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ABSTRACT

Despite the latest advances in Deep Learning, the recogni-
tion of handwritten music scores is still a challenging en-
deavour. Even though the recent Sequence to Sequence
(Seq2Seq) architectures have demonstrated its capacity to
reliably recognise handwritten text, their performance is
still far from satisfactory when applied to historical hand-
written scores. Indeed, the ambiguous nature of handwrit-
ing, the non-standard musical notation employed by com-
posers of the time and the decaying state of old paper make
these scores remarkably difficult to read, sometimes even
by trained humans. Thus, in this work we explore the in-
corporation of language models into a Seq2Seq-based ar-
chitecture to try to improve transcriptions where the afore-
mentioned unclear writing produces statistically unsound
mistakes, which as far as we know, has never been at-
tempted for this field of research on this architecture. After
studying various Language Model integration techniques,
the experimental evaluation on historical handwritten mu-
sic scores shows a significant improvement over the state
of the art, showing that this is a promising research direc-
tion for dealing with such difficult manuscripts.

1. INTRODUCTION

Optical Music Recognition (OMR) [1] is devoted to the au-
tomated transcription of musical documents. As in most
document analysis subfields, OMR has gone through a
revolution [2] during the last decade, spearheaded by the
many advances in Deep Learning. In fact, the latest deep
learning architectures are raising the bar of the state of the
art, boosting the performance on many different topics of
research. In particular, Sequence to Sequence (Seq2Seq) is
a Deep Learning architecture that has been quite success-
ful [3]. It was originally conceived for Natural Language
Processing and applied to neural machine translation and
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related subjects, but it has seen adoption in plenty of other
fields, including Handwritten Text Recognition [4]. Re-
cently, this architecture has also shown its potential for
OMR, outperforming the well-known Long Short Term
Memory Neural Networks with Connectionist Temporal
Classification (BLSTM+CTC). [5, 6].

As in BLSTM+CTC, Seq2Seq models have the advan-
tage that they do not require symbol-level bounding boxes
for training. Instead, the network can learn to identify
symbols in an image from the ground-truth token sequence
alone. This might not be especially relevant when working
with typeset scores, since this information can be provided
with relative ease, but it becomes crucial when no such in-
formation is available or it is very costly to obtain. This
is the current situation for handwritten music recognition
in general [7], but more remarkably so in historical music
scores [8, 9].

Historical handwritten scores are particularly interest-
ing to recognise because there are many of them stored in
archives, churches and libraries throughout. Most of them
have never been transcribed, which makes it important
to devote efforts towards their conservation, transcription,
study and dissemination. However, aside from the afore-
mentioned lack of detailed-annotated data, these scores are
much harder to recognise than regular typeset ones because
of hundreds of years worth of paper degradation, the evolu-
tion of music notation conventions and the irregular nature
of handwriting, which leads to many ambiguities and hard-
to-read passages even for trained humans.

As expected, even the recent Seq2Seq architectures fail
in such scenario. Nevertheless, in the handwritten text
recognition literature, we have found that the incorpora-
tion of a Language Model (LM) can tackle most of these
ambiguities. This technique consists on the application of
a statistical LM trained to identify probable sequences of
tokens, which can then be used to assess the likelihood of
the recognised sequence and perform due corrections in the
case of an unreasonably unexpected output [10, 11]. As in
n-grams, it regulates what sequences are considered most
likely.

Inspired by this idea, in this work we explore the inte-
gration of LMs into a Seq2Seq architecture to minimise
the ambiguities when recognising historical handwritten
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scores. Concretely, we integrate a LM through three dif-
ferent techniques: Shallow, Deep [10] and Candidate Fu-
sion [11]. From the exhaustive evaluation of their perfor-
mance on historical manuscripts, we discuss the advan-
tages and disadvantages of these models, concluding that
they are capable to significantly boost the performance in
the aforementioned domain.

The structure for this document is the following. An
overview of current trends in music recognition is provided
in Section 2. Section 3 is devoted to describing the archi-
tecture. Section 4 describes the adaptation of the input data
for music score recognition, and the datasets employed to
train the LMs. Section 5 summarises experiments per-
formed to evaluate the performance of the various mod-
els. Section 6 is a discussion of the results and section 7
addresses the conclusions and closing words.

2. PREVIOUS WORK

Prior to the Deep Learning “revolution” of the last decades
there was mainly one typical pipeline for OMR, which
consisted on a set of well-established steps [1]: image pre-
processing and staff segmentation, music symbol recogni-
tion, music notation reconstruction and final representation
construction. This, however, changed with the advances
made in Deep Learning, which led to two distinct kind of
approaches.

On the one hand, there has been a “continuist” ap-
proach, where the aforementioned pipeline is more or less
preserved, but one or more steps are implemented with
Deep Neural Models. Examples of these systems can be
found in plenty of works. For example, Calvo-Zaragoza
et al. proposed a new method for staff line detection [12]
through the use of Convolutional Neural Networks; Calvo-
Zaragoza also presented work regarding pixel-level doc-
ument binarization with Convolutional Neural Networks
alongside Fujinaga and Vigliensoni [13]; Hajic et al. [14]
proposed a way to segment musical symbols and classify
them in a single step using U-Nets; Pacha et al. [15] pro-
posed a method to reconstruct the relationships between
segmented symbols through the use of Convolutional Neu-
ral Networks together with a novel graph-based system to
represent them.

On the other hand, there have been attempts to perform
the full OMR pipeline using a single neural-based end-
to-end architecture. The work of van der Wel et al. [5]
is interesting because it is the first precedent of Seq2Seq
for OMR, although it was exclusively designed for typeset
scores. Newer models such as Huang et al. [16] YOLO
darknet53-based architecture seem to have dropped the re-
current aspect while improving on the state of the art in this
context of typeset scores.

In terms of handwritten scores, RNNs are still being
used with good results. Baró et al. [17] used a CRNN
model on handwritten scores, which was the first single-
step baseline that was established for this domain. For
handwritten old scores, Calvo-Zaragoza [9] proposed a
CRNN + CTC model with an n-gram LM for recognis-
ing a specific set of scores in Mensural notation. Lately,

Baró et al. [6] presented a single-step system based on a
Seq2Seq model with an attention mechanism for recognis-
ing handwritten scores in common western notation.

The earliest instance of Language Modelling subject to
a recognition task is [18], which used n-grams in order
to make OCR machines context-aware and therefore more
robust. Since n-grams are fairly easy to implement and
give reasonably good results, they have been used quite
consistently even in recent times [9], although with the
rise of DNN technology other approaches based on neu-
ral LMs have emerged. Indeed, the integration of LMs
into Seq2Seq architectures has also been studied through
various methods that take advantage of RNN-based LMs.
These were introduced for fields within or related to Nat-
ural Language Processing like neural machine translation
[10], handwritten text recognition [11], or speech recogni-
tion [19], although the core idea is equally valid whenever
the final target is any ordered sequence of tokens.

In summary, Seq2Seq-based recognisers are promising
architectures that have shown to benefit from the integra-
tion of LMs. However, while LMs have been applied to
music recognition through n-grams [9], no precedents of
RNN-based LMs along with Seq2Seq OMR architectures
exist. Therefore, we hypothesise that such integration has
the potential to improve the current state-of-the-art results
in OMR, as it has already been observed in other related
fields [10, 11].

3. SEQUENCE TO SEQUENCE-BASED OMR

This section describes the core Seq2Seq system for OMR,
the three LM models and their integration into the archi-
tecture.

As stated before, our architecture is inspired in the
Seq2Seq OMR model described in [5, 6]. The whole ar-
chitecture is depicted in Figure 1, with a reference to the
LM integration step (see the dashed lines). Next, we de-
scribe its properties and its inference process.

3.1 Sequence to Sequence model

Seq2Seq models [3] are architectures capable of convert-
ing arbitrary-length input sequences into arbitrary-length
output sequences. They are an Encoder-Decoder architec-
ture: the input sequence is transformed by the Encoder into
an intermediate representation that the Decoder will use to
generate the output sequence.

A score image, which is treated as a sequence of column
vectors, is fed into a Convolutional Neural Network based
on a VGG19 [20] with its last max pooling layer removed.
Then, the Encoder, a bidirectional stack of Gated Recur-
rent Units (GRU) [21], generates an intermediate represen-
tation comprised of as many feature vectors as the convolu-
tional output. The idea behind this bidirectionality is that,
by processing the input image from both ends of the se-
quence, the model has the information of the full image
for all inference steps and is therefore much more context-
aware.
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Figure 1. Summary of the Seq2Seq model used in this work.

When the Encoder has processed the input image com-
pletely, the Decoder iteratively receives the generated hid-
den state alongside the last predicted token in the sequence,
which produces the next output token until a special “end”
token is produced. In order to assess the relevance of each
of the hidden state’s vectors, a location attention mecha-
nism (Chorowsky et al. [22]) weights each vector in the
hidden state, with the idea of making the model capable of
“focusing” on specific regions of the input image.

3.2 Language Model Integration

LMs are systems that model the probability distribution of
possible tokens at time step t conditioned by predictions
at time steps 1 to t − 1. Many language modelling tech-
niques exist throughout such as n-grams [9], but RNNs
are known to be a superior choice overall [23], thus this
work focuses on a single LM architecture consisting on
four stacked GRUs.

LM integration with Seq2Seq models has been explored
through various approaches aiming at improving recogni-
tion performance. Three of such approaches have been ex-
plored in this work: Shallow, Deep [10], which are among
the most used methods, and Candidate Fusion [11], which
showed good performance on handwritten text recognition.

Figure 2 shows a depiction of these methods and the fol-
lowing paragraphs are devoted to describing them in detail.

3.2.1 Shallow Fusion (Gulcehre et al. [10])

This technique was devised in the context of neural ma-
chine translation. It is a very intuitive system in which the
final output is obtained by summing log probabilities from
the LM and the Seq2Seq model. Let P , PCL and PLM be
the probability distribution of tokens predicted by the full
model, the Seq2Seq component and the LM respectively,
and let λ be an arbitrary hyperparameter set on training,
Shallow Fusion is implemented as

(1)logP (yt|y1 . . . yt−1) = logPCL (yt|y1 . . . yt−1)

+ λ logPLM (yt|y1 . . . yt−1) .

3.2.2 Deep Fusion (Gulcehre et al. [10])

This method comes from the same context as Shallow Fu-
sion and builds further on its idea by merging both LM
and Seq2Seq’s outputs in a more fine-grained manner. Es-
sentially, the λ parameter is substituted by a coarse gating
mechanism and the final output is obtained using more in-
formation from across the model. Let σ be the sigmoid
activation function andWDF and bDF be learnable param-
eters, Deep Fusion is implemented as

(2)P (yt|y1 . . . yt−1) = softmax(WDFh
DF
t + bDF ).

The Deep Fusion hidden state hDF
t is obtained concatenat-

ing the Seq2Seq context vector ct, the Classifier’s hidden
state hCL

t and a gated version of the LM’s hidden state, as
seen in

(3)hDF
t =

[
ct;h

CL
t ; gth

LM
t

]
.

The coarse gate mechanism gt is in its turn computed as

(4)gt = σ(vTg h
LM
t + bg)

where vg and bg are learnable parameter vectors. We use
the implementation seen in [24], which does not feed the
previously inferred character in equation 3.

3.2.3 Candidate Fusion (Kang et al. [11])

This method was shown to be more suitable than Deep and
Shallow fusion in the context of Handwritten Text Recog-
nition. The core idea behind it is to reinforce the decision
process of the Seq2Seq Decoder at each output time step
by feeding it the output of the LM, so that both pipelines
can be leveraged accordingly. It can be defined as

(5)ht = Decoder(
[
ct, yt−1, p

lm
t−1

]
, ht−1)

where ct is the current context vector, yt−1 is the previous
prediction and plmt−1 is the probability distribution obtained
by the LM with the output at the previous time step.

Some comparisons can be drawn among all three meth-
ods both from their literature and their architectures. The
main selling point for Shallow Fusion is that it adds very
little complexity into the model, which is compensated by
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Figure 2. Dataflow graph depicting every integration method that was implemented

the fact that it requires hyperparameter tuning for its λ
value and the impossibility to modify said value depending
on the LM output. Deep Fusion poses as a more flexible
model that can learn to weight the importance of the out-
put of the LM, at the cost of incorporating further layers
into the model. Finally, Candidate fusion boosts the com-
munication between the LM and the Seq2Seq component
and produces an output obtained not by linearly combin-
ing both outputs at the final inference step, but rather by
letting the Seq2Seq combine the criteria of visual features
and Language Probabilities. However, this might involve
more training for the model to become acquainted with the
output of the LM.

All these methods require both the classifier and the LM
to be properly pretrained for successful integration. More
detail is provided in section 5.

4. DATASETS

This section describes the adaptation of the data for music
score recognition using the Seq2Seq architecture.

a)

b)

c)

Figure 3. Sample measures from the SM, SO and HW
datasets respectively.

4.1 Serialising Input Data

Input music measures are annotated at a musical primitive
level. This means that notes are not full tokens by them-

selves, but are instead divided into their core elements:
noteheads with their pitch and type (black or white), stems
with their orientation, flags, beams and so on. There are
also some tokens which are atomic, such as time signa-
tures, dots, accidentals and rests, and some twin tokens
that require opening and closing, such as beginning and
end segments of a slur or a beam.

The epsilon token is a special one used to separate
groups of primitives belonging to different symbols placed
in adjacent columns. Thanks to this, 2D music notation
can be serialised into a flat one-dimensional array of tokens
that Seq2Seq can work with. An example of this format is
given in Figure 4.

4.2 Training Datasets

Various datasets of differing characteristics were used to
train the models, each of them for a specific task (more de-
tail on section 5). Their description is shown below along
with some examples (See Figure 3). Note also that, when
referring to synthetic datasets, we imply the musical con-
tent of these scores is randomly generated (thus we assume
that these datasets are, except for some trivial examples,
disjoint).

Synthetic Modern (SM): Dataset comprised of poly-
phonic measures of synthetic typeset scores. Most usual
music symbols can be found: G, C and F clefs, accidentals,
note components, time signatures and barlines, to name a
few. An example is shown in Figure 3a.

Synthetic Old (SO): A synthetic dataset with mono-
phonic measures distorted with typical paper degradation
effects. Similar to SM in terms of the range of tokens
present. An example is shown in Figure 3b.

Handwritten (HW): A compilation of measures of
real handwritten scores from a church in Barcelona
called Santa María del Pi. They were composed by its
Kapellmeister Pau Llinàs back in the 18th century for
choral interpretation during liturgical events. An example
is shown in Figure 3c.

Adjusted Synthetic Modern (ASM): A reduced ver-
sion of the SM dataset (see section 5).
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barline_light.noNote, epsilon, sharp.S4, epsilon,

noteheadBlack.S4, steamQuarterHalfDown.noNote, epsilon,

dot.noNote, epsilon, noteheadBlack.S4, flag8thDown.noNote,

epsilon, noteheadBlack.S3, steamQuarterHalfDown.noNote

epsilon, noteheadBlack.S3, steamQuarterHalfDown.noNote,

epsilon, barline_light.noNote

Figure 4. Sample measure from the HW dataset with its ground truth annotation. Bounding boxes indicate the boundaries
of what each “atomic” token is, dotted arrows indicate epsilons in the transcription and small vertical arrows indicate
symbols that are placed together between epsilons (or rather, primitives belonging to the same symbol).

5. EXPERIMENTS

The evaluation of all proposed LM integration methods
was performed under two training strategies, characterised
by the dataset which was used to pretrain the LM. Regard-
less of the LM dataset, training parameters and strategies
were the same altogether. For the sake of reproducibil-
ity, Table 1 summarises these hyperparameters and charac-
terises the various datasets employed throughout.

Since the goal for our work is to improve results on
handwritten scores, a training strategy was conceived to
gain the benefits of extra data from synthetic scores while
preventing optimisation towards them. All integration
methods tested hereby require both the LM and the recog-
niser to be properly pretrained. Thus, we first trained a
LM with an unmodified version of the SM dataset. Since
we were aware that this dataset had many tokens that were
not present in the HW one, we created a version of the SM
dataset comprised of the 66% of samples which contained
a higher ratio of tokens also present in the HW one, which
we will refer to as ASM, and we trained another LM with
it. The idea was trying to “de-noise” the output of the LM
in HW scores so that its predictions had a higher level of
confidence.

In both cases, we trained the Seq2Seq classifier with the
unmodified SM dataset until the model did not improve
for 30 epochs. We then joined both models and trained
them using a Curriculum Learning strategy: initially, 90%
of samples in the training mix were from the SO dataset
and the remaining 10% from the HW dataset. Every 10
epochs the proportion of SO scores decreased by 10% over
the total, down to 10%. Since the number of SO samples
is much higher than the number of HW samples, the latter
were duplicated randomly to match the number of samples
from the former. The incorporated image augmentation
system for training was used to prevent overfitting on in-
put images. Note also that experiments with homogeneous
datasets were avoided since they were seen to decrease per-
formance in earlier tests.

Validation and test were performed using HW dataset
samples. Lastly, for Shallow Fusion we used a λ = 0.1
after testing three instances of the full architecture on the
SM dataset and keeping the value that gave better output
results.

6. EXPERIMENTAL RESULTS

This section is devoted to explaining the results obtained
with the aforementioned training strategies. This is, Shal-
low, Deep and Candidate Fusion using a LM pretrained
with the SM or the ASM Dataset. Numerical results are
provided using the Symbol Error Rate (SER(%)) metric,
which is defined as

SER(%) =
I +R+ S

T
· 100 (6)

where I , R and S are the number of token insertions, re-
movals and substitutions in order to obtain the ground truth
sequence from the predicted sequence and T is the length
of the ground truth sequence. Lower values mean better
results.

6.1 Quantitative Results

Table 2 shows the results obtained from all of our experi-
ments. Given the fact that Seq2Seq model pre-training on
the SM gave results well below 1% SER(%), we believe it
is not worth to experiment with the addition of a LM when
transcribing synthetic samples. Instead, we show test re-
sults using the training strategy in 5 and two baseline mod-
els: the BLSTM + CTC model and the LM-less Seq2Seq
model [6]. All results are obtained using the HW test par-
tition as input.

Best baseline results are 56.20% and 31.79% of
SER(%) for BLSTM + CTC and Seq2Seq respectively.
However, authors comment in the paper that there might be
overfitting in the best result of the former model because
training was done only with handwritten samples. When
training with a mix of synthetic and real data, the authors
state an increase from 56.20 SER(%) to 74.40 SER(%).

Our proposed models obtained mostly better results
than those from the Baseline. Candidate and Deep Fusion
are the better performing architectures, with best results (in
bold in Table 2) between 5 and 6 SER(%) points below the
baseline. Shallow Fusion obtained best results on par with
the baseline.

The general pattern is that earlier iterations perform
worse than latter ones. There are a few exceptions, which
are the SM version of Deep Fusion and the ASM version
of Shallow Fusion, which obtain better results in interme-
diate phases. This might be caused by the fact that the
model might be entering local minima, which it may leave
after further epochs.
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Table 1. Reproducibility table. The first segment is devoted to training hyperparameters. The second one to showing
relevant information about the various datasets that have been employed.

Parameters All Training Data SM SO HW

Optimiser Adam Train Samples 18,900 17,872 147
Learning Rate (LR) 3 · 10−4 Valid Samples 6,300 5,957 49
LR Checkpoints @ 20, 40, 60, 80, 100 epoch Test Samples 6,300 5,957 49
LR Sigma 0.5 Avg. Line Length 22 15 17
Loss Function Cross-Entropy Classes 109 123 62

Table 2. Summary of performed experiments and results in SER(%) (Lower is better). The table header indicates the
proportion of Synthetic scores against Handwritten scores. The “Pre” column indicates the LM pretraining dataset.

Model Pre 90-10 80-20 70-30 60-40 50-50 40-60 30-70 20-80 10-90 0-100

CNN + BLSTM [6] - - - - - - - - - - 56.20
Seq2Seq Baseline [6] - 60.03 - - 66.20 - 43.38 - 37.86 34.56 31.79

Seq2Seq + Deep LM SM 31.30 28.52 29.87 29.37 28.05 26.11 27.74 27.37 28.32 -
Seq2Seq + Shallow LM SM 36.79 32.91 33.27 33.36 31.76 32.75 30.87 30.72 30.58 -
Seq2Seq + Cand. LM SM 33.50 28.93 28.64 28.08 27.48 26.82 27.23 26.61 25.80 -

Seq2Seq + Deep LM ASM 28.24 29.53 27.82 27.36 25.95 27.21 25.63 25.15 25.54 -
Seq2Seq + Shallow LM ASM 35.34 34.75 36.67 32.42 34.23 34.52 33.76 33.79 35.13 -
Seq2Seq + Cand. LM ASM 32.07 28.61 28.71 27.55 27.71 27.20 27.77 28.04 25.73 -

Another general remark is that models pretrained with
the ASM dataset seem to perform slightly better, with a
0.96 SER(%) improvement in Deep Fusion and a 0.07 one
in Candidate Fusion, although this difference could be also
attributed to optimisation since it is not substantial.

6.2 Discussion

Numerical proof is found that a LM does help improve
recognition results in historical handwritten music scores,
especially when using Candidate or Deep Fusion. How-
ever, we agree that it is not easy to assess their differences
outside of a subjective qualitative study.

Expectedly, LM lowers the presence of certain syntactic
mistakes (for instance, tokens that require a specific suc-
cessor) or provides information on tokens that appear fre-
quently. There is, however, a set of possible recognition
mistakes that the LM was initially presumed to be able to
correct which we found it unable to. The most relevant was
enforcing the beat of the bar that is being recognised. It can
be argued that at no point in the measures that comprise the
dataset the time signature is indicated aside from its very
beginning, but since the training dataset is written exclu-
sively in a 4/4 time signature, the LM might have adapted
to measures adding up to a beat value. Perhaps this is due
to the purely statistical approach taken with the LM, so
some postprocessing (based on music notation rules) may
be needed for approaching such consistency checks.

Other “artistic” aspects of music cannot be corrected
with the LM, such as the pitch and duration of notes, which
can only be predicted up to a certain point based on its
frequency of appearance. This was expected and, unsur-
prisingly, most noteheads have been predicted on the most
common range within the original score.

A final remark is that we have observed that the adjust-
ment strategy attempted with the ASM dataset showed no
significant improvement. Instead, in order to better align
training and test datasets without overfitting, more data
should be used for training. A common issue when trying
to collect data for this purpose is that most common tran-
scriptions of old music adapt their notation style to current
trends, which defeats the purpose of using such data for
recognition.

7. CONCLUSION

This work successfully explored the integration of LMs
into a Seq2Seq OMR architecture for recognising histor-
ical handwritten scores. An improvement of around 6
SER(%) points from the baseline was obtained when using
a Deep Fusion mechanism, lowering it to 25.15 SER(%).
This was achieved by reinforcing the model’s capacity
to keep consistency on predicted sequences. Thus, we
can conclude that the integration of language models into
OMR Seq2Seq architectures is a promising research direc-
tion worth exploring.

From the results we obtained, we propose some future
work avenues. Since language models do not seem to en-
force key global aspects like beat, a grammar-based parser
might be implemented on top of the neural model in order
to correct syntactical mistakes. This could use the proba-
bility distribution produced by the neural model to weight
all possible corrections. Another improvement could be
to use the extra information the LM provides in order to
reinforce specific steps within the model, such as the at-
tention mechanism. Perhaps this preemptive information
might point the model where to look at in the score image.
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[7] J. Hajič and P. Pecina, “The MUSCIMA++ dataset
for handwritten optical music recognition,” in ICDAR,
vol. 1, 2017, pp. 39–46.

[8] A. Pacha and J. Calvo-Zaragoza, “Optical music recog-
nition in mensural notation with region-based convolu-
tional neural networks,” in ISMIR, 2018, pp. 23–27.

[9] J. Calvo-Zaragoza, A. H. Toselli, and E. Vidal, “Hand-
written music recognition for mensural notation with
convolutional recurrent neural networks,” PRL, vol.
128, pp. 115–121, 2019.

[10] C. Gulcehre, O. Firat, K. Xu, K. Cho, L. Barrault, H.-
C. Lin, F. Bougares, H. Schwenk, and Y. Bengio, “On
using monolingual corpora in neural machine transla-
tion,” arXiv preprint arXiv:1503.03535, 2015.

[11] L. Kang, P. Riba, M. Villegas, A. Fornés, and
M. Rusiñol, “Candidate fusion: Integrating lan-
guage modelling into a sequence-to-sequence hand-
written word recognition architecture,” PR, vol. 112,
p. 107790, 2021.

[12] J. Calvo-Zaragoza, A. Pertusa, and J. Oncina, “Staff-
line detection and removal using a convolutional neural
network,” MVA, vol. 28, no. 5-6, pp. 665–674, 2017.

[13] J. Calvo-Zaragoza, G. Vigliensoni, and I. Fujinaga,
“Pixel-wise binarization of musical documents with
convolutional neural networks,” in MVA, 2017, pp.
362–365.

[14] J. Hajic Jr, M. Dorfer, G. Widmer, and P. Pecina, “To-
wards full-pipeline handwritten omr with musical sym-
bol detection by u-nets.” in ISMIR, 2018, pp. 225–232.

[15] A. Pacha, J. Calvo-Zaragoza, and J. Hajic Jr, “Learn-
ing notation graph construction for full-pipeline optical
music recognition.” in ISMIR, 2019, pp. 75–82.

[16] Z. Huang, X. Jia, and Y. Guo, “State-of-the-art model
for music object recognition with deep learning,” Appl.
Sci., vol. 9, no. 13, p. 2645, 2019.

[17] A. Baró, P. Riba, J. Calvo-Zaragoza, and A. Fornés,
“From optical music recognition to handwritten music
recognition: A baseline,” PRL, vol. 123, pp. 1–8, 2019.

[18] C. Y. Suen, “n-gram statistics for natural language un-
derstanding and text processing,” PAMI, vol. 1, no. 2,
pp. 164–172, 1979.

[19] T. Hori, J. Cho, and S. Watanabe, “End-to-end speech
recognition with word-based rnn language models,” in
SLT, 2018, pp. 389–396.

[20] K. Simonyan and A. Zisserman, “Very deep convo-
lutional networks for large-scale image recognition,”
arXiv preprint arXiv:1409.1556, 2014.

[21] K. Cho, B. van Merriënboer, C. Gulcehre, D. Bah-
danau, F. Bougares, H. Schwenk, and Y. Bengio,
“Learning phrase representations using RNN encoder–
decoder for statistical machine translation,” in EMNLP,
2014, pp. 1724–1734.

[22] J. K. Chorowski, D. Bahdanau, D. Serdyuk, K. Cho,
and Y. Bengio, “Attention-based models for speech
recognition,” in NeurIPS, vol. 28, 2015, pp. 577–585.

[23] T. Mikolov, M. Karafiát, L. Burget, J. Černockỳ, and
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