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Abstract

Many symbol recognition problems require the use of robust descriptors in order to
obtain rich information of the data. However, the research of a good descriptor is
still an open issue due to the high variability of symbols appearance. Rotation, par-
tial occlusions, elastic deformations, intra-class and inter-class variations, or high
variability among symbols due to different writing styles, are just a few problems.
In this paper, we introduce a symbol shape description to deal with the changes in
appearance that these types of symbols suffer. The shape of the symbol is aligned
based on principal components to make the recognition invariant to rotation and
reflection. Then, we present the Blurred Shape Model descriptor (BSM), where new
features encode the probability of appearance of each pixel that outlines the symbols
shape. Moreover, we include the new descriptor in a system to deal with multi-class
symbol categorization problems. Adaboost is used to train the binary classifiers,
learning the BSM features that better split symbol classes. Then, the binary prob-
lems are embedded in an Error-Correcting Output Codes framework (ECOC) to
deal with the multi-class case. The methodology is evaluated on different synthetic
and real data sets. State-of-the-art descriptors and classifiers are compared, show-
ing the robustness and better performance of the present scheme to classify symbols
with high variability of appearance.

Key words: Symbol Description, Symbol Recognition, Error Correcting Output
Codes, Adaboost, Multi-class classification.
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1 Introduction

Symbol recognition is a particular case of object recognition and one of the
main topics of Graphics Recognition. Symbols are synthetic visual entities
made by humans to be understood by humans. They can appear in scanned
document images or in natural scenes captured by a camera. Typical ap-
plications are: analysis and recognition of logical circuit diagrams, engineer-
ing drawings, maps, architectural drawings, musical scores, and logo recogni-
tion [10]. Concerning natural scenes, the main applications are the recognition
of logos with PDA cameras and smartphones, driving assistance (traffic signs)
and blind people aid systems.

Fig. 1. Examples of symbols in scanned documents and natural scenes.

The most typical visual cues for recognizing symbols are texture, color, and
shape, being the last one the most widely considered. Still, the definition of
expressive and compact shape descriptors is required. A symbol recognition
system consists of two main steps: the description and the classification step.

From the point of view of shape signature, the descriptor should ideally guar-
antee intra-class compactness and inter-class separability. It should be tolerant
to noise, degradation, occlusions and distortion (including shear). And due to
isolated symbols which are present in graphical documents, we must also take
into account the variations in rotation, scaling and translation. The particu-
lar case of handwritten symbols deserves special attention. The main kinds
of distortions in this case are: elastic deformation, inaccuracy on junctions
or on the angle between strokes, line-arc ambiguity, errors like over-tracing,
overlapping, gaps, or missing parts. Moreover, the system must cope with the
variability produced by the different writer styles, with variations in sizes,
intensities and the increase in the number of touching and broken symbols.
On the contrary, in the camera-based symbol recognition domain, the system
should cope with a totally different problematic: uncontrolled environments,
illumination changes, and changes in the point of view (perspective).

According to [9], numerous shape descriptors, tolerant to such distortions, have
been proposed. They can be classified in two strategies: continuous and struc-
tural approach (the reader is referred to [3][9] and [10] for surveys on shape
recognition and symbol recognition, respectively). Continuous approach uses
a feature vector derived from the image photometry to describe the shape.
R-Signature [1], Angular Radial Transform (ART) [2] and Zernike moments
[5] are some examples of Region-based continuous approaches. ART has good
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perfomance for general shapes and uses few features by descriptor, whereas
R-Signature is based on Radon transform, and includes a Fourier transform
to reach invariance to rotation. Zernike moments are invariant to rotation and
maintain properties of the shape, being invariant in presence of deformations.
The curvature scale space (CSS) descriptor [6] uses the external contour (sil-
houette) for coding the shape, and is one of the MPEG7 standards [19,21].
It can only be used for closed curves, but it is tolerant to rotation. Shape
context [7] is tolerant to deformations, and it does not impose restriction of
being closed regions, as well as it is also used in handwritten symbols. As far
as we know, directional descriptors (such as the SIFT descriptor [24]), which
are widely applied for detecting objects in real scene images, have rarely been
applied to symbol recognition so far. The SIFT descriptor is based on deter-
mining the significant orientations within a region taking into account their
spatial arrangement. The second group corresponds to structural approaches,
which tend to represent the shape (and the relations between parts of the
shape) using structures like string, tree, graph or grammar, where the similar-
ity measure is done by string, tree, graph matching or parsing respectively [4]
[8]. These approaches capture the spatial arrangement of symbol parts, which
usually may suffer from complex distortions.

Concerning the classifier, numerous techniques have been investigated based
on statistical or structural approaches [10]. Elastic deformations of shapes
modeled by probabilities tend to be learnt using statistical classifiers. The
goal is to establish decision boundaries in the feature space which split pat-
terns belonging to different classes. In the statistical decision theoretic ap-
proach, the decision boundaries are determined by the probability distribu-
tions of the patterns belonging to each class, which must be either specified
or learnt [11,12]. One of the most well-known techniques in this domain is
the Adaboost algorithm due to its ability for feature selection, detection, and
classification [13]. On the other hand, though many classification algorithms
are designed for multi-class problems, this extension is normally difficult. In
such cases, the usual way to proceed is to reduce the complexity of the prob-
lem into a set of simpler binary classifiers and combine them. A usual way to
combine these simple classifiers is the voting scheme (one-versus-one or one-
versus-all strategies are the most frequently applied). In this field, Dietterich
et. al. [14] proposed a framework inspired in the signal processing coding and
decoding techniques in order to deal with multi-class categorization problems.
The method is based on combining the binary classifiers as codified columns
of a matrix and generating a codeword for each class. Thus, a test sample is
evaluated with all the binary classifiers, and codewords are compared in the
classification stage [14].

From the previous discussion, we can observe that the proposal of an univer-
sal descriptor to cope with the symbol taxonomy is still an open issue. In this
paper, we introduce a novel symbol descriptor, the Blurred Shape Model. The
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descriptor encodes the spatial probability of appearance of the shape pixels
and their context information. As a result, a robust technique to deal wih noise
and elastic deformations is obtained. Moreover, we present a successful scheme
using the Blurred Shape Model to deal with multi-class symbol recognition
problems. The method aligns symbols shape by means of the Hotelling trans-
form and an area density adjustment. Then, the BSM is used for obtaining
the shape description. The Adaboost algorithm [13] is proposed to learn the
descriptor features that best split each pair of classes, and the one-versus-one
scheme of Error Correcting Output Codes [14] combines the Adaboost clas-
sifiers to deal with the multi-class case. With this classification strategy, the
system can also cope with scalability variations. Moreover, a cross-validation
procedure over different Blurrer Shape Model parameters increases the system
generalization capability. The present methodology is evaluated on synthetic,
hand-drawn, and real data sets. Different state-of-the-art descriptors and clas-
sification strategies are compared, showing the robustness and better perfor-
mance of the proposed scheme when classifying large number of symbols with
high variability of appearance.

This paper is organized as follows: Section 2 introduces the Blurred Shape
Model descriptor. Section 3 presents the multi-class symbol recognition sys-
tem. Experimental results and discussions are presented in section 4. Finally,
section 5 concludes the paper.

2 Blurred Shape Model

In order to describe a symbol that can suffer from irregular deformations, we
propose to codify its shape in terms of a set of keypoints, which are defined by
high gradient magnitude pixels. Taking into account these pixels, the Blurred
Shape Model descriptor defines a set of spatial regions by means of a grid.
Then, spatial relations among keypoints from neighbor regions are computed,
and descriptor features are obtained.

Given a set of points forming shape S = {x1, .., xm} of a particular symbol,
each point xi ∈ S, called from now SP , is treated as a feature to compute the
BSM descriptor. The image region is divided into a grid of n × n equal-sized
sub-regions (cells), ri. Each cell receives votes from the SP s in it and also from
the SP s in the neighboring sub-regions. Thus, each SP contributes to a density
measure of its cell and its neighbors, and thus, the grid size identifies the
blurring level allowed for the shape. This contribution is weighted according
to the distance between the point and the centroid ci of the region ri. The
algorithm is summarized in table 1.

In Fig. 2, a shape description is shown for an apple data sample. Fig. 2(a)
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Given an image I:
1. Obtain the shape S contained in I.
2. Divide I in n × n equal size sub-regions R = {r1, ..., rn2},
with ci the center of points for each region ri, i ∈ [1, .., n2].
3. Let N(ri) be the neighbor regions of region ri, defined as
N(ri) = {rk|rk ∈ R, ||ck − ci|| < 2|g|}, where g is the cell size.
4. Let rx

i be the region which contains the point x.
5. Initialize the probability vector v as v(i) = 0, ∀ i ∈ [1, .., n2].
6.

For each point x ∈ S,
D = 0
For each ri ∈ N(rx

k ),
di = d(x, ri) = ||x − ci||2
D = D + 1

di

End For

Update the probability vector v as v(ri) = v(ri) + 1
diD

End For

7. Normalize v as: v(i) = v(i)
∑n2

j=1
v(j)

∀ i ∈ [1, ..., n2]

Table 1
Blurred Shape Model description algorithm.

shows the distances di of a SP to the nearest sub-regions centers. To give the
same importance to each SP , all the distances to the neighbor centers are
normalized. The output descriptor is a vector histogram v of length n2, where
each position corresponds to the spatial distribution of SP s in the context of
the sub-region and its neighbors. Fig. 2(b) shows the vector descriptor update
once the distances of the first point in Fig. 2(a) are computed. Observe that
the position of the descriptor corresponding to the affected sub-region r15, the
region with centroid is nearer to the analyzed SP , obtains the highest value.

(a) (b)

Fig. 2. BSM density estimation example. (a) Distances of a contour point SP to its
neighbor centroids. (b) Vector descriptor update using the distances of (a).

The resulting vector histogram, obtained by processing all SP s, is normalized
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in the range [0, 1]. In this way, the output descriptor represents a distribution of
probabilities of the symbol structure considering spatial distortions, where the
distortion level allowed is determined by the grid size. The BSM descriptors
for different grid sizes applied to the previous example of Fig. 2 are shown
in Fig. 3. Concerning the computational complexity, for a region of n × n

pixels, the k SP s considered for obtaining the BSM descriptor require a cost
of O(k) simple operations. In Fig. 4(a) four BSM descriptors of apple samples
of size 10× 10 are shown. Fig. 4(b) shows the correlation of the four previous
descriptors. Note that though variations on the shape of the symbols exists,
the four descriptors remain closely superposed.

(a) (b) (c) (d) (e)

Fig. 3. (a) Input shape. BSM for (b) 8× 8, (c) 16× 16, (d) 32× 32, and (e) 64× 64
grid sizes.

(a)

(b)

Fig. 4. (a) Plots of BSM descriptors of length 10×10 for four apple samples. (b)
Superposition of previous BSM descriptors.
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3 Multi-class recognition system using BSM

The process of symbol recognition usually involves a multi-class categoriza-
tion problem. When different classes of symbols are described, a classification
strategy is used to split among different categories. Based on the presented
BSM features, Fig. 5 summarizes the training and testing steps of the proposed
multi-class BSM system. For the training step, an input sample is processed to
obtain its shape points in a binary map. This map is oriented to be rotational
invariant, and then, it is described using the BSM descriptor. Adaboost is
used to train an one-versus-one scheme of an Error-Correcting Output Codes
(ECOC) design with Euclidean decoding. A cross-validation is applied con-
sidering different BSM sizes in order to look for the optimal grid size. The
testing step of the system takes as input a region, and the structure process-
ing, alignment, and BSM description optimizing the grid size is applied. Then,
the ECOC scheme based on Gentle Adaboost is used to obtain a classification
decision for the new test sample.

Fig. 5. Training and testing scheme of the multi-class symbol recognition scheme.

In the following sections, we explain in detail each of the steps of the sys-
tem. Firstly, we describe the pre-processing step which is used for obtaining
the structure map. Secondly, we describe the Hotelling transform based on
principal components and the area density readjustment for aligning the sym-
bols shape. Finally, we describe the ECOC scheme used to extend the binary
classification to the multi-class case.

3.1 Pre-processing

To process the image and obtain the symbol structure, different pre-processing
techniques can be applied depending on each particular problem domain. For
instance, in the case of handwritten symbols, the skeleton is a good choice
since it maintains the structure of the symbols for different author strokes. In
the case of grey-level or binary symbols, a contour map is more suitable to
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obtain the structure map 1 .

3.2 Shape alignment

A shape alignment process is performed before computing the BSM descriptor.
This process consists of two steps: the first step, provides invariance to rotation
by means of the Hotelling transform. The second step deals with the mirroring
effect.

The Hotelling transform finds a new coordinate system equivalent to locating
the main axis of the symbol. Given a set of representative symbol points
defined as pairs of coordinates x = (xi, yi), where i ∈ [1, .., n], the center of
mass of the symbol mx computed as the average vector of points, and the
eigenvectors V of the covariance matrix, the new transformation is obtained
by means of the projection of the centered points of the symbol in the following
way:

x′

i = V (xi − mx), i ∈ [1, .., |S|] (1)

Using this transform, we find the common axes for the different symbol in-
stances. In Fig. 6(a), the mean shape for the samples of a MPEG7 category
after applying the Hotelling transform is shown. One can observe that the
shapes are not properly aligned. For this reason, a second step, consisting
of an area density estimation process is used (see Fig. 6(b)). Horizontal and
vertical projections are applied to obtain the area of the symbol. The final
alignment is obtained by horizontal and vertical reflection of the symbol in
the direction of the higher area projections. The result of adjusting the align-
ment is shown in Fig. 6(c). Another example of alignment of two MPEG7
symbol categories is shown in Fig. 7.

(a) (b) (c)

Fig. 6. (a) Mean aligned shape based on principal components. (b) Horizontal and
vertical area estimation. (c) Readjusted alignment.

1 Different alternatives for grey-scale symbols are presented in the experimental
results section.
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Fig. 7. Mean aligned shapes for two MPEG7 categories.

3.3 Error Correcting Output Codes

The ECOC framework is a simple but powerful framework to deal with the
multi-class categorization problem based on the embedding of binary classi-
fiers. Given a set of Nc classes, the basis of the ECOC framework consists
of designing a codeword for each of the classes. These codewords encode the
membership information of each binary problem for a given class. Arranging
the codewords as rows of a matrix, we obtain a ”coding matrix” M , where
M ∈ {−1, 0, 1}Nc×n, with n being the length of the codewords codifying each
class. From the point of view of learning, M is constructed by considering n

binary problems, each one corresponding to a column of the matrix M . Each
of these binary problems (or dichotomizers) splits the set of classes in two
partitions (coded by +1 or -1 in M according to their class set membership,
or 0 if the class is not considered by the current binary problem).

In Fig. 8(d), an example of a coding matrix M design is shown. The matrix is
coded using 3 dichotomies {h1, h2, h3} for a 3-class problem (c1, c2, and c3). In
Fig. 8(a)-(c), three different sub-partitions of classes are formed, corresponding
to all possible pairs of classes, called one-versus-one strategy. Once we define
the partitions of classes, each one is coded as a column of the coding matrix
M , as shown in Fig. 8(d). The dark regions are coded as +1 (first partition
of classes), and the white regions are coded as -1 (second partition of classes).
The grey regions correspond to the non-considered classes for their respective
classifiers. Now, the rows of the matrix M define the codewords {Y1,Y2,Y3} for
their corresponding classes {c1,c2,c3}.

At the decoding step, applying the n trained binary classifiers, a code is ob-
tained for each data point in the test set. This code is compared to the base
codewords of each class defined in the matrix M , and the data point is assigned
to the class with the ”closest” codeword.

As different types of symbols may share local features [15] (see Fig. 9), we
make use of Adaboost [13] as base classifier applied in the previous ECOC
scheme. Adaboost is used to learn the BSM models from different classes
in order to define a classifier based on the features that best discriminate
one class against another. Note that when we compare symbol descriptors,
traditional matching distances take into account all symbol features for the
final classification decision. When symbols are very similar, slight deformations
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(a) (b) (c)

(d) (e)

Fig. 8. (a)(b)(c) Three bi-partitions of classes for a three multi-class problem. (d)
ECOC coding and (e) decoding for the problem.

in the shared parts may include significant distance errors that finally can
lead to a miss-classification of the symbols. In Fig. 9 the two symbols have
a discriminative region that splits both categories (marked with a rectangle).
Adaboost focuses on these regions by selecting the highest splitting features.
In particular, we use the Gentle version of Adaboost since it has been shown
to be dominant to the rest of variants when applied to real categorization
problems [13].

Fig. 9. Discriminant symbol features.

In Fig. 8(e), an input test sample classification is shown. This input is tested
using the three binary classifiers, and a codeword X is obtained. Finally, the
Euclidean distance is applied between each class codeword and the test code-
word X in the form d(X, Yi) =

√

∑n
j=1(X(j) − Yi(j))2, where i ∈ [1, .., 3].

Finally, the test input X is assigned to the class with minimum distance c1.

4 Experimental Results

In order to validate the proposed methodology, first, we describe our perfor-
mance evaluation protocol in terms of the data used, metrics, comparatives,
and experiments.
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Data: To test the multi-class symbol recognition system, we used three dif-
ferent scenarios: a 7-class handwritten symbols data set 2 , namely clefs and
accidentals from old musical scores [18]. The main difficulty in this problem
consists in the elastic deformations due to the different writing styles; the pub-
lic 70-class MPEG7 repository data set [19] 3 , which contains a high number
of classes with different appearance of symbols from the same class, including
rotation. And finally, a 17-class data set of grey-level symbols 2, which contains
the common distortions from real-environments, such as illumination changes,
partial occlusions, or changes in the point of view. Some samples from each
data set are shown in Fig. 10.

Metrics: To analyze the performance of the techniques, the descriptors are
trained using 50 runs of Gentle Adaboost with decision stumps [13], and the
one-versus-one ECOC design with the Euclidean distance decoding [16]. The
classification score is computed by means of stratified ten-fold cross-validation,
testing for the 95% of the confidence interval with a two-tailed t-test. More-
over, to look for statistical significance of the results, the performances are
analyzed using the statistical Friedman and Nemenyi tests [22].

Comparatives: The methods used in the comparative are: SIFT [24], Zoning,
Zernike, and CSS curvature descriptors from the standard MPEG [2,9,20].
The details of the descriptors used for the comparatives are the followings:
the optimum grid size of the BSM descriptors is estimated applying cross-
validation over the training set using a 10% of the samples to validate the
different sizes of n ∈ {8, 12, 16, 20, 24, 28, 32}. For a fair comparison among
descriptors, the Zoning descriptor is of the same length as BSM. Concerning
the Zernike technique, 7 moments are used. The length of the curve for the
CSS descriptor is normalized to 200, where the sigma parameter takes an
initial value of 1 and increases by 1 unit at each step.

In order to compare the learning of the descriptors, different base classifiers
are used in the ECOC scheme: OSU implementation of Linear Support Vector
Machines with the regularization parameter C set to 1 [26], OSU implementa-
tion of Support Vector Machines with Radial Basis Function kernel with the
default values of the regularization parameter C and the gamma parameter
set to 1 [26] 4 , and Linear Discriminant Analysis implementation of the PR
Tools using the default values [25].

2 These data sets and ground truths are publicly available under request to the
authors of this paper.
3 MPEG7 Repository Database: http://www.cis.temple.edu/ latecki/research.html
4 The regularization parameter C and the gamma parameter are set to 1 for all
the experiments. We selected this parameter after a preliminary set of experiments.
We decided to keep the parameter fixed for the sake of simplicity and easiness of
replication of the experiments, though we are aware that this parameter might not
be optimal for all data sets.
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Experiments: To test and compare the performance of the different descrip-
tors, we classify the set of clefs and accidentals data set classes using the
different descriptors and base classifiers. The results are analyzed using statis-
tical tests. Then, we classify the 70 MPEG7 classes. And finally, we deal with
the 17-class problem of grey-level symbols from real environments. Moreover,
we discuss implementation details to adapt the BSM descriptor and the clas-
sification scheme to different applications where the proposed system could be
useful, such as symbol spotting from whole images. In the following subsec-
tions we further describe the experiments on the different benchmarking data
sets.

4.1 Clefs and accidental data set

The data set of clefs and accidental is obtained from a collection of modern and
old musical scores (19th century) of the Archive of the Seminar of Barcelona.
The data set contains a total of 4098 samples among seven different types of
clefs and accidental from 24 different authors. The images have been obtained
from original image documents using a semi-supervised segmentation approach
[18]. The main difficulty of this data set is the lack of a clear class separability
because of the variation of writer styles and the absence of a standard notation.
A pair of segmented samples for each of the seven classes showing the high
variability of clefs and accidental appearance from different authors can be
observed in Fig. 10(a). An example of an old musical score used to obtain the
data samples are shown in Fig. 11.

The objective of this experiment is to classify the clefs and accidental data set
comparing different state-of-the-art descriptors and classifiers. We compare
the BSM, Zoning, SIFT, CSS, and Zernike descriptors using the parameters
defined above. The optimum grid size used for the BSM and Zoning descriptors
is of length 12×12. Each feature set is learnt using the one-versus-one scheme
with the previous commented base classifiers: FLDA, Linear SVM, RBF SVM,
and Gentle Adaboost. Moreover, we include a comparative with a 3-Nearest
Neighbor classifier to show the reliability of the present classification system.
The performance and confidence interval obtained for each descriptor and
classifier are shown in table 2. Looking at table 2, one can see that for each
column corresponding to a different classifier, the descriptor that attains the
best performance is the BSM. Moreover, looking at the performances of each
row corresponding to the results of each base classifier applied over each feature
set, one can see that the base classifier that obtains the best performance is the
one-versus-one ECOC design with Gentle Adaboost as the base classifier. The
only different case corresponds to the SIFT descriptor, which obtains its best
performance with Linear SVM as base ECOC classifier. Finally, note that the
results obtained by the 3NN classifier correspond to the lowest performance
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(a)

(b)

(c)

Fig. 10. Symbol data sets: (a) clefs and accidental data set, (b) MPEG7 data set,
and (c) real symbols data set.

of each feature space.

Once the results are obtained, we analyze their statistical significance. For this
purpose, we consider the performances obtained by the five different classifiers
as five different experiments performed over the same data set, and we use the
Friedman and Nemenyi tests [22] to look for statistical difference among the
descriptors performances. Table 3 shows the mean rank of each descriptor
considering the five different classifiers. The ranks are obtained estimating
each particular rank r

j
i for each experiment i and each descriptor j, and then,

13



Fig. 11. Old musical score.

FLDA Linear SVM RBF SVM G. Adaboost 3NN

BSM 83.53(7.52) 80.51(7.31) 81.54(7.52) 88.99(5.00) 73.92(8.21)

Zoning 78.62(7.28) 79.45(6.30) 80.43(6.17) 83.61(5.24) 69.29(10.12)

SIFT 71.35(9.04) 76.45(6.73) 54.77(9.76) 74.95(9.77) 57.39(9.18)

CSS 68.76(11.02) 66.87(8.19) 69.87(9.18) 71.33(8.44) 61.28(8.92)

Zernike 69.09(6.01) 71.66(8.29) 59.21(9.00) 72.05(7.76) 54.12(9.10)

Table 2
Classification accuracy and confidence interval on the clefs and accidental categories
for the different descriptors and classifiers.

BSM Zoning SIFT CSS Zernike

1 2 3.6 4.2 4.2

Table 3
Ranking of the different descriptors for the different experiments performed on the
music dataset.

computing the mean rank R for each descriptor as Rj = 1
P

∑

i r
j
i , where P

is the number of experiments. 5 One can see that the BSM descriptor, as
commented, attains the best position for all experiments. In order to reject
the null hypothesis that the measured ranks differ from the mean rank and
that the ranks are affected by randomness in the results, first, we use the
Friedman test. The Friedman statistic value is computed as follows:

X2
F =

12P

k(k + 1)





∑

j

R2
j −

k(k + 1)2

4



 (2)

In our case, with k = 5 descriptors to compare, X2
F = 16.48. Since this

value is undesirable conservative, Iman and Davenport proposed a corrected
statistic [22]:

FF =
(P − 1)X2

F

P (k − 1) − X2
F

(3)

5 We realize that averaging over data sets has a very limited meaning as it entirely
depends on the selected set of problems.
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Applying this correction we obtain FF = 18.73. With five methods and five
experiments, FF is distributed according to the F distribution with 4 and 16
degrees of freedom. The critical value of F (4, 16) for 0.05 is 3.00. As the value
of FF is higher than 3.00, we can reject the null hypothesis. Once we have
checked for the non-randomness of the results, we can perform a post hoc test
to check if one of the techniques can be singled out. For this purpose we use the
Nemenyi test - two techniques are significantly different if the corresponding
average rankings differ by at least the critical difference value (CD):

CD = qα

√

k(k + 1)

6P
(4)

where qα is based on the Studentized range statistic divided by
√

2. In our case,
when comparing five methods with a confidence value α = 0.05, q0.05 = 2.01.
Substituting in eq.(4), we obtain a critical difference value of 2.01. Since the
difference of the SIFT, CSS, and Zernike ranks with the BSM rank is higher
than the CD, we can infer that the BSM descriptor is significantly better
than these descriptors with a confidence of 90% in the present experiment,
being only comparable with the zoning descriptor, which also obtains inferior
results.

4.2 MPEG7 data set

The MPEG7 data set has been chosen because it contains samples with high
intra-class variability in terms of scale, rotation, rigid and elastic deformations,
as well as a low inter-class variability. A pair of samples for some categories of
the data set are shown in Fig. 10(b). Each of the classes contains 20 instances,
which represents a total of 1400 symbol samples for the 70 classes.

The objective of this experiment is to classify a high number of candidates that
suffer from rigid and elastic deformations. In this case, we compare different
state-of-the-art descriptors: BSM, Zoning, SIFT, CSS, and Zernike with the
previous defined parameters. In this experiment, the optimum grid size of
the BSM descriptor is of length 16 × 16. The scores obtained using cross-
validation to look for the optimum grid size are shown in Fig. 12. In this case,
the Hotelling alignment is applied to all the data set samples before computing
the different descriptors. Then, each feature set is learnt using the one-versus-
one scheme with Gentle Adaboost. Moreover, we include a comparison with
a 3-Nearest Neighbor classifier to show reliability of the present classification
system. The performance and confidence interval obtained by each descriptor
and classifier are shown in table 4.

Looking at the results of table 4, one can see that for each descriptor, the
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Fig. 12. Cross-validation on the training and validation sub sets for the MPEG7
data set using different BSM grid sizes.

Descriptor 3NN Gentle Adaboost

BSM 65.79(8.03) 77.93(7.25)

Zernike 43.64(7.66) 51.29(5.48)

Zoning 58.64(10.97) 65.50(6.64)

CSS 37.01(10.76) 44.54(7.11)

SIFT 29.14(5.68) 32.57(4.04)

Table 4
Classification accuracy on the 70 MPEG7 symbol categories for the different descrip-
tors using 3-Nearest Neighbor and the one-versus-one ECOC scheme with Gentle
Adaboost as the base classifier.

one-versus-one scheme of ECOC with Gentle Adaboost as the base classifier
obtains the best performance. Note that in this case, for the same classifier, the
difference among descriptor performances is more significant. This is produced
because of the high number of classes and the high variability of appearance
of the symbol shape. The BSM descriptor obtains the best performance with
an accuracy near 80%, followed by Zoning and Zernike, and finally by the
CSS and SIFT descriptors. The performance of the two last descriptors was
expected since they focus on the points of curvature from the symbols shape
and the degrees of orientation from the image derivatives, which significantly
change in this data set for the samples of the same class.

4.3 Camera-based grey-level symbols data set

The third data set of symbols is composed by grey-level samples from 17 dif-
ferent classes, with a total of 550 samples acquired with a digital camera from
real environments. The samples are taken so that there are high affine trans-
formations, partial occlusions, background influence, and high illumination
changes. A pair of samples for each of the 17 classes are shown in Fig. 10(c).
The SIFT descriptor is nowadays a widely-used strategy for this type of im-
ages, yielding good results [27]. For this reason, we compare the BSM and
SIFT descriptors in this experiment.
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BSM SIFT

75.23(7.18) 62.12(9.08)

Table 5
Performance of the BSM and SIFT descriptors on the grey-scale symbols data set
using an one-versus-one ECOC scheme with Gentle Adaboost as the base classifier.

To extend the use of the BSM descriptor from binary to grey-scale images,
we estimate an adaptive orientation threshold for each particular problem.
For a given image, our method computes the gradient module and normalizes
it to unit. Then, the histogram of gradient magnitudes is estimated, and the
Otsu method is applied in order to obtain an adaptive threshold for significant
gradient modules. The points in the image with a higher gradient module than
the computed threshold use to correspond to relevant symbol shape points.
The optimum grid size used for the BSM descriptor is of length 8 × 8. Some
examples of the data set of this experiment and their corresponding BSM
descriptors are shown in Fig. 13.

Fig. 13. BSM descriptors from samples of the grey-level symbols data set.

The performance and confidence interval obtained in this experiment from a
ten-fold cross-validation using the BSM and SIFT descriptors in an one-versus-
one ECOC scheme with Gentle Adaboost as the base classifier is shown in
table 5. One can see that the results obtained by the BSM descriptor adapted
to grey-scale symbols significantly outperform the results obtained by the
SIFT descriptor. This difference is produced in this data set because of the
large changes in the point of view of the symbols and the background influence,
which produces significant distortions in the SIFT orientations.

4.4 Discussions

BSM are highly suitable to deal with multi-class symbol categorization prob-
lems due to the fact that our method is rotationally invariant because of the
use of the Hottelling transform and the area density adjustment. The method
is also scaling and stretching invariant taking into account the use of the n×n

BSM grid. Moreover, the BSM descriptor is robust against symbols with rigid
and elastic deformations since the size of the BSM grid defines the region
of activity of the symbol shape points. The use of Adaboost as base classi-
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fier allows to learn difficult classes which may share several symbol features.
Besides, the ECOC framework has the property of correcting possible clas-
sification errors produced by the binary classifiers, and allows the system to
deal with multi-class categorization problems. When the classifiers are trained,
only few features are selected, and when classifying a new test sample, only
these features are computed. This makes the approach very fast and suitable
for real-time categorization problems.

An important point of the BSM description is the selection of the grid size. The
optimum size defines the optimum grid encoding the blurring degree based on
a particular data set distortions. For this reason, a common way to look for
the optimum grid size is applying cross-validation over the data for different
descriptor parameters, in particular, ten-fold cross-validation has been applied.
The selected grid is the one which attains the highest performance on the
validation subset, defining the optimum grid encoding the different distortions
over each particular problem, and offering the required tradeoff between inter-
class and intra-class variabilities in a problem-dependent way.

It is important to make clear that though Adaboost has been chosen as the
base classifier in the presented system, depending on the problem we are work-
ing on, different alternatives of classifiers could be used instead, basing the
selection of the base classifier on the type of distribution of the data and the
behavior of each particular learning technique. Although at the previous ex-
periments the comparison between Gentle Adaboost and other state-of-the-art
classifiers showed higher performance improvements of Adaboost, different re-
sults could be obtained over different data sets or with an exhaustive tuning of
the parameters of the classifiers. In the same way, the ECOC framework offers
several advantages to deal with multi-class problems. Recent advances of the
ECOC designs showed different alternatives for coding and decoding [16][17],
which could be also applied in combination with the present methodology.

Moreover, it is important to mention different applications where the multi-
class BSM scheme could also be useful. A possible application consists in
symbol spotting. Because of the good shape encoding and fast computation
of the BSM descriptor, it can be applied to this type of applications. It only
requires to change the classification rule from symbols instances to the detec-
tion rule in whole images [23]. To show this behavior, we developed a simple
experiment. We designed several images containing MPEG7 symbols, as the
one shown in Fig. 14(a). The negative samples are those that do not con-
tain the target symbol, and the positive test samples contain target instances
(bats in this experiment). Random regions are selected from the negative set
of images, and described using the BSM descriptor with a fixed grid size. The
positive set is selected and described directly from the bat category of the
MPEG7 data set. Then, the Gentle Adaboost classifier is trained with the
positive and negative instances (500 negatives and 20 positives samples), and
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a windowing procedure is applied over the test image. In Fig. 14(a) one can
see that different image sub-windows are described using the BSM descriptor.
The classifier learnt is applied over all sub-windows, and the response of the
detector defines the regions containing a bat instance, as shown in Fig. 14(b).
This process is speeded up by computing at the detection step only the fea-
tures selected by Adaboost at the learning step, processing medium resolution
image of 800 × 640 pixels in less than 1s.

(a) (b)

Fig. 14. (a) Some sub-windows BSM descriptions. (b) Selected sub-windows detect-
ing bat symbols.

5 Conclusions

In this paper, we presented a multi-class symbol categorization system based
on Blurred Shape Model descriptors. The Blurred Shape Model is a simple de-
scriptor that in a fast way defines a probability density function of the shape

of a symbol. The shape is described with a set of probabilities that encodes
the spatial variability of the symbol, being robust to several symbol distor-
tions. Besides, a system to improve the performance of the descriptor dealing
with multi-class categorization problems has been proposed. Adaboost learns
the discriminative features that better split symbol categories, and the binary
classifiers are embedded in an ECOC framework. The present methodology
has been evaluated on the public MPEG7 data set, in a handwritten data
set of old musical scores, and on a real grey-level symbol data set. Different
state-of-the-art descriptors and classifiers have been compared, showing the
robustness and better performance of the proposed scheme when classifying
symbols with high variability of appearance, such as irregular deformations
induced by handwritten strokes, low inter-class and high inter-class variabili-
ties, partial oclusions, illumination changes, or changes in the point of view.
Moreover, we have shown that the novel BSM strategy could also be applied
to symbol spotting problems.
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