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Abstract

Manual transcription of handwritten text
is a time consuming task. In the case
of encrypted manuscripts, the recogni-
tion is even more complex due to the
huge variety of alphabets and symbol
sets. To speed up and ease this process,
we present a web-based tool aimed to
(semi)-automatically transcribe the en-
crypted sources. The user uploads one or
several images of the desired encrypted
document(s) as input, and the system re-
turns the transcription(s). This process is
carried out in an interactive fashion with
the user to obtain more accurate results.
For discovering and testing, the devel-
oped web tool is freely available 1.

1 Introduction

Nowadays, artificial intelligence and pattern
recognition are playing an important role in his-
torical manuscript processing and recognition.
Some research projects with focus on digital pa-
leography, including the transcription of histor-
ical manuscripts are, for example, HIMANIS
(Stutzmann et al., 2017), Transkribus (Kahle et
al., 2017), and From Quill to Bytes (q2b, 2013).
For the case of encrypted historical manuscripts
analysis, which constitute the main subject of
this paper, the project DECRYPT (Megyesi et
al., 2020) is joining the expertise in computer vi-
sion, computational linguistics, philology, crypt-
analysis and history for the aim of making ad-
vances in historical cryptology.

The first step toward decrypting a handwrit-
ten ciphertext is transcription. Intuitively speak-
ing, the transcription could be done manually

1https://cl.lingfil.uu.se/decode/transcription/

but it turns out to be a time-consuming, error-
prone, and expensive task (Piotrowski, 2012).
During the last decade, several handwritten text
recognition (HTR) methods have been devel-
oped and applied successfully to historical hand-
written sources, allowing (semi-)automatic tran-
scription (Kahle et al., 2017; Romero et al.,
2017). Alternative approaches use word spot-
ting (Santoro et al., 2017), speech recogni-
tion (Granell et al., 2018) or even gamifica-
tion (Chen et al., 2018) for speeding up the
manual transcription. However, all these tools
have been developed to only deal with known
scripts (e.g. Roman alphabet). Indeed, the tran-
scription of encrypted sources is more compli-
cated as they often include symbols that are
taken from a wide range of alphabets and sym-
bol sets. For a more generic and flexible tran-
scription within and across ciphers, the use of
generic annotation tools such as Alethea (Claus-
ner et al., 2011) or Pixlabeler (Saund et al.,
2009) could be preferable. But, the annotation
process through these tools is fully manual, lead-
ing to a huge cost in term of time especially
for encrypted manuscripts with unknown sym-
bol sets. Therefore, semi-automatic image pro-
cessing tools would be the suitable solution to
this kind of applications.

In this paper, we present a tool for transcrip-
tion of encrypted sources consisting of various
symbols sets. The tool processes document im-
ages (e.g. scanned images of manuscripts) and
outputs the corresponding transcription. The
system interacts with the user at certain steps
for a more accurate transcription (in a semi-
automatic fashion). Users could be paleogra-
phers, cryptologists, archive workers, etc. We
start by briefly describing previous efforts on
(semi-)automatic transcription of ciphers, and
then present our interactive tool.
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2 Automatic Transcription of
Encrypted Sources

The main challenge in HTR is to locate and seg-
ment the actual text parts into paragraphs, lines,
and individual symbols (glyphs). In addition,
the system shall identify the various allographs
(variants) of each symbol type (graphem). The
system shall also be able to determine the var-
ious elements of a graphem, such as dots and
commas, and leave out unintentional ink spots,
bleed-through, or marks from a damaged pa-
per or parchment. In a fully automatic system,
computers handle the entire process in one step,
while in a semi-automatic system the user can
interact with the system to improve the result
during the transcription or as a post-processing
step to correct the output of an automatic pro-
cess.

Experiments on automatic transcription by
image processing have been performed on nu-
meric cipher sequences (Fornés et al., 2017)
and a wide range of glyphs belonging to al-
chemic and Zodiac signs, digits, and Roman
and Greek letters (Baró et al., 2019). Prelimi-
nary results show that image processing can be
used as base for transcription followed by a post-
processing step with user validation and correc-
tion. Even though image processing techniques
need to be trained on individual hand-writings
to reach high(er) accuracy, unsupervised tech-
niques (i.e. no labelled data is required to train)
can also be used for speeding up the transcrip-
tion. In addition, they might be of great help
to identify the symbol set represented in the
manuscript and to make clear distinctions be-
tween symbols, hence can be used as a support
tool for the transcriber.

3 Interactive Transcription Tool

Our interactive transcription tool is generic in
the sense that it should be applicable to any sym-
bol sets, and it does not need any labelled data
to train the image processing algorithms. The
tool consists of three main steps, as illustrated in
Figure 1. First, the input cipher images are seg-
mented into lines and symbols. Then these sym-
bols are clustered (grouped) according to their
shape similarity. Finally, the transcription is per-
formed, obtaining the final transcribed cipher-

text. Executing these stages in an automatic way
leads to the transcription of a given cipher im-
age. But, since the efficacy of each step highly
depends on the correctness of the previous step
output, it is preferable to use the tool in a semi-
automatic way. In other words, if the user inter-
venes in each stage to validate or correct the in-
termediate results, then more accurate transcrip-
tion can be obtained. In what follows, a detailed
description of those steps is provided.

Figure 1: The architecture of the Interactive
Transcription Tool.

3.1 Image Upload
First, the user uploads the image(s) into the tool.
The system accepts PNG, JPEG or TIFF image
file formats. Since the transcription accuracy
depends on the images quality, we recommend
to use colored images of high resolution (e.g.
300-600 dpi) as stated in (van Dormolen, 2019).
This is recommended as well in ISO/TS 19264-
1:2017 technical specification for cultural her-
itage imaging, even though the tool accepts low
resolution images as well. It is to note that the
image processing algorithms are based on the
analysis of the symbols shapes. Thus, the doc-
ument images should be selected from the same
manuscript with the same symbol set and hand-
writing style to obtain a more reliable transcrip-
tion. In this stage, the system creates a first
JSON-file, it will be used to store all the inter-
mediate results that will be obtained during the
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different stages. This file will be sent to the user
after each subsequent step of the transcription
process.

3.2 Segmentation

The first step of our unsupervised transcrip-
tion pipeline consists of segmenting the docu-
ment image(s) into isolated symbols by creat-
ing bounding boxes for each symbol to be tran-
scribed. Although the user can manually seg-
ment all symbols using our tool, it is a time con-
suming task. Hence, the optimal choice is to re-
quest an automatic segmentation and manually
validate the results. The segmentation method
consists of applying horizontal projections to de-
tect the text lines, connected components to seg-
ment the symbols, and grouping to obtain the fi-
nal bounding boxes of each symbol. An exam-
ple of the automatic segmentation obtained can
be seen in Figure 2.

Figure 2: The stages to segment a cipher docu-
ment into isolated symbols by the tool.

Although the segmentation algorithm can run
using the default options, our interface provides
some advanced options as illustrated in Figure
3, which are very useful for trained and expe-
rienced users when applying the automatic seg-
mentation. These advanced options are:

• Symbol size: Big/Small. This value is
used to inform on the size of the symbols
with respect to the page. For example, the
Copiale cipher (Knight et al., 2011) con-
tains small symbols regarding the pages,
whereas the Borg cipher (Aldarrab et al.,
2017) contains big symbols in the pages.

• Binarize image: Yes/No. The user can
chose whether to binarize the image or not.
Because our current method works only on
binary images, the user will receive an er-
ror if it is set ”No”. This option is added to
guarantee scalability, since we are planning
to add other segmentation methods to work
on colored images as well.

• Minimum line distance: A number (in pix-
els) indicates the minimum distance be-
tween lines. Example: In the Copiale ci-
pher, most lines have 120 pixels of separa-
tion.

• Lines threshold: it is a decimal/float num-
ber between 0 and 1. This value is used to
state that only those lines with an amplitude
higher than this threshold will be detected
(this acts as a line filter).

• Max. distance symbols: This number (in
pixels) indicates the maximum distance be-
tween symbols. This parameter is useful
when grouping symbols that contain dia-
critics, super- och subscripts (e.g. dots or
accents like á or ÿ). When the segmen-
tation is based on connected components,
these small elements are separated. For this
reason, the system tends to group nearby
symbols, i.e. symbols that are closer to the
given threshold distance.

• Min. symbol size: This number (in pixels)
indicates the minimum symbol size that
could be found in the manuscript. This is
used to filter components that are smaller
than this size, which usually corresponds to
background noise in historical manuscripts.

When the segmentation process ends, the user
will receive (in their indicated email) a JSON file
containing the results of the segmentation step.
To visualize these results, the user should upload
the JSON file and the cipher image to the web
tool. Figure 4 shows an example of the output
from the segmentation part.

Although the user can apply the segmenta-
tion algorithm using different setups (i.e. dif-
ferent values in the advanced options interface),
it is difficult to obtain a perfect segmentation
with an unsupervised segmentation method. The
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Figure 3: The interface for the segmentation re-
quest, showing the advanced options.

main reason is that the segmentation algorithm is
generic, so it has no information on the type of
symbol set used in the encrypted source. More-
over, most encrypted manuscripts use a cur-
sive writing, so touching and overlapping sym-
bols are frequent, which make the segmentation
even harder. In this stage, the user interaction
is highly recommended, so that the clustering
stage can be more efficient and less error-prone.
Therefore, the tool allows the user to verify and
manually correct any segmentation errors. Fig-
ure 5 shows and example of correcting a wrong
segmentation. It is to note that the users cannot
only delete or modify the bounding boxes, but
they can also create new ones for any symbol
missed by the automatic segmentation.

3.3 Clustering

Once the user obtain the set of isolated sym-
bols (assumed to be correctly segmented), they
can proceed to the clustering. Clustering means
grouping visually similar symbols in different
sets, called clusters. Our tool applies the hier-
archical K-Means algorithm for clustering (Arai
and Barakbah, 2007). As advanced setting, the

Figure 4: Visualization of the bounding boxes
after the segmentation step.

user can define the minimum number of symbols
that could be assigned to one cluster, called the
Min. cluster images. The K-means algorithm
starts by assuming that all the symbols are be-
longing to a single cluster, then, splitting it re-
cursively until the clusters are no more divisible
or when reaching the minimum amount of im-
ages per cluster. Figure 6 shows the clustering
request interface.

Similar to the segmentation step, the user will
receive the results of the clustering via e-mail.
The user can visualize the clusters by uploading
the received JSON file as shown in Figure 7. The
tool bar on the right hand side called ”Clusters”
shows all the clusters provided by the K-means.
The user can press the ’eye’ icon to visualize the
symbols belonging to each cluster. Figure 8 il-
lustrates the symbols (instances) within a spe-
cific cluster.

In the ideal case, each cluster should contain
instances from the same symbol. However, there
is a high degree of visual similarity between the
different symbols in many encrypted sources.
As a result, some clusters can contain instances

Proceedings of the 3rd International Conference on Historical Cryptology, HistoCrypt 2020 
55



Figure 5: An example of correcting an over-
segmented symbol. The grey bounding box must
be merged to the previous symbol marked in
blue.

Figure 6: Clustering request, showing the ad-
vanced options.

from different, although similar symbols. Thus,
our tool allows the user to correct errors in the
clusters. The user can clean a cluster by remov-
ing those symbols that do not belong to that clus-
ter. An illustrative example can be seen in Fig-
ure 9.

After cleaning the clusters, the removed sym-
bols remain unlabelled, i.e. not assigned to any
cluster. The tool also allows the user to cre-
ate new clusters, assign symbols to clusters, and

Figure 7: On the right, the system shows the
clusters (i.e. group of symbols) obtained by the
K-Means algorithm.

Figure 8: Example of one cluster after the label
propagation step.

Figure 9: An example of cleaning a cluster: the
user removes the symbol that does not belong to
this cluster.

change the obtained clusters for the symbols.
Cleaning the clusters facilitates the subsequent
label propagation step, where symbols will be
assigned to the most similar cluster.

3.4 Transcription
After the clustering step, the user can request the
actual transcription where a label is assigned to
each symbol according to the label of cluster the
symbol belongs to. We call this process label
propagation. The objective is to propagate the
label of the clusters to the unlabeled symbols.
The setup of the label propagation request has
two options as illustrated in Figure 10:

• Seeds number: The number of the most
populated clusters that will be used as seeds
to propagate labels. This number should
be at least equal to the alphabet size (if it
is known). After setting the seeds number,
the user can visualize the selected clusters
in the cluster bar tool. The default value of
seed numbers is 10 due to many ciphertext
containing digits only (0-9).

• Change class threshold: A value between
0 and 1 determines how easy is to propa-
gate a label through the instances. If the
value is close to 0, the propagation will be
more stable (less changeability), but it can
lead to poor results when the user is tran-
scribing few pages. Contrary, if the value
is close to 1, it will make the propagation
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Figure 10: Label propagation request, showing
the advanced options.

unstable (high changeability) which leads
sometimes to propagation of wrong labels.

The label propagation determines the final
clusters and assigns the labels. The output is the
sets of instances in each cluster, as shown in Fig-
ure 8.

At this moment, the only user intervention
consists in assigning the desired transcription la-
bel to each cluster as shown in Figure 11. All the
symbols in the cluster will be transcribed with
the label assigned to the particular cluster. Note,
however, that each symbol has a value between
0 and 1, representing the degree of belonging to
this specific cluster. This means that if a symbol
has a low value, the system is not confident in la-
belling the correct transcription. Therefore, the
recommendation is to manually transcribe sym-
bols with a low value to increase transcription
correctness.

There is a trade-off between transcription cor-
rectness (precision) and transcription complete-
ness (recall). As illustrated in Figure 12, a low
transcription confidence threshold leads to more
complete transcriptions. On the other hand, this
leads to a higher possibility of errors. Contrary, a
high confidence threshold means that only sym-
bols with a high confidence value will be tran-
scribed, whereas the rest will lack correct tran-
scription. These non-transcribed symbols ap-

pear as ”NONE” (or ’*’) in the transcription file,
and the user shall dedicate more time to manu-
ally transcribe those symbols. In order to make
a fewer intervention with higher accuracy, we
tried to balance this by choosing the threshold
confidence to be 0,5. As the final step, the user
can download the obtained transcription using
the download request with various types of out-
put formats (e.g. text, XML, JSON), see Figure
13.

Figure 13: The downloading interface, where
the user can select different kind of output files.

4 Conclusion

We presented a tool serving as an aid for faster
and more accurate transcription of encrypted
sources with various cipher text alphabets. The
transcription system segments the lines and then
suggests the segmentation of each individual
symbol, which could be corrected by the user.
Then, the segmented symbols are clustered into
groups on the basis of similarity measures and
the symbols in the same cluster receive the same
transcription. The user can edit the suggestions
given by the system in each step, correct the out-
put, and upload a new, improved versions for
further processing.

To the best of our knowledge, there is no simi-
lar tool that allows for the (semi)-automatic tran-
scription of manuscripts with various alphabets
and scripts. We hope that the ITT tool will be
useful for the transcription of the historical and
encrypted sources. The tool is under develop-
ment and we plan to add more image processing
techniques in the different transcription steps to
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Figure 11: Transcription step. a) Line transcription using default cluster labels (numbers). b) The
user changes the cluster labels to the desired transcription. c) Line transcription using the desired
transcription. d) A text file with the line transcription.

Figure 12: In the transcription phase, by chang-
ing the transcription threshold, the symbols with
lower confidence than the given threshold will
be transcribed as ’*’.

enhance the accuracy and reduce the user inter-
vention.
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et Perspectives du Projet HIMANIS pour L’édition
Électronique. Médiévales, 73:67–96.

Hans van Dormolen. 2019. Metamorfoze Preserva-
tion Imaging Guidelines, version 2.0. In Archiving
Conference, pages 9–11.

Proceedings of the 3rd International Conference on Historical Cryptology, HistoCrypt 2020 
59




