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Abstract

Low resource Handwritten Text Recognition (HTR) is a
hard problem due to the scarce annotated data and the very
limited linguistic information (dictionaries and language
models). For example, in the case of historical ciphered
manuscripts, which are usually written with invented alpha-
bets to hide the message contents. Thus, in this paper we
address this problem through a data generation technique
based on Bayesian Program Learning (BPL). Contrary to
traditional generation approaches, which require a huge
amount of annotated images, our method is able to gener-
ate human-like handwriting using only one sample of each
symbol in the alphabet. After generating symbols, we create
synthetic lines to train state-of-the-art HTR architectures in
a segmentation free fashion. Quantitative and qualitative
analyses were carried out and confirm the effectiveness of
the proposed method.

1. Introduction

Handwritten Text Recognition (HTR) systems are based
on deep learning, and require a significant amount of an-
notated data to reach a satisfactory performance. However,
such systems suffer in low resource scenarios. For exam-
ple, data scarcity is a common problem when dealing with
manuscripts with uncommon scripts or alphabets.

Historical ciphered manuscripts [16] is a typical case of
low resource handwritten text, where invented alphabets re-
place the known ones to encrypt the text and hide the con-
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tent from undesired readers. Nowadays, many handwrit-
ten ciphered documents exist in archives consisting of mil-
itary reports, diplomatic letters, records of secret societies,
etc. Recognizing and extracting the hidden information is of
great interest from the point of view of cultural heritage and
history. However, a manual transcription and cryptoanal-
ysis is costly both in terms of time and human resources.
Therefore, the whole process needs for automatic tools.

Because of the absence of context information in terms
of language models and dictionaries, the automatic decryp-
tion of historical ciphered manuscripts is separated in two
stages: transcription (HTR) and decipherment. The tran-
scription step, which is the goal of this study, is a hard task
due to the scarce annotated data to train, the paper degra-
dation (typical in historical documents), and the changing
alphabet across different ciphered manuscripts.

A typical solution to the lack of data is to create more ex-
amples for training via data augmentation or synthetic data
generation. But these techniques [19] require training data.
Moreover, and contrary to humans, deep learning models
are known to fail on compositional nature of generation.
Here by compositional we refer to the generation of more
complex items from simpler components/primitives, a pro-
cess that humans can successfully do from just a single ex-
ample [15]. Furthermore, generating data that covers the
distribution of an alphabet using only few examples of each
symbol is an hard task for deep learning models.

In this work, we bridge between generation by composi-
tionality and data scarcity by generating realistic samples to
serve as ground truth to train HTR models. Concretely, our
work is based on Bayesian Program Learning (BPL) [15],
which uses simple programs to create more complex struc-



tures compositionally (i.e. to build rich concepts from sim-
pler primitives/programs). However, BPL [15] was used
to generate perfectly segmented symbols rather than se-
quences. This poses an important limitation for handwrit-
ten text recognition, because text is a sequence of joined
characters, especially in cursive handwriting. To overcome
this limitation, we propose to create realistic text lines from
the BPL generated symbols. These symbols are generated
starting with one single example of each symbol in the al-
phabet. As a result, the generated handwritten text lines can
be used to train data-hungry HTR deep learning models for
manuscripts with rare alphabets. As a study case, we use the
Borg cipher, a historical ciphered manuscript, written with
an invented alphabet and containing many touching sym-
bols, as shown in Figure 2. The goal is to transcribe such a
difficult text with the minimal user intervention (in terms of
labelled data).

As far as we know, this is the first work that effectively
uses BPL for Handwritten Text Recognition, as an example
of application of BPL for sequence recognition. The contri-
butions of our work can be summarized as follows:

• We use BPL as a realistic symbol generation technique
for handwriting recognition. The quantitative, qualita-
tive results and human studies demonstrate its effec-
tiveness.

• We reduce the cost of annotation and human labor by
automatically generating handwritten text lines by us-
ing just a single example per alphabet symbol.

• We experimentally show that the generated data ben-
efits HTR models. Indeed, out approach outperforms
the current state of the art on cipher recognition. This
paves the way for it to be applied for other low resource
manuscripts.

The rest of the paper is organized as follows: related
work is overviewed in Section 2. Then, BPL for handwrit-
ing generation is described in Section 3. Section 4 describes
how BPL can be successfully used to generate textlines with
high but realistic handwriting style variability. Section 5 an-
alyzes the experimental results, whereas Section 6 presents
the conclusions and future work.

2. Related Work
2.1. Handwritten Ciphered Text Recognition

Handwritten ciphered text recognition is related to the
more general problem called HTR. The difference is that
for ciphers, the alphabet is frequently unknown. In HTR,
most of the existing approaches focus on well-known scripts
[11, 14] using Convolutional Neural Networks (CNN) and
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Recurrent Neural Networks (RNN). These methods, despite
their good results in HTR, cannot be used for ciphered
text recognition because of the changing alphabets across
ciphers, and the scarce annotated data for training. In-
deed, an attempt to recognize ciphers based on RNNs [7]
showed that results were satisfying only when enough la-
beled data from the same cipher alphabet was available.
Some learning-free approaches have been proposed to cope
with the lack of annotated data in ciphers [1, 22]. These
methods are based on symbol segmentation and clustering,
but their performance drops when symbols are difficult to
segment (e.g. touching symbols). Lately, few-shot learning
approaches for text recognition [23, 20] have been intro-
duced to deal with the few annotated data while keeping a
good performance. They propose to transform the recog-
nition problem into a matching problem, where the user is
asked to provide only one or few examples of the alphabet,
instead of annotating full textlines. Given those ”shots”, the
system must output the transcribed text based on a similar-
ity matrix between the provided alphabet and the text lines.

2.2. Data Augmentation and Generation for Hand-
written Text

Data augmentation and generation are suitable solutions
for deep learning models when data is limited. Classic
data augmentation techniques used some image manipu-
lation tricks [19], such as geometric transformations (e.g.
rotations, resizing, warping), random erasing, color trans-
formations, font thickness, flipping, etc. However, these
methods need training data, and the augmented text is mod-
erately realistic.

In the case of online handwriting, trajectory reconstruc-
tion approaches were introduced based on the kinematic
theory of human movements [3, 17, 18] or by recurrent
neural networks [10]. However, online information (e.g.
stroke trajectory, speed, pressure) is not available in histori-
cal manuscripts, where only text images are available. Gen-
erative adversarial networks [9] and style transfer [8, 12]
methods were utilized to generate the handwritten text from
images. In [5], an approach to generate handwritten char-
acters from an existing printed font was proposed. Also, in
[13], cursive Latin words were generated conditioning on
a content (text) and a writing style. But these approaches
need a huge set of annotated data to be trained on for each
particular handwriting style, which is not available for low
resource applications. It is true that there are some attempts
to use these techniques for few shot by using only few sam-
ples of each character class [2, 4, 6, 21]. Nonetheless, the
results are still moderate in terms of quality and most of the
methods are focusing on font translation while keeping the
same text shape as the example that are conditioned on.

In this work, and to overcome the above limitations, we
explore the use of BPL [15] to mimic the human ability of
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Figure 1: (A) A generative model of handwritten ciphered symbols. (i) From a library of color coded primitives, new types are
generated, (ii) combining these subparts, (iii) to further generate parts, (iv) and then to define simple programs by combining
parts with relations. (v) Running these programs new tokens are generated, (vi) which are then rendered as raw images. (B)
An image along with their log-probability scores for the five best programs. Parts are distinguished by color, with a colored
flat back indicating the beginning of a stroke and a black arrowhead indicating the end.

generating new unseen characters, while maintaining high
quality and shape variation, from a single example.

3. Bayesian Program Learning (BPL)

Human beings have the ability to learn new concepts
from a single example. Contrary, deep learning-based meth-
ods usually require tens or hundreds of examples to reach
a human-level performance on recognition, generation, or
parsing tasks. Thus, the generation of handwritten data
from few examples is still challenging. The Bayesian Pro-
gram Learning (BPL) introduced in [15] showed a great
ability to learn rich concepts compositionally and generate
new examples from a single unseen concept, making it an
ideal solution for the data scarcity problem.

As it can be appreciated from Fig. 1-A, BPL works in a
hierarchical manner. At the highest layer, there are two lev-
els called type level and token level (the dashed line in the
middle). Type level consist of 4 steps which are sampling

primitives, sampling sub-parts, sampling sub-part sequence
and sampling relation. In BPL, primitives are defined as the
smallest stroke in unit and time. More specifically, given
a held out set of data, BPL fits a Gaussian Mixture Model
(GMM) on the normalized strokes according to their length
and time information. Each of the center of GMM cluster is
treated as primitives and used as a starting point.

After obtaining the primitives, the number of primitives
is sampled with P (κ), where the distribution is obtained
according to held out data. Then, the number of sub-
parts with P (ni|κ) and sample sub-parts sequences with
P (Si|S1, S2, ..., S(i1)) is sampled to decide which prim-
itives should have relations, i.e. whether they should be
combined into parts. Finally, BPL samples relations given
sub-part sequence P (Ri|S1, S2, ..., S(i1)) where there are
four relations defined a priori for how the two strokes can be
attached together. The two strokes can be attached “along”,
“at start”, “at end”, or “independent”. All of the mentioned
parts are combined with conditional probability to a pro-



gram, P (ψ)

P (ψ) = P (κ)

κ∏
i=1

P (Si)P (Ri | S1, . . . , Si−1) (1)

The token level parameters, referred as θ, consist of
global re-scaling and a global translation of the center of
mass of each sub-part sequence. Moreover, BPL adds vari-
ance to the created types in terms of start location, trajec-
tory, affine transformation so that the generated samples
are as unique as possible. Token level parameters are dis-
tributed as P (θ|ψ) and the end product of token level is
P (I|θ).

At the inference phase, it produces a new image I(2)

given an image I(1). First, BPL reduces the line width of
an image to one pixel and then runs a random walk algo-
rithm to collect at most 10 parses of the I(1). An exam-
ple of these parses can be found in Fig. 1-B. These parses
are sorted according to log-probability of the random walk
search and the most likely one is taken as the starting point.
Afterwards, a new image is generated according to follow-
ing formulation:

P
(
I(2), θ(2) | I(1)

)
=

K∑
i=1

N∑
j=1

wi

N
P
(
I(2) | θ(2)

)
P
(
θ(2) | ψ[ij]

) (2)

One of the main advantages of using BPL as a data aug-
mentation is that it does not require huge training samples
but more importantly, domain knowledge is minimized. For
example, BPL can be trained on the Omniglot symbols,
and later used on the Borg cipher symbols. Secondly, BPL
can generate new exemplars from a single unseen example,
whereas deep models are incapable of for the moment. Fi-
nally and most importantly, the output images have enough
variability while keeping the main structure to be used as
a training set. In all of our experiments, we have used
the code to generate each symbol. The parsing includes a
’fast mode’ option which skips the expensive procedure of
fitting the strokes to the details of the image.

4. Handwritten Symbol Generation with BPL

In this section, we present the generation of cipher sym-
bols using BPL. We quantify the effectiveness of the method
and include a discussion of qualitative and human study re-
sults.

https://github.com/brendenlake/BPL

Figure 2: Two lines images from the Borg cipher. The im-
age shows that there are frequent touching symbols in this
manuscript, even between different lines.

4.1. Dataset

Borg is a 408 pages ciphered manuscript belonging to
the 17th century. Its alphabet is composed of abstract, es-
oteric symbols, Roman letters and some diacritics. Fig. 2
illustrates this handwritten text. As it can be seen, symbols
are hard to segment, mainly because of the frequent sym-
bol overlapping not only between consecutive symbols, but
also between the different lines. Following related works
[1, 20], we have used 273 lines extracted from 16 pages for
testing. Note that a pre-processing step (binarization and
projections) has been applied to obtain those lines from the
full pages manuscripts. For data generation, we manually
cropped 10 samples of each class in the alphabet.

4.2. Data generation results - Symbol Level

In this section, we show the results of the BPL generation
of Borg symbols and evaluate them according to a human
study.

4.2.1 Qualitative Results

We provide two types of qualitative results. In Fig. 3-A,
samples are generated using the top-right character. On the
other hand, in Fig. 3-B, any example belonging to the same
class but the top character can be used for generation. In
other words, the generated examples of Fig. 3-B are not
conditioned on the top character, rather it is conditioned on
different examples from the same class of the top one.We
will call the former in-sample, and the latter out-of-sample
examples.

As it can be seen for the in-sample generation from the
Fig. 3-A, BPL mostly keeps intact the symbol structure
while introducing variety. For example, from the first col-
umn, it can be seen that some of the parts where it looks like
“o”, BPL transforms it into a more open “o” (3rd row, 3rd
column) and transforms the connection of lines. Moreover,
it can change the line thickness and make the lines shorter or
curved, see 3rd column of Fig. 3-A. These type of changes
are compatible with human handwriting variability.

From the out-of-sample examples in Fig. 3-B, we can
observe a much higher range of variations. The increase in
variations is shown in both levels of type and token. At the
token level, we can detect more diversity in affine transfor-
mations such as rotation (in third column of figure), scaling

https://github.com/brendenlake/BPL
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Figure 3: Generating new exemplars given one ciphered symbol. (A): Con-
ditioning on the same symbol (in-sample) shown on top of the nine-cipher
grids. (B): Conditioning on a different example of the same class (out-
sample). The nine-character grids were generated by BPL.
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Figure 4: Result of the AMT human study
where subjects are asked to match between
real and generated images. The consensus
seen in the x-axis represents the amount of
agreement among subjects.

(third row of figure), translation in terms of the center. We
also see a lot more diversity within symbols compared to
the in-sample examples.

Apart from being realistic and introducing variety, what
BPL offers cannot be obtained with other data generation
techniques. Since BPL has used the actual human hand-
writing distribution, it is quite hard to reach a similar real-
ism with any other ad-hoc generation technique.

4.2.2 Human Evaluation

Aside from providing qualitative results, we want to quan-
tify the effectiveness of BPL in terms of how similar it is
to its original examples. However, quantifying similarity in
handwritten text is difficult. For this reason, we have run
a human study following simplified version of our task for-
mulation: Given an original symbol (query) and 5 options,
human subjects have to choose the option that matches the
query. In the experiment setup, 4 out of 5 options are BPL
generated and a final option is “Not Sure”.

We set up 2 experiments to quantify the “realis-
tic”generation: in-sample and out-of-sample generation.
Both experiments follow the same procedure in which we
provide Amazon Mechanical Turk (AMT) workers a sin-
gle symbol (a query) and ask them to find the most visually
similar item to the query. In the first experiment, we pick
the options generated from the query while for the second
experiment options can be generated from any symbol but
the query. The former experimentation will provide how
accurate BPL is within in-sample distribution and the latter
is how well it can match to the out-of-sample distribution.
For each class, we have selected 5 original symbols and 2
BPL generated ones, giving us 10 task per symbol. Both
experiments are set up using AMT, in which 5 workers had
to answer each question. In total, for each experiment we
have 210 questions and 1050 answers from 5 different hu-

man subjects. The results of these experiments are shown in
Fig. 4. We show the accuracy vs at least how many subjects
chose the correct option. In other words, we plot what is the
accuracy of at least n workers choosing the correct option.
As it can be deduced from Fig. 4, from at least 5 workers
to at least 3 workers, there is a steady increase. Moreover,
it is quite remarkable to observe that an ad-hoc method that
requires no training can still result in 22.9% or 16.7% accu-
racy for all workers correctly predicting.

However, we choose to focus on at least 3 workers cor-
rectly predicting because of the majority voting paradigm.
Thus, according to at least 3 workers choosing correct op-
tion, we get 74.3% and 72.2% accuracy for in-sample and
out-of-sample. The first conclusion is that we have quanti-
fied our method’s accuracy and it is reasonably high given
that the probability of randomly selecting correct option is
20%. The second conclusion is that there is no much differ-
ence between in-sample and out-of-sample accuracy, only
2.1%, which is encouraging considering the training proce-
dure of our models. Finally, we can see that if we relax the
assumption of majority voting, we are getting 100% accu-
racy for both experiments. This is quite promising since we
have at least 2 human subjects that can match BPL samples
to the query in all tasks in both types of experimentation.

5. Impact of Data Generation for HTR

In this section we describe the generation of text lines,
the HTR methods, and the evaluation on cipher text recog-
nition.

5.1. Data Generation results - Line Level

Most HTR methods recognize the text at word or line
level, because it is hard to segment it into isolated charac-
ters, which is also the case of most cipher manuscripts. As a
consequence, segmenting symbols and classifying symbols



Line created from the BPL generates symbols (BPLL
set)

Line created from the real few symbols + applied
transformations (DAL set)

Line created from mixing the above ones.

Figure 5: Examples of the three sets of lines, created by
concatenating the symbols.

is not a feasible option. For this reason, we have created
text lines to be used for training the HTR. Concretely, we
take the symbols generated by BPL, and horizontally con-
catenate them in a manner as much realistic as possible. We
set the space between characters, chosen randomly between
0 and 30 pixels, and we rotate each character randomly be-
tween −5 and 5 degrees. Also, we add some artifacts to
the upper part and lower part of the line. The synthetic text
lines created from the BPL generated symbols are called the
BPLL set.

For comparison, we also applied some data augmenta-
tion techniques (rotation, resizing, random thickness,...) on
the real symbols and concatenated them to generated syn-
thetic lines from the real symbols. We denote this set as
DAL. Moreover, we created another set of lines by ran-
domly mixing symbols from the two previous sets, resulting
in three different sets of lines. Few samples from those lines
are shown in Fig. 5. As it can be seen, some noise was in-
troduced to make the lines as similar as possible to the real
ones. The training of the HTR models can be done using
one of the created sets, and also by mixing sets. Thus, we
used the following two forms of mixing:

• Homogeneous Lines (HomL): composed of lines
from the BPLL set + lines created from the DAL set.
In other words, we do not mix in the same line real
symbols with BPL generated symbols and vice versa.

• Heterogeneous Lines (HetL): composed of lines cre-
ated from the mixed symbols (generated by BPL and
data augmentation) + lines from the DAL set. In other
words, we mix real symbols with BPL generated sym-
bols while generating a line and vice versa.

It is to note that we used three scenarios in this study:
10 samples, 5 samples and 1 sample. That means that we
start with only 10, 5, or 1 example(s) of each of the Borg
symbols, respectively, to perform the data augmentation and

the BPL generation in order to create the synthetic data from
a low resource alphabet.

5.2. HTR models and Evaluation Metric

After generating the synthetic lines, a HTR model can be
trained for recognition. For this, we consider two options:
A supervised model based on sequence to sequence with
attention [14] and a few-shot learning based model [20].

Seq2Seq for HTR The first method follows most of the
HTR models, where the goal is to learn a mapping func-
tion from a line image X to a text Y . It is an attention
based sequence-to-sequence model, proposed in [14] and
composed of three main parts: an encoder includes a CNN
and a bi-directional Gated Recurrent Unit (GRU), an at-
tention mechanism and a decoder constituted from a one-
directional GRU. Thus, given a line image as an input, the
recognition is done character by character using the atten-
tion mechanism to produce the output text. This model
showed competitive results in handwritten recognition with
a huge amount of data using various Latin manuscript
datasets for evaluation.

Few-shot for HTR Since we are using one or few ex-
amples of each Borg symbols to generate the data (a few-
shot generation), using a few-shot model for the recognition
could be suitable. Thus, we choose the approach proposed
in [20], a segmentation free (works at line level) method for
historical ciphered handwritten text recognition. It consists
in inputting a ciphered text line image with an associated
alphabet as isolated symbols to a matching model, where
one or few examples (usually up to five) of each symbol
should be given. Then, a similarity matrix between the line
and the alphabet is outputted. After that, the recognized
text is decoded from the matrix. Formally, if the size of the
Borg alphabet is N and we provide k examples from each
of the alphabet symbol for matching (the shots), the process
is considered a N -way k-shot detection problem.

We have chosen this model because it has been applied
to ciphers in a few shot scenario. The method is trained on
synthetic alphabets (e.g. Omniglot [15] constructed lines)
and tested on real ciphered data, requiring only the support
set. However, the results show that this model can obtain
better results when it is fine-tuned on some real data.

Evaluation Metric The evaluation of the ciphered text
transcription is done according to the Symbol Error Rate
(SER) metric. It is similar to the Character Error Rate
(CER) for text recognition. Formally, SER = S+D+I

N ,
where S,D and I are the numbers of required substitutions,
deletions and insertions, respectively, while N is represent-
ing the ground-truth’s line length in term of symbols.

5.3. HTR Results

We begin by finding the best setting to mix the created
datasets, then we compare the best performance with the



Table 1: Obtained results by different methods and settings: Real and synthetic data were tested with with various sizes (# of
ann. lines). # of generated samples indicates the number of images per each symbol, used to generate the synthetic lines.

Data Type Model #of ann. lines # of gen. samples k-shot SER

Real

Unsupervised [1] None – – 0.54

Few-shot [20] None – 5 0.53

MDLSTM [7]

≈ 81 – – 0.71
≈ 114 – – 0.66
≈ 148 – – 0.69
≈ 214 – – 0.55

Few-shot [20] 117 – 5 0.21

Ours (HomL) Few-shot [20]
1000 10 5 0.25
1000 5 5 0.25
1000 1 1 0.31

Ours (HetL) Few-shot [20]
1000 10 5 0.30
1000 5 5 0.28
1000 1 1 0.41

Ours (HomL) Seq2Seq +
Attention [14]

1000 10 - 0.70
1000 5 - 0.69
1000 1 - 0.77

Ours (HomL) + Real Few-shot [20] 117 + 117 5 5 0.20

Ours (HomL) Seq2Seq +
Attention [14]

2500 5 - 0.50
5000 5 - 0.48
10000 5 - 0.47
20000 5 - 0.47

Figure 6: SER of testing with real Borg lines and synthetic
BPLL lines, using different mixing settings and condition-
ing on different numbers of samples for generation.

state of the art methods for transcribing the Borg ciphered
manuscript using real data.

Effect of mixing: We took lines from BPLL and DAL
sets to find the best mixing setting for the HomL mixed set,
defined above. The assumption is that using this mixing we
can obtain better results than using separate sets. Because,
as it can be seen from Fig. 5, BPLL lines are visually rich:
the writing style variation of each symbol is realistic, while
DAL lines are visually similar to the real Borg lines. To
find the right amount of lines from each set that should be
added to the total mix, we perform an experiment of varying
the percentages of the BPLL and the DAL, and calculating
the SER at each time. The used model for this training is

the one presented in [20] which shows a good results for
Borg manuscript. As shown in Fig. 6, the performance of
the model trained using only the BPLL is not optimal, but
it is stable using different amount of shots [0.33, 0.38]. On
the other hand, by using only the DAL based on classic data
augmentation techniques, the performance decreases if we
reduce the number of examples per each Borg symbol that
are used to create the data (from 0.25 using 10 samples to
0.45 using 1 sample). Mixing both sets, leads to a better
performance, especially if the mixed data is composed of
50 % from each set. Thus, we can conclude that adding the
same number of DAL to the BPLL lines acts like a regu-
larization technique. That is why we will keep this setting
in the next experiments to compare our generated data with
using a real Borg data to train models.

SOTA results: The obtained results using different
approaches and data settings are presented in Table 1.
We compare the performance when using real Borg lines
(where we can apply unsupervised or supervised learning),
versus using our synthetically generated lines. As expected,
annotated data free approaches, such as the unsupervised
[1] or few-shot without fine-tuning [20] (although providing
one or few examples from each symbol to be used as sup-
ports is still needed) obtains very poor results. The reasons
are the high degree of similarity among the Borg symbols
and the difficult symbol segmentation in the unsupervised
approach, whereas in the few-shot method the problem is



the difference of distribution between the Borg dataset and
the Omniglot one that was used to train. It is better, hence,
to train the segmentation free models with annotated data.
This leads to two options: Using a real annotated data or
using our synthetically created one.

In case of having a high amount of annotated lines, train-
ing a MDLSTM in a supervised way could lead to a good
result. But, in our experiments, since the maximum num-
ber of available annotated lines is 214, and knowing that the
Borg manuscript has different handwriting styles, the results
are still moderate. Note that, of course, the performance
improves when providing more annotated pages, which re-
quire more user effort. With the few-shot method, however,
a much better result of 0.21 SER is obtained with few an-
notated data (117 lines for fine-tuning the model pretrained
on Omniglot). But, even the annotation of these 117 lines
at symbol level (i.e. providing the bounding box of each
one) is a time consuming task. Nota that when performing
the human annotation experiment, we found that those lines
require approximately 4 hours to be labeled.

To reduce this effort, the same model is fine-tuned with
our synthetically created lines. Using the HomL set, the
results are slightly diminished, from 0.21 to 0.25 as SER.
But, we believe that this difference of 0.04 is not worth be-
cause it implies annotating 117 lines. Instead, by using our
BPL-based approach, the user just needs to provide 5 ex-
amples of each Borg symbol. Moreover, we can obtain a
SER of 0.31 which is also competitive, when using only 1
example per symbol, to generate the lines. This proves the
effectiveness of our synthetically generated data in replac-
ing the real one, with a huge gain in annotation effort, and a
minimal decrease in recognition performance. We also no-
tice that using 10 or 5 examples to generate data gives the
same results when testing instead of improving. This can
be explained by increasing the out of the sample matching,
which may require using more data to cover it. We note also
that using the other set (HetL) for training, leads to a minor
performance.

For comparison sake, we tested the Seq2Seq [14] model,
with the same lines. But results were unsatisfactory be-
cause it needs much more data to be trained than MDL-
STM. Hence, we generated thousands of text lines for train-
ing using the 5 shots setting. However, we can see that
the performance stabilizes after using a certain amount of
lines. The reason is that the generated samples variation is
quite limited, since we are only using 5 samples. Thus, we
can conclude that generating fewer samples and training the
few-shot model is a much better option.

Finally, we can see that when mixing the real Borg lines
with the same amount of lines generated synthetically from
5 examples by BPL, we obtain the best result, concretely
0.20 SER, which indeed outperforms the state of the art of
recognizing this manuscript.

5.4. Latin Handwritten Text

Next, we select a modern manuscript to further investi-
gate the applicability of BPL generation. For this purpose,
we take the English manuscript from the IAM dataset and
simulate the low resource scenario by taking only 73 lines
belonging to the writer 552. Then, we cropped 1 exam-
ple from each English character (upper and lower cases) to
generate data using our method. After that, we train the few
shot model in a 1 shot setting (note that we are not using any
labeled text lines, we are just using 1 labeled example from
each isolated character). The obtained results are shown
in Table 2. As it can be seen, applying our model without
the BPL generation leads to 0.35 as CER. While by adding
the BPLL lines, we boost the performance to 0.31 as CER,
which demonstrates the utility of our method.

Data Type Model CER
DAL Few-shot [20] 0.35
HomL Few-shot [20] 0.31

Table 2: The results on IAM dataset, simulating the low
resource handwritten recognition. The numbers are in terms
of character error rate (lower is better).
6. Conclusion

In this paper we have used a one shot approach for com-
positional handwritten text generation and we have demon-
strated its effectiveness for low resource text recognition,
as an example of sequence recognition. Although we have
taken historical ciphered manuscript recognition as a study
case, it can be applied on any other alphabet or script.

Our method uses BPL to generate synthetic symbols
from few real examples. Afterwards, synthetic lines were
created to train machine learning algorithms for HTR. From
the experiments, we can say that the created data leads
to competitive results compared to using a real annotated
dataset, with a significantly reducing manual annotation ef-
fort by a huge margin. Moreover, we have achieved the state
of the art in Borg ciphered text recognition when combining
it with real data for training.

As a future work, we will investigate more realistic ap-
proaches to create text lines from the generated symbols, for
instance the impaired domain translations methods. More-
over, we will investigate using the compositional genera-
tion to directly create words or lines instead of isolated
symbols, with the possibility of applying this to different
manuscripts.
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