTC) output layer [3] in order to learn the
transcription.

BLSTM+CTC: Long Short Term Memory networks [4] are
a type of recurrent neural networks designed to deal with
the vanishing gradient problem by incorporating multiplicative
input, output and forget gates, that allow the cells to ignore
unimportant inputs keeping their internal state unchanged,
making them specially suited for learning over long sequences.
Connectionist Temporal Classification [3] is an algorithm
that allows the network to perform sequence alignment with
differentiable errors. A neural network using LSTM and CTC
can be trained using standard backpropagation algorithm. In
Offline Handwriting Recognition, for more robustness, two
LSMT+CTC neural networks are trained, processing the se-
quence forwards and backwards.

IV. EXPERIMENTS

In this section we will show the experiments performed to
evaluate the accuracy of our tally sheet processing system.

A. Intelligent Character Recognition

We performed several experiments with support vector ma-
chine on histogram of gradients based digit recognition.First
we trained with the MNIST dataset [8] using the proposed
division of 50.000 digits for training and 10.000 for testing.
We got an accuracy of 99% on the MNIST test set. We tested
it on our internal dataset from electoral tally sheets, using the
process described earlier on the paper to segment the 64596
individual digits from over 1000 different writers. On this
dataset we got a 66.55% accuracy, with high percentage of
the errors being on the number 7.

A second experiment was performed using both the MNIST
and the CVL [1] datasets for training, getting a 98.08%
accuracy on MNIST. On the CVL dataset, there are examples
of the number seven with a line crossing its long line. When

TABLE I
AVERAGE DIGIT ERROR RATE ON MNIST AND TALLYSHEETS DATASETS.

Training Data MNIST Tally Sheets

MNIST 1.00% 33.45%

MNIST+ CVL 1.92% 10.38%

we tested this model on the dataset of real electoral tally sheets
the accuracy went up to 89.32%. The results are summarized
on Table I. The difference in accuracy is probably due to the
fact that the area assigned to digits in the tally sheet is usually
much bigger than the digit itself, generating a variation in
size and position that was not present in the original training
datasets where the segmentation of the digits completely fill
the image size.

B. Handwriting Recognition Experiments

We performed experiments with our Handwriting Recogni-
tion process on the George Washington database [17] com-
posed of binarized and normalized text line images written
in 18th century English language with two different writers
splitting the dataset into train, validation and test. We de-
cided to use the George Washington dataset because it is a
standard database that allows us an easy comparison of the
results with other state of the art works. The text lines were
already normalized to a height of 120 pixels, we extracted
individual patches of 20 pixels width with a step size of
4 pixels. Theses patches were used to train a Variational
Autoencoder with an internal latent representation of 40 and
80 dimensions for a fixed amount of 100 iterations, which
empirically showed to provide a good reconstruction error.
The same patches of 120 pixels height and 20 pixels width
were presented as a sequence of observations, with their labels
to a standard BLSTM network with 100 cells that was trained
until no improvement was observed on the validation set for 20
iterations. The experiments were repeated five times in order
to reduce the impact of the random initializations of the neural
networks. The parameters were selected to match those used
by Fischer [2] obtainning very similar results.

The results shown in Table II were similar to the state of
the art approach with Marti features using a descriptor of 40
dimensions and slightly better when using an 80 dimensions
descriptor. In both cases the uncertainty due to random initial-
izations was greatly reduced. The convergence time improved
dramatically both in number of iterations and duration of the
iterations, as shown in Table III. The faster convergence is
due to the reduction of the length of the sequences, by using
one observation every 4 columns instead of each column. The
impact of the dimensionality of the features is negligible when
compared to the length of the sequence. We would have liked
to validate the results with our dataset of real tally sheets, but
we lacked the ground-truth associated with the handwritten
text field.



TABLE II
AVERAGE CHARACTER ERROR RATE AND STANDARD DEVIATION OVER
FIVE DIFFERENT EXPERIMENTS FOR EACH SET OF HYPERPARAMETERS.

Features Avg CER std

Marti Features 26.45% 2.12

VAE (40 dim) 26.66% 0.50

VAE (80 dim) 25.58% 0.97

TABLE III
AVERAGE NUMBER OF ITERATIONS REQUIRED FOR CONVERGENCE AND
STANDARD DEVIATION OVER FIVE DIFFERENT EXPERIMENTS FOR EACH

SET OF HYPERPARAMETERS.

Features Epochs std Epoch time

Marti Features 123.40 15.09 15 min

VAE (40 dim) 59.60 6.41 4 min

VAE (80 dim) 64.40 8.40 4.5min

V. CONCLUSIONS AND FURTHER WORK

We have described an electoral tally sheet document analy-
sis system that covers all the pipeline from the scanned image
to the number of votes each candidate receives. We also show a
promising handwriting recognition process with unsupervised
feature learning using variational autoencoders, and show that
it can slightly improve the state of the art Marti Features in
the character error rate, while also greatly reducing both the
number of epochs needed to convergence and their duration.
The uncertainty due to the random initialization is also greatly
reduced. As a future work, we would like to use our recently
labeled dataset of electoral tally sheet images in order to
test our handwriting recognition process with the real data
it was designed to work with. We think that there is still room
for improvement in the use of autoencoders for handwriting
recognition, we would like to explore different autoencoder
architectures, trying to find a way to get more discriminative
features. We would also like explore more intelligent ways
of combining the results of the handwriting recognition and
the digit recognition. With some minor adjustments to our
digit recognizer it could output several predictions each of
them with their associated confidence. We could try to match
the result of the handwriting recognition with each of these
possible predictions of the digit recognition taking into account
their confidence.
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