
Handwriting Recognition by Attribute Embedding
and Recurrent Neural Networks

J.Ignacio Toledo, Sounak Dey, Alicia Fornés and Josep Lladós
Computer Vision Center, Computer Science Department,
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Abstract—Handwriting recognition consists in obtaining the
transcription of a text image. Recent word spotting methods
based on attribute embedding have shown good performance
when recognizing words. However, they are holistic methods in
the sense that they recognize the word as a whole (i.e. they find
the closest word in the lexicon to the word image). Consequently,
these kinds of approaches are not able to deal with out of
vocabulary words, which are common in historical manuscripts.
Also, they cannot be extended to recognize text lines. In order to
address these issues, in this paper we propose a handwriting
recognition method that adapts the attribute embedding to
sequence learning. Concretely, the method learns the attribute
embedding of patches of word images with a convolutional neural
network. Then, these embeddings are presented as a sequence to
a recurrent neural network that produces the transcription. We
obtain promising results even without the use of any kind of
dictionary or language model.

I. INTRODUCTION

Offline Handwriting Text Recognition (HTR) is the task of
converting a digital image of handwritten text into its textual
transcription. First HTR methods were based in the segmen-
tation of individual characters and their posterior recognition
using Optical Character Recognition (OCR). But for cursive
handwriting, segmentation is a truly difficult problem, and
Sayre’s Paradox arises; that is, to perform the recognition you
need to segment first, but to perform a good segmentation you
need to recognize first. In order to tackle this problem, seg-
mentation free methods were proposed such as Hidden Markov
Models (HMM) or Long Short-Term Memory Recurrent Neu-
ral Networks (LSTM-RNN) [10], [26], where the recognition
and segmentation was done at the same time. These methods
allowed to evolve from isolated character recognition to word
and text line recognition. Even more, some recent methods
based on attention-models and LSTMs have been proposed to
evolve from text line recognition to paragraph recognition, and
thus performing a joint transcription and segmentation of text
lines [2], [3].

Given the difficulties of HTR, Word Spotting has been
raised as an alternative to HTR. Word Spotting [8] is defined
as the task of searching words in a document, where the
query is a word image (query-by-example) or a text string
(query-by-string). Thus, documents are not transcribed, but
the information contained can be made accessible in retrieval
scenarios.

Lately, a new family of Word Spotting methods have also
shown their ability to recognize words. These methods [1],

[25] are based on embedding the word image and its tran-
scription into a common attribute space. Then, word spotting
consists in finding the nearest neighbors in that space. This
approach has been adapted to perform recognition by doing a
reversed query-by-example word spotting into a given lexicon.
That is, to embed the whole lexicon of words into the attribute
space, and then, given a word image, to embed it to find the
closest word in the lexicon. This method is indeed performing
recognition through word classification.

Recently, this embedding has been integrated into a deep
learning architecture, producing impressive results for hand-
written word recognition [20]. However, these methods present
several disadvantages when compared to traditional HTR.
Since they are implicitly performing word classification, the
main drawback is the requirement of a lexicon and their
inability to deal with out of vocabulary (OOV) words. This
might seem a minor drawback for modern languages where
huge lexicons are available, but it can be a problem in some
scenarios. For instance, in historical documents, the amount of
OOV words is usually high, and building a full lexicon might
not be feasible. In addition, these methods are recognizing
the word as a whole, so, by design, they depend on a good
segmentation, and they cannot be extended to text lines.

In this paper, and in order to address these issues, we
propose a deep learning HTR method that adapts the attribute
embedding to sequence learning. Concretely, we perform the
attribute embedding of small pieces of text with a convolu-
tional neural network (PHOCNet) and then we construct a
sequence of embeddings that are recognized by Long Short-
Term Memory Recurrent Neural Networks with Connectionist
Temporal Classification loss (BLSTM+CTC). Therefore, we
benefit from the advantages of the attribute embedding, se-
quence learning and deep learning. As far as we know, this
is the first work that attempts to combine both approaches by
extending the attribute embedding to sequential recognition.

The rest of the paper is organized as follows. Section 2
presents the system overview, whereas the network architec-
ture is described in Section 3. The experimental results are
discussed in Section 4. Section 5 draws the conclusions.

II. SYSTEM OVERVIEW

In this section we describe our two stage approach for hand-
writing word recognition. The first stage is based in attribute
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Fig. 1. System architecture. After training a PHOCNet for word attribute embedding, we embed patches of word images into the attribute space. From these
points in the attribute space we create a sequence that is passed to a two-layer BLSTM+CTC recurrent neural network that performs the transcription.

embedding, followed by the proper sequence transcription,
which is performed over embedded text patches.

A. Attribute Embedding

The Pyramidal Histogram of Characters (PHOC) [1] is used
to embed words into an attribute space. In this space, words
and word images are characterized by a set of attributes. In
the case of PHOC, each attribute represents the presence of
a character in a part of the word. Since the position of the
characters is also important, the PHOC descriptor is built
with a pyramidal structure as follows. In a scenario with n
different characters, the first level of the pyramid will have
2n dimensions. The first n represent the presence of each
character in the first half of the word while the last n represent
the presence of a given character in the second half of the
word. Each subsequent level of the pyramid will divide the
word into smaller portions 1/3, 1/4 and 1/5. The final level
of the pyramid contains a selection of the k most common
bigrams for that language. The final dimensionality of the
PHOC descriptor will be (2 + 3 + 4 + 5)n+ k.

While the PHOC embedding for text words is trivial, the
embedding of word images involves learning. The original
approach [1] consists in extracting SIFT features from the
word-image, performing a Fischer Vector based clustering and
training an individual SVM classifier for each attribute that
outputs a likelihood of that word image containing a particular
character in a given spatial position. Another possibility for
PHOC embedding is to use PHOCNet, a deep convolutional
network [25] that is trained to output the PHOC representation
of a given word image.

B. Extension to sequences

This kind of attribute embedding has shown to be a reliable
representation of words. It has been effectively used for word
spotting [1], [25] and recognition [1], [20] by comparing the

attribute representation of word images and their transcription-
s.

In our case we are interested in the evolution to sequence
recognition, towards a lexicon free approach. The key observa-
tion is that a word image can be sometimes a prefix or a suffix
of another word image, so this attribute embedding approach
should also be able to correctly embed smaller patches of
words. Then, if we can reliably produce attribute embeddings
of arbitrary image patches, that we can extract, for instance,
with a sliding window approach, we could use a sequence
learning technique in order to learn to transcribe handwriting
text.

To test our hypothesis we propose a method based on a
modern deep neural network architecture. We start by training
a PHOCNet as our attribute embedding choice for word
images. Once the training is completed, we do a forward
propagation of image patches in this network in order to
build a sequence of PHOCs that is then fed to a two layer
bidirectional LSTM recurrent neural network with CTC loss.
A graphical representation of our proposed architecture can be
seen in Fig. 1.

III. NETWORK ARCHITECTURE

In this section we describe the architecture of the two neural
networks that take part in our method. We will discuss the
most important characteristics of both the CNN for attribute
embedding (PHOCNet) and the Bidirectional Long Short-
Term Memory Recurrent Neural Networks with Connectionist
Temporal Classification loss that is used for transcription
(BLSTM+CTC). We will also provide facts that justify their
performance.

A. PHOCNet

The PHOCNet [25] (Fig. 2) is a convolutional neural
network architecture (CNN) used for word attribute embedding



Fig. 2. The architecture of PHOCNet. Best viewed in electronic format.
Extracted from [25].

that has shown impressive results in word spotting. We use the
PHOCNet not only because of its good performance but also
because it is backed by a carefully thought and theoretically
sound design.

Convolutional Neural Networks general layout can be split
up in a convolutional and a fully connected part. The convolu-
tional layers can be seen as a feature extractor while the fully
connected layers act as a classifier.

Each one of the convolutional layers can be seen as a set
of filters that are convolved with its input and followed by
a non-linear activation function. These small kernels allow
sharing weights for different spatial locations thus consid-
erably reducing the number of parameters and helping in
generalization [17]. Convolutional layers are combined with
pooling layers in order to introduce a certain amount of
translation invariance. In these layers, activations across their
receptive field are pooled, and a single activation (usually
the one with the maximum value) is forwarded to the next
layer [16], [23].

When stacking layers of convolutional and pooling layers,
the first layers learn edge detectors that are gradually combined
into more abstract features [27]. PHOCNet uses a low number
of filters in the lower layers and an increasing number in
the higher layers. This leads to the network learning fewer
low-level features for smaller receptive fields that gradually
combined into more diverse high-level abstract features. Also,
all the convolutional layers in PHOCNet utilize filters of
size 3x3, since they have shown to achieve better results
compared to those with a bigger receptive field as they impose
a regularization on the filter kernels [23].

One of the problems that arise when stacking a big amount
of layers with traditional activations such as sigmoid or hyper-
bolic tangent functions is the Vanishing Gradient Problem [18].
This problem has been solved by using Rectified Linear Units
(ReLU) as activation function [9]. This function is defined as
the truncated linear function f(x) = max(0, x). By using the
ReLU deep CNN architectures became effectively trainable as
shown by [16].

The large number of parameters in fully connected layers
make them prone to overfitting; even for larger training sets,
co-adaptation is a common problem in the fully connected
layers [13]. To counter this, various regularization measures

have been proposed with Dropout [24] being one of the most
prominent. Here, the output of each neuron has a probability
(usually 0.5) to be set to 0 during training. Thus, a neuron
in a given layer cannot rely on any single specific neuron
activation from the preceding layer. This forces the network
to learn alternative paths of activations leading to more robust
representations and can be seen as an ensemble within the
CNN model.

One of the key aspects of PHOCNet is the use of the Spatial
Pyramid Pooling (SPP) Layer [12] over the last convolutional
layer. This allows the network to accept differently sized input
images and output a fixed size representation avoiding the need
of a potentially anisotropic rescaling or a cropping. This is
crucial when working with word images where cropping is
not an option, and, due to the important variability in size and
aspect ratio, resizing would result in strong artificial distortions
in character shapes and stroke width. In PHOCNet a 3-level
Spatial Pyramid max pooling with 4x4,2x2 and 1x1 bin sizes
is used. This allows capturing meaningful features at different
locations and scales within the word image.

Finally, it is worth mentioning that the network was trained
for multi-label classification using the sigmoid activation func-
tion in its final layer with cross entropy loss, in contrast
to the common single class classification with softmax and
categorical cross entropy.

B. BLSTM+CTC

The natural way to deal with sequence learning in neural
networks is with Recurrent Neural Networks. In fact, if we
consider the resulting network after unfolding for a long
sequence, RNNs can be seen as an extreme example of
Deep Neural Network. Thus, for RNNs the vanishing gradient
problem was known to be a showstopper since the early days
of neural networks.

In order to deal with the vanishing gradient problem Long
Short Term Memory networks [14] were designed in the late
nineties incorporating multiplicative input, output and forget
gates. These gates allow the cells to learn to ignore unim-
portant inputs while keeping their internal state unchanged,
and decide when to produce an output, making them specially
suited for learning over long sequences.

However, there was still the problem of sequence alignment
when the input sequence and the target output were of different
lengths. In the late 2000’s an algorithm named Connectionist
Temporal Classification [11] was invented. By introducing a
blank ”no-output” symbol and a simple algorithm to map
network outputs to target sequences and vice-versa, this new
algorithm allows the network to perform sequence alignment
with differentiable errors. Thus, it allows the training with
backpropagation for target sequences with equal or shorter
length than the input sequences. Since then, this loss function
has been successfully used in tasks like Speech Recogni-
tion [11] and Handwriting Recognition [10].

For a better robustness, two LSTM layers, processing the
sequence forwards and backwards, are stacked forming a
Bidirectional LSTM [10] layer. This kind of bidirectional layer



Fig. 3. Some examples of word images in the George Washington dataset.
The available images are normalized and binarized.

is very useful for offline handwriting recognition where the full
sequence is available from the first time-step. In our approach
we stack two of these BLSTM layers, resulting in a total of 4
LSTM layers.

However, given the large number of parameters involved in
the learning, RNNs are prone to overfitting. Given the success
of Dropout [24] for deep neural networks, it is natural to try
to use it for RNNs. But, if we use a special architecture like
LSTM to keep an internal state for long time, we have to be
careful when applying the dropout. One of the first successful
attempts to use dropout in RNNs was done in [19] by applying
dropout only to the non-recurrent weights. Recent advances
in recurrent neural networks [7] allow us to use dropout in
all of the connections of an RNNs in a theoretically sound
by applying it to the same units at each time step, randomly
dropping inputs, outputs, and recurrent connections.

Finally there are also some tricks, discovered empirically,
that help to improve the training of LSTM networks [15] like
initializing the bias of forget gates to 1 instead of 0 like the
rest of the biases.

In our approach we rely on all these advances to design a
two layer BLSTM with dropout applied to all its connections,
followed by a mandatory Fully Connected layer to match the
dimensionality of our output space.

IV. EXPERIMENTS

In this section we describe the experimental validation of
our proposal. We will first explain in detail the datasets used
as well as some practical details relative to our training. We
will then show and discuss the results.

A. Datasets

For our experiments we used two historical handwritten
datasets, both in latin script. Next, we briefly describe them
and show some examples below.

1) Washington Dataset: The George Washington (GW)
dataset for handwriting recogition [6] is composed of 4894
word images written in 18th century English language with
two different writers. The available word images were already
normalized to a height of 120 pixels and binarized. We can see
several examples of word images in Fig. 3. We use the first
of the four different proposed partitions of the dataset which
results in 2433 word images for training, 1293 for validation
and 1168 for testing.

Fig. 4. Some examples of word images in the Esposalles dataset. We see a
high degree of variability both in image size and aspect ratio.

2) Esposalles Dataset: The Esposalles (BCN) dataset [4],
[22] consists of historical handwritten marriages records stored
in the archives of Barcelona cathedral. The book was written
between 1617 and 1619 by a single writer in old Catalan. The
data we used corresponds to 125 pages, with a total of 39527
word images and their transcriptions. The training set contains
100 pages (31501 word images) and the test set contains 25
pages (8026 word images). From the training set, we subtract
the last 10 pages (3155 word images) to use them as validation.
We can see several examples of word images in Fig. 4.

B. Experimental Setup

For each dataset, we trained the attribute embedding net-
work PHOCNet with the hyperparameter values recommended
in [25] for 30.000 iterations. For each experiment, the train,
validation and test partitions are the same in all the stages
(that is, the PHOCNet and BLSTM+CTC). This means that
we train the PHOCNet with and only with the train samples
that will later be used when training the BLSTM+CTC.

We used the network to precompute the PHOC of windows
of 64 pixel width, with a step size of 8. Each word image was
previously padded with 32 pixels of uniform background to
the left and to the right to ensure a minimum sequence length
for narrower images.

The sequence of precomputed PHOCs was then fed into a
recurrent neural network consisting of two bidirectional LSTM
layers with 250 neurons with Dropout probability 0.5 in all
its connections, followed by a fully connected layer with the
required number of neurons for each dataset (82+blank for
GW and 59+blank BCN). The loss function was CTC loss,
which requires the extra blank symbol.

For training the recurrent neural network, we used early
stopping with a tolerance of 30 epochs, and the optimization
technique was done with Stochastic Gradient Descent with
Nesterov momentum 0.9, a learning rate of 1e−4 and a decay
factor of 1e−6.

The decoding of the network output was done by selecting
the most likely prediction for each timestep and performing the
CTC collapse operation, which consists in removing consec-
utive activations of the same character and the blank symbol.

For test evaluation, as well as for the early stopping in the
validation set, we use the character error rate (CER) metric.

CER =
S +D + I

N



The CER is calculated as the sum of the character substitu-
tions, insertions and deletions required to transform one string
into the other, divided by the total number of characters of the
longest string, resulting in a score between 0 and 1 for any
pair of words.

C. Results discussion

Table I shows our results. We achieve a CER of 7.32% in
the George Washington dataset and an impressive 0.83% in the
Esposalles dataset. We observe a significant difference in the
performance between both datasets. There are several factors
that make these datasets different, starting by the amount of
data which is crucial when training with neural networks.
There is also the fact that the George Washington dataset is
normalized an binarized. We hypothesize that these normal-
izations might remove some useful information. In fact, for
humans, the images from the Esposalles Dataset (Fig. 4) are
far more legible than the images from the George Washington
dataset (Fig. 3). Finally we would like to remark that the
Esposalles dataset consists in marriage records, which usually
contain several instances of each unique word. Contrary, the
George Washington dataset is a small size free text, and there
are only a few instances of each unique word.

Trying to compare our method with other methods is not
an straight-forward task. Both works in [1], [20] are based
on attribute embeddings. From them, we chose the work from
Almazan et al. [1] because it utilizes the original attribute
embedding and its source code is publicly available. However
the the original method and our approach have important
differences, the main one is the requirement of a dictionary.
For that reason we consider two different scenarios. In the
first (worst case) scenario a lexicon is automatically built from
the training examples, thus we will have a minimum lexicon
that is always available. In the second (best case) scenario, the
transcriptions from the test will also be included in the lexicon,
representing a perfect lexicon, so all words can be found in the
lexicon. In any case, in both scenarios our method outperforms
the original approach by a big margin.

It is also worth noting that when training with the method
from [1] only lowercase characters and digits are taken into
consideration when building the PHOC representation. Con-
trary, in our method, all the characters present in the dataset
are used, including uppercase, ’ç’ and ’#’ (symbol that denotes
crossed out words or characters) symbols for the Esposalles
and punctuation marks for the George Washington dataset.
Ignoring special characters like ’.’ or ’,’ makes the problem
easier, whereas transforming all transcriptions to lowercase can
help in some examples and damage in others. As a result, the
comparison of these methods is even more difficult.

In order to minimize the penalization of the method de-
scribed in [1] for not using special characters, we removed
all punctuation marks from the ground truth, merged the or-
dinals (1st,2nd) with their corresponding digit and the special
character for the initials GW was split into a ’G’ and a ’W’.
This is a strong simplification, since in the evaluation of our
own method, we model and take into account the commas,

TABLE I
COMPARATIVE WITH OTHER METHODS CER.

Method Esposalles GW

Almazan et al. [1] (Train Lexicon)* 6.18% 22.15%
Almazan et al. [1] (Full Lexicon)* 4.28% 17.40%
Fischer [5] - ≈ 20%

Our approach 0.83% 7.32%

dots, left and right parenthesis, etc. Even dealing with a much
harder task, our method outperforms previous reports by a
great margin.

A more direct comparison can be made with the traditional
single layer 100 neuron BLSTM+CTC recurrent neural net-
work like the one described in [5], [10]. This method does
not require any kind of language model and trains the network
from a sequence of a 9-dimensional handcrafted feature based
on statistical and shape information. Results for word-level
recognition for the George Washington dataset are reported in
a plot in [5] showing a result slightly above the 20% level. In
this case we are not certain if punctuation symbols were taken
in consideration when calculating the CER.

In case of the Esposalles dataset, the comparison with
other existing methods is even more difficult, because most of
them perform the recognition at line or record level. The best
approach so far is from Romero et al. [21] reporting a WER
of 10.1% at line level using a lexicon and a language model.
Our method achieves a 2.95% WER in Esposalles without any
kind of lexicon or language model but, since we are working
at word level, we can not make word insertions or deletions
errors but only substitutions. These values, despite not being
fully comparable might give a hint of the performance level
of our approach.

V. CONCLUSIONS

In this paper we present an new handwriting recognition
method based on an attribute embedding of patches of word
images by a convolutional neural network. Then these embed-
dings are presented as a sequence to a recurrent neural network
that produces the transcription. With this new approach we
overcome the limitation of requiring a lexicon that attribute
based models have, effectively moving the focus away from
word-classification to a real handwriting text recognition. We
obtain very competitive results achieving state of the art results
in both of the historical handwriting datasets benchmarked.

The most evident future research lines opened by this work
are the extension to text lines (something that previous works
based on attribute embedding where unable to do by design).
In our case this should be possible if we are able to model
the white space character between words either at the attribute
embedding level or at the RNN sequence transcription level.
A second possible improvement would be to make use of
language models or lexicon information when available (but
not as a requirement of the model). Finally we would also
like to perform further experiments with modern handwriting



recognition datasets, like the IAM, in order to be easily
comparable with other methods in the literature.
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