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Abstract The aim of writer identification is determin-
ing the writer of a piece of handwriting from a set of

writers. In this paper we present an architecture for

writer identification in old handwritten music scores.

Even though an important amount of music composi-
tions contain handwritten text, the aim of our work is

to use only music notation to determine the author.

The main contribution is therefore the use of features

extracted from graphical alphabets. Our proposal con-

sists in combining the identification results of two dif-
ferent approaches, based on line and textural features.

The steps of the ensemble architecture are the following.

First of all, the music sheet is preprocessed for remov-

ing the staff lines. Then, music lines and texture images
are generated for computing line features and textural

features. Finally, the classification results are combined

for identifying the writer. The proposed method has

been tested on a database of old music scores from the

17th to 19th centuries, achieving a recognition rate of
about 92% with 20 writers.
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1 Introduction

Analysis of historical documents has attracted growing
interest in the last years. The aim is the conversion of

these documents into digital libraries, helping in the

diffusion and preservation of artistic, technical and cul-

tural heritage. An interesting application in this field is
writer identification, i.e. the classification of the docu-

ment in terms of the writer.

Writer identification (w.i.) is focused on the identi-

fication of the author of a piece of handwriting among
a set of writers. Traditionally, the off-line approaches

for writer identification in text documents can be di-

vided in text-dependent and text-independent. In the

first group of methods [1] the individual characters or

words are compared with a known transcription. These
approaches require either a prior knowledge of the tex-

tual content, or the recognition of the handwritten text.

Contrary, in the second group, the writer identification

can be performed with the meaning of the text being
unknown [27], [30].

There is an active research community concerning

handwritten text documents, specially in forensic anal-

ysis, including not only writer identification [6], [28] but
also writer verification [2] and dating manuscripts [12].

Nevertheless, the identification of the author of a hand-

written document of graphical contents is still a chal-

lenge. Music scores are an example of hybrid documents

(because they contain both graphics and text) with an
important research community working in this topic.

Concerning historical music documents, an important

application is the retrieval of anonymous documents for

their analysis, and the validation of their authorship.
In fact, musicologists identify the writer (or composer)

through a deep analysis of the music score, analyzing

not only the handwriting style, but also the rhythm,
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melody, and harmony of the composition. Similarly, an

automatic writer identification approach should recog-

nize and analyze the whole composition. Unfortunately,

this task becomes extremely complex, because an Op-

tical Music Recognition system should recognize the
music notation of very complex documents, coping not

only with the variability of the handwriting style, but

also with the degradation of historical documents. For

that reason, an automatic writer identication approach
for old music scores is still required for helping musi-

cologists in their human task, which is time consum-

ing and prone to errors. It must be said that although

an automatic writer identification approach will never

substitute the musicologists in this task, it will help
them to discard an important amount of writers of the

database. In this context, the handwriting style of the

hand-drawn music symbols can be used for determining

the authorship of a music score.

To the best of the authors’ knowledge, only one ap-

proach to writer identification in music scores has been

proposed [5], [14], [22]. The authors introduce a method

that analyzes the music score and then extracts some

features that represent structural information of the
music symbols and notes. The process of automated

identification requires a definite level of handwriting

content understanding, in other words, the recognition

of music symbols. Only once the object features are
given in the form of structural descriptions, the match-

ing algorithm can determine the identity of the struc-

ture for the following writer identification step. How-

ever, due to the difficulties in the automatic recognition

of hand-drawn music symbols, only the staff removal
and a graphical primitive analysis has been performed.

The next steps, namely object recognition and writer

identification, are still not implemented. For this rea-

son, no results are shown in the papers, and as far as
we know, this project has not been continued.

Obviously, the recognition of old handwritten mu-

sic scores is extremely difficult, not only because of

the recognition of hand-drawn symbols, but also be-

cause of paper aging and degradation. In this work
we propose to avoid the recognition step, obtaining a

symbol-independent writer identification method. Con-

sequently the system is faster and more robust, avoiding

the dependence on a good symbol recognizer. In fact, we
have borrowed some ideas from the text-independent

writer identification approaches for text and applied

them to old musical scores, where instead of letters of

the alphabet, music symbols are analysed.

Most compositions in the last centuries were sacred
music, and consequently, contain lyrics (text) for the

chorus and the solists. In these scores, the writer identi-

fication methods for handwritten text documents could

be applied to lyrics. However, there are two main rea-

sons for avoiding the use of lyrics. Firstly, it has been

noticed that in some cases, the writer of the lyrics and

the writer of the music notation is not the same; and

secondly, many music compositions are for instruments
only, and consequently, they contain no text nor lyrics.

For this reason, a method which performs the writer

identification based on the extraction of features only

from music symbols is required.

In [10] and [11] we presented two different approaches

for writer identification in old music scores. The first

one, inspired by writer identification approaches ap-

plied to text lines, extracts features for every music line.
Once the musical score is transformed into individual

normalized handwritten music lines, 100 features are

computed for every line, including basic measurements

(such as slant and width of the writing), connected com-

ponents, lower and upper contour of the line and fractal
features. The second method was inspired by holistic

writer identification approaches that analyze the whole

music score image as a texture. Textural features are

then extracted rather than focusing on a set of pre-
defined local features. After the preprocessing of the

music sheet, music texture images are generated from

music symbols, and then Gabor features and Gray-Scale

co-ocurrence matrices (GSCM) are extracted and used

as features. In both approaches, the classification was
performed using the k-NN classifier. The experimental

results showed that every individual approach achieved

quite good identification rates (73% and 76%, respec-

tively), but in some cases, the information extracted
was not enough for a reliable writer identification.

In the current paper we propose the combination of

features for performing writer identification in graphi-

cal documents, such as old music scores. The proposed

architecture (see Fig.1) combines two writer identifi-
cation approaches, improving the global identification

rate. Firstly, the input image is preprocessed in order to

binarize, deskew and remove the staff lines and lyrics.

The resulting image is then the input for the two writer
identification approaches. The first method performs

specific preprocessing and normalitzation operations in

order to obtain music lines; then it generates long lines

and extracts 98 line features. The second method gen-

erates texture images and extracts textural features,
using Gabor filters and GSCM. Once the features have

been extracted, both approaches individually apply a k-

NN classifier, and then we combine the results for the

final classification. For this purpose, the combination of
results is performed using the Majority Voting or Borda

Count method, so that each element (line or texture)

gives votes to the nearest neighbor classes [21]. Finally,
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Fig. 1 Stages of the ensemble architecture for combining the two writer identification approaches.

the votes of the two approaches are taken into account

for the final identification of the writer.

The remainder of the paper is structured as fol-
lows. The preprocessing step is presented in Section 2,

in which the music score is binarized, and staffs and

lyrics are removed. In Section 3 the first feature extrac-

tion method is fully described, consisting in normal-
izing the music line and extracting line features. Sec-

tion 4 presents the second feature extraction method,

which generates texture images and extracts textural

features. Section 5 presents the combination of the two

writer identification approaches. Experimental results
are presented and discussed in Section 6. Finally, Sec-

tion 7 concludes the paper and proposes future work.

2 Preprocessing

The preprocessing phase consists in binarizing the im-

age, removing the staff lines and lyrics. First, the im-

age is binarized using Niblack, and deskewed using the
Hough Transform. Then, a coarse staff approximation

is obtained by using median filters (with a horizontal

mask), and joining the resulting horizontal segments.

Afterwards, a contour tracking process is used for an

accurate detection of the staff lines. Finally, staff lines
and lyrics are removed. The process is outlined in this

section. For further details, see [9].

The input gray-level scanned image (at a resolution

of 300 dpi) is first binarized with the adaptive binariza-
tion technique proposed by Niblack [24]. Then, filter-

ing and morphological operations are applied to reduce

noise. Afterwards, the image is deskewed in order to

make the recognition of staff lines easier. For this pur-

pose, the Hough Transform is used to detect lines and
obtain the orientation of the each staff, which is inde-

pendently rotated if necessary.

Once the image has been binarized and deskewed,

the next step consists in removing the staff lines. For
the task of writer identification, the staff lines are use-

ful only if they are drawn by hand. In most of the mu-

sic sheets of our database, however, they are printed.

For that reason, staff lines are removed from the score.

The extraction of staff lines is difficult (even if they are

printed) because of paper degradation and the warping
effect. For that reason, a robust system for detecting

staffs is required, coping with distortions and gaps in

staff lines.

The steps for staff removal are the following. Firstly,

a coarse staff approximation is obtained using horizon-
tal runs as seeds to detect a segment of every staff

line. This approximation is computed by applying me-

dian filters (with a horizontal mask) to the skeleton

of the image. Remaining objects are only segments of

the staff lines and horizontally-shaped symbols. After-
wards, staff lines are reconstructed, and each segment

is discarded or joined with others according to its orien-

tation, distance and area. Secondly, a contour tracking

process is performed from left to right and right to left,
following the best fitting path according to a given di-

rection. In order to cope with gaps in staff lines and

to avoid deviations (wrong paths) in the contour track-

ing process, the coarse staff approximation mentioned

above is consulted. Then, those segments that belong
to the staff lines (their width is similar to the average

of the width of staff lines, which has been previously

computed) are removed. Finally, those elements that

are not connected to any staff line are considered as
lyrics and removed from the image. For further details,

see [9].

3 Writer Identification Approach Based on

Music Lines

The first writer identification (w.i.) approach is inspired
by the text-independent writer identification methods

applied to text lines, such as the approach proposed by

Bouletreau et al. [3], which uses fractal features; the

method proposed by Schlapbach and Bunke [29], which
uses Hidden Markov Models; and Schomaker and Bu-

lacu [31], which propose the use of connected compo-

nent contours and edge-based features.
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Fig. 2 Obtaining three music lines for each page. Once the staff lines are removed, each music line is normalized and joined in a single
music line. Then, this line is split in three lines of approximately equal length, which will be the input music lines.

Concretely, our method is based on the one pro-

posed by Hertel and Bunke’s [17], which computes 100

features from text lines, using connected components,

enclosed regions, and fractals, among others. It is an ex-
tension of the approach proposed by Marti et al. [23],

in which 12 features were used. In our first approach

(see [10]), we generated as many music lines as staffs

were found in the music score, and 100 line features

were computed. Contrary, in the current approach we
generate three long music lines (see Fig. 2), and then

compute 98 features from these lines. The individual

steps of the method are described next.

3.1 Normalization

The information about the location of staff lines previ-

ously obtained is used for segmenting the music sheet

into lines. Afterwards, the lines must be aligned with
respect to a horizontal reference line. This step will be

called normalization.

The normalization typically performed in handwrit-

ten text can not be applied here, because in musical

scores, the height of every music line will vary depend-

ing on the melody of the composition. In music no-
tation, notes are located further up and down in the

staff for reaching higher or lower frequency. Therefore,

melodies with both treble and bass notes would result in

a line with a larger height. This fact can be confusing for

the writer identification system, which could wrongly

identify heights of large extend in lines (melodies with

bass and treble notes) as a typical feature of a specific
writer. Since our goal is to obtain a melody independent

writer identification method, it must not rely on melody

information. For this purpose, the music notes are rear-

ranged with respect to a horizontal reference line. Thus,

the normalization step computes the centroid of every
connected component of the line, and uses this centroid

for aligning the component with a horizontal reference

line (see Fig.3).

Fig. 3 Preprocessing step: Original music line in gray scale, bi-
narized music line (without staff lines), and normalized line, in
which all the music symbols are aligned with respect to a hori-
zontal reference line.

To obtain the music line that will be used for the
computation of features, the first option consists in gen-

erating as many music lines as staffs are present in the

music sheet. Thus, each music staff line was prepro-
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cessed, normalized and used as an input music line. Us-

ing this option the number of staffs in each music sheet

will indicate the number of music lines that will be gen-

erated. But, with this option, one can easily introduce

noise to the writer identification process, because some
music sheets contain short staffs. In this case, music

lines do not contain enough music symbols to compute

reliable features.

For avoiding this problem, each music page will gen-
erate exactly three long music lines, independently of

the number of music staff lines that it contains. With

this option, after the preprocessing and normalization

steps, all the music lines will be joined in one single

music line. Afterwards, this long music line will be split
in three equal parts, which will be the three input mu-

sic lines for the feature extraction stage (see Fig.2). It

must be said that we have decided to generate exactly

three lines after analyzing the amount of music symbols
that usually appear in the music sheets. Nevertheless, a

long music line could also be split in a different number

of lines, depending on the amount of music symbols of

music sheet.

3.2 Feature Extraction from Music Lines

Once the musical score is transformed into normalized

handwritten individual music lines, 98 features are com-

puted for every line. Previous work by Hertel and Bunke
[17] was performed for writer identification in hand-

written text documents, in which 100 features where

extracted. These features include basic measures (such

as slant and width of the writing), connected compo-
nents, enclosed regions, lower and upper contour of the

line and fractal features.

The basic idea is to use 98 of the 100 Hertel’s fea-

tures, adapting them to music lines, within the specific

normalization described in the previous section. The
two features that have been omitted in our approach

are the enclosed regions measures, which measure the

roundness of the loops. These measures are very useful

in handwritten text, because closed loops can be of cir-
cular, elliptical or rectangular shape, depending on the

writing style. Contrary, the probability of finding closed

loops in music notation is low (see Fig.4). In fact, just

a few music symbols contain loops (e.g. whole and half

note, and accidentals), and in addition, these symbols
are not frequent, specially in fast rhythms and tempos.

Consequently, they appear only in a small subset of mu-

sic lines, and for this reason, they can not be used for

writer identification.
A brief description of the features used in the work

described in this paper is given below. For a full de-

scription we refer to [17] and [23].

Fig. 4 Example of a music line without any closed loops.

3.2.1 Basic Measures

The basic features taken into account are the following:

the writing slant, the height of the main three zones

and the width of the writing.

For obtaining the slant angle, the contour of the

writing is computed and an angle projection is created

by accumulating the different angles along the contour.
All angles are weighted by the length of the correspond-

ing line. From the histogram, the mean and standard

deviation are computed.

The three writing zones are called the UpperZone,

the MiddleZone and the LowerZone. They are deter-

mined by the top line, the upper baseline, the lower

baseline and the bottom line. To determine these lines,
a horizontal projection histogram of the music line is

computed, and an ideal histogram with variable po-

sition of the upper baseline and the lower baseline is

matched against this histogram. Then, the following ra-

tios (for avoiding absolute values) are used as features:
U/M , U/L and M/L, where U is the height of the Up-

perZone, M is the height of the MiddleZone and L is

the height of the LowerZone.

Fig. 5 The three main zones detected in a music line: Upper,
Middle and LowerZone.

The width of the writing is obtained by selecting

the row with most black-white and white-black transi-

tions. In this row, the median ml of the lengths of the

foreground runs is computed. Finally, this value is used

for obtaining the ratio, M/ml (where M is the height
of the Middlezone), which will be used as a feature.

3.2.2 Connected Components

Some authors write musical notes in a continuous stroke

while others break it up into a number of components.
Thus, from every binary image of a line of music, con-

nected components are extracted. Then, the average

distance between two successive bounding boxes is com-

puted. The system computes the average distance of
two consecutive connected components and also the av-

erage distance between the graphical primitives belong-

ing to the same connected component. Moreover, the
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average, median, standard deviation of the length of

the connected components are used as features.

3.2.3 Lower and Upper Contour

A visual analysis of the upper and lower contours of the

music lines reveals that they differ from one writer to

another. Some writings show a rather smooth contour

whereas others are pointed with more peaks. This kind
of information is utilized for writer identification.

For selecting the lower and the upper contour of a

line, gaps must be removed, and discontinuities in the

y-axis are eliminated by shifting these elements along
the y-axis (see Fig.6). Once the continuous lower and

upper contour (called characteristic contours) are ob-

tained, the following features are extracted: slope of

the characteristic contour (obtained through linear re-
gression analysis), the mean squared error between the

regression line and the original curve, the frequency of

the local maxima and minima on the characteristic con-

tour (if m is the number of local maxima and l is the

number of local minima, then the frequency of local
maxima is m/l and the frequency of local minima is

l/m), the local slope of the characteristic contour to

the left of a local maximum within a given distance,

and the average value taken over the whole character-
istic contour. The same features are computed for the

local slope to the right of a local maximum, and for

local minima.

Fig. 6 Discontinuities are removed before computing the con-
tour features. The first row shows the music image, the second
one shows the lower contour extracted, then the lower contour
after gap elimination, and finally, the lower contour after the
elimination of discontinuities in the y-direction.

3.2.4 Fractal Features

The idea proposed in [3], [4] is to measure how the area

A of a handwritten line grows when a morphological

dilation operation is applied on the binary image. The

line is first thinned, and the dilation is performed using

different kernels (disks of radius η for obtaining infor-

mation invariant to rotation).

For each of these kernels, the area A(Xη) of the

dilated writing Xη is measured. The fractal dimension

D(X) is defined by

D(X) = lim
η→0

(2 − lnA(Xη)

ln η
) (1)

Then, we obtain the evolution graph plotting y as a
function of x

x = ln η; y = lnA(Xη) − ln η (2)

This function is approximated by three straight lines

(see Fig.7). The points p1, ..., p4 are found by minimiz-

ing the square error between the three line segments and
the points of the evolution graph. Finally, the slopes

of these three characteristic straight line segments are

computed and used as features.

Fig. 7 Fractals: Approximation of the evolution graph by three
straight lines (extracted from [23]).

In addition to three disks kernels, 18 ellipsoidal ker-

nels are used for getting more features. These ellipses

are defined with increasing length of the ellipse’s two

main axes and the rotation angle. Thus, a total of 63

(=21x3) fractal features are extracted.

We can conclude that with this first approach, we

have adapted the text-idenpendent writer identication

approach proposed by Hertel and Bunke in [17] to music

scores. In the preprocessing step, the image is binarized,
de-skewed, staffs are removed and the lines of music

symbols are normalized. Afterwards, 98 features (slant,

connected components, upper and lower contours, and

fractals) are computed. We have removed the closed-
loop features from the set of 100 line features proposed

for text [17] because there are not enough closed loops

in a big amount of music symbols.
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4 Writer Identification Approach Based on

Music Textures

The second approach is based on the computation of

textural features. Textures provide important charac-

teristics for object identification, playing an important

role in image analysis and pattern classification [15],
[34]. Texture classification has been used in applications

such as biomedical image processing, content based im-

age retrieval, the analysis of satellite images, etc. Some

authors ([13], [18], [27]) considers writer identification

as a texture identification problem. They generate a
uniform texture from text lines and compute their tex-

tural features. Some works ([18], [35]) demonstrate that

these features can also been used for script and lan-

guage identification. Concretely, Peake and Tan [25]
propose the generation of texture images from printed

text and the use of Gabor filters and grey level co-

ocurrence matrices as textural features for script and

language identification. Similarly, Said et al. demon-

strate in [27] that textural features can also be success-
fully used for writer identification.

In our approach, we generate texture images from

music symbols before the computation of textural fea-

tures.

4.1 Generation of Texture Images

Once the input image is preprocessed, the music sym-

bols are used for generating texture images. It must

be noted that textural features directly applied to the
music score without any staff removal are not effective,

because the frequency of the staff lines affects the values

of the textural features.

In [11] we presented four different methods for ob-
taining the texture images. Every method used a differ-

ent spatial modification of music symbols to generate

the textures. Results showed that Resize Textures were

the best texture images for this problem. Resize texture

consists in randomly choosing music symbols from the
music score, and putting them in a reference line, with

the same inter-symbol distance, and resizing them to

the same size, but without preserving the aspect ratio

in the resizing process. In this way, the appearance of
the symbols is distorted (symbols are taller compared to

their original shape), but one obtains compact texture

images.

The steps for the generation of the Resize textures

are the following:

– Take all the music symbols obtained after the staff

removal step.

– Resize all the music symbols to the same size, with-

out preserving their aspect ratio.

– Take randomly the resized music symbols and put

them in a reference line, with the same inter-symbol

distance.
– Repeat the previous steps until all the music lines

in the texture image are completed.

An example is shown in Fig. 8. It is important to

remark that the three writers in this figure can be easily

distinguished one from each other. Having a look at the

resulting texture images, one can see that writer 1 tends
to use more curves than straight lines, writer 2 tends to

write in a rectilinear way (a lot of straight lines), and

writer 3 tends to write with clearly observable slant.

4.2 Feature Extraction from Texture Images

Once images of music textures have been generated,
textural features can be computed. In [25] and [27],

texture images are generated from text, and from these

texture images one can obtain textural features. We

have been inspired by this idea, generating music tex-

ture images to extract textural features.

The textural features computed in our approach are

Gabor features and Gray-Scale co-ocurrence matrices.

They are described next.

4.3 Gabor Features

Prior to the definition of the Gabor features, we will

briefly present the fundamentals of Gabor filters.

4.3.1 Gabor Filters

The multi-channel Gabor filtering technique [32] is typ-

ically used for analyzing the frequential information of
an input image. It can be seen as a windowed Fourier

Transform where the window is a Gaussian function.

This technique is based on psychophysical and physi-

ological studies [7] which state that the processing of

information in the human visual cortex involves a set
of parallel and quasi-independent cortical channels. Ev-

ery cortical channel can be modeled by a pair of Gabor

filters he(x, y; f, θ) and ho(x, y; f, θ). These filters show

opposite symmetry and are computed as

{

he(x, y; f, θ) = g(x, y)cos(2πf(xcosθ + ysinθ))

ho(x, y; f, θ) = g(x, y)sin(2πf(xcosθ + ysinθ))
(3)

where g(x, y) is a 2D Gaussian function, f is the fre-

quency and θ is the spatial orientation.
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(a) (b) (c)

(d) (e) (f)

Fig. 8 Generation of texture images. Pieces of preprocessed music pages from three different writers. (a) Writer 1, (b) Writer 2, (c)
Writer 3; and the corresponding Resize texture images generated. (d) Writer 1, (e) Writer 2, (f) Writer 3.

The Gabor transform of image P (x, y) can be com-
puted as







qe(x, y) = FFT−1

[

P̂ (u, v)He(u, v)
]

qo(x, y) = FFT−1

[

P̂ (u, v)Ho(u, v)
] (4)

where P̂ (u, v) is the Fourier Transform of the input im-

age P (x, y), and He(u, v) and Ho(u, v) are the Fourier

Transform of the filters he(x, y; f, θ) and ho(x, y; f, θ),
respectively. In our case, we perform a combination of

the two filters by

q(x, y) =
√

q2
e(x, y) + q2

o(x, y) . (5)

For the sake of clarity, Fig. 9 shows an example of

the application of different Gabor filters to an input im-

age with music symbols. One can see that the impor-
tant frequency components of this image are found in

the horizontal orientation (Fig. 9(b)(d)) instead of the

vertical and diagonal ones (Fig. 9(c)(e), respectively).

4.3.2 Computation of Gabor Features

For the computation of the Gabor features, we have to

specify the angle θ and the central frequency f , which
define the location of the Gabor filter on the frequency

plane. In [33], it has been shown that for an image

of size NxN , the important frequency components are

found within f ≤ N/4 cycles/degree. For this reason,

the two parameters used are the radial frequency with
values f ∈ {4, 8, 16, 32} and the orientation with val-

ues θ ∈ {0o, 45o, 90o, 135o}. The output corresponds to

4x4 = 16 images. Extracting the mean and the stan-

dard deviation we obtain a total of 16x2 = 32 features.
In other words, textural features can be described as a

two-dimensional vector (µ, σ) = v(f, θ).

4.4 GSCM Features

Some authors [16],[34] claim that neighborhood prop-

erties of a pixel can represent a texture. In this sense,
the grey level co-occurrence and their distribution in

the pixel neighborhood reflect the local activities of a

texture, being one of the useful properties for texture
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(a)

(b) (c)

(d) (e)

Fig. 9 Example of the application of different Gabor filters. (a)
Original image, (b) and (d) results of applying a horizontal Ga-
bor filter with low and high frequency, respectively, (c) Results
of applying a vertical Gabor filter with low frequency and (e)
diagonal high frequency.

description. They estimate image properties related to

second-order statistics, allowing the discrimination of
one texture from another. Haralick [16] proposes the use

of Grey-Scale Co-ocurrence Matrices (GSCM), which

describe pairs of grey levels with given distance and

orientation. Although this method considers only the

spatial distribution of each pair of grey level pixels, it
has become a popular technique for characterizing grey

scale textures [25].

If an image contains G grey levels, for every dis-

tance d and angle θ we obtain a matrix of dimension

GxG, defined as GSCMd,θ, where GSCMd,θ(a, b) cor-

responds to the number of pairs (P1, P2) where P1 is
a pixel of grey value a, P2 is a pixel of grey value b,

and P1 and P2 are separated by distance d and angle

θ. Whereas GSCM are of a high computational cost for

grey level images, they are fast to compute for binary

images, because there are only two grey values.

The parameters used in our method are the dis-

tance d with values d ∈ {1, 2, 3, 4, 5}; and the orien-

tation θ ∈ {0o, 45o, 90o, 135o}. The output corresponds

to 20 matrices of dimension 2x2, and due to the diag-
onal symmetry, there are only 3 independent values in

each matrix. In total we obtain 20x3 = 60 features.

We can summarize that this second symbol- inde-

pendent writer identification approach generates tex-

ture images from the music scores in order to extract

textural features (Gabor and GSCM). It is an adap-
tation of the text-idenpendent writer identication ap-

proach proposed in [27] to music scores. Consequently,

the system is more robust, without the use of any sym-

bol recognition method.

5 Combination of the Two Approaches

Once the line and textural features have been computed

as described in Sections 3 and 4, the individual clas-

sification methods according to Sections 3 and 4 are

applied, and then the results are combined for obtain-
ing the final writer identification (w.i.). These steps are

described next.

5.1 Classification of each of the two Individual

Approaches

Once the first w.i. approach has completed its specific
preprocessing (normalization and generation of s mu-

sic lines) and has computed the 98 line features de-

scribed in Section 3, the classification of each music

line is performed with the k-NN classifier using the Eu-
clidean Distance [8]. For a fair comparison between all

the features, they are all normalized (values between 0

and 1) before applying the Euclidean distance. Since we

obtain s music line images from every music page, and

consequently they belong to the same music sheet, they
should be assigned to the same class. For this reason, we

combine the classification results of the s music lines.

Since we are mainly focused on the feature extraction

step, we have chosen two classic well-known methods
for combining the results from both approaches: the

Majority Voting and the Borda Count method.

Majority Voting and Borda Count are classical com-

bination methods [21] which have been often used in the

context of multiple classifier systems. In both methods,

for each element to be classified we first determine the
k nearest candidate classes. The list with the k candi-

dates is sorted so that the first candidate has obtained

the highest confidence rate. Majority Voting consists in
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assigning one vote to each of the k nearest candidate

classes. Contrary, in the Borda Count method, the first

ranked candidate obtains more votes for the class than

the last ranked candidate.

Similarly, the second w.i. approach generates s tex-

ture images and computes the textural features described
in Section 4. Then, the s texture images are classified

with the k-NN classifier using the Euclidean Distance.

Due to the fact that the s textural images are extracted

from the same music sheet, they should be assigned to

the same class. For this reason, the classification results
are combined using the Majority Voting or the Borda

Count method described above.

5.2 Combination of the Results Obtained from the

Two Approaches

Once each writer identification approach has performed
the voting step described above, we combine all the ob-

tained votes. The combination is performed as follows.

Firstly, for the line-features approach, each of the three

input lines are classified and the corresponding k near-
est neighbor classes receive votes. Secondly, each of the

three input textures are also classified and the k-NN

classes receive the corresponding votes. Finally, all the

votes are combined, and the input music sheet will be

classified as the class which has received the largest
number of votes. Notice that both w.i. approaches have

the same weight, because they give the same number of

votes.

6 Experimental Results

We have tested the methods on a data set consisting
of 200 music pages (see an example in Fig.10). These

pages have been obtained from a collection of music

scores of the 17th to 19th centuries, from the archive of

Seminar of Barcelona and the archive of Canet de Mar

(Spain). The data set contains 10 pages for each one of
20 different writers. Concerning the first approach, we

have divided the long music line in one, two, three, four

or five samples. Similarly, we have generated from one

to five texture images. The size of each texture image is
of 2048x2048 pixels (because of the high resolution of

the scanned input images). Thus, from the 200 music

pages, if we generate s music lines and s texture images

per music sheet, we obtain a data set of 200 ·s lines and

200 · s texture images (10 pages x 20 writers x s).

For the experiments, we have used 5 test subsets,
randomly chosen, containing one page per writer. This

means that all the s music lines obtained from every

page are used in the same test set. Similarly, all the s

Fig. 10 Example of an old score of the composer Casanoves.

music texture images generated from every page are in

the test set. In order to obtain independent test subsets,

all the s lines or textures generated from one music

test page belong to the same subset. For example, if we
generate s = 3 samples for each image, there will be

60 images (3 elements x 20 pages) in each test subset,

and the remaining 540 images in the training set, i.e.

as prototypes for the k-NN classifier.

As previously explained, we obtain s music images

(lines or textures) from every music page and, conse-

quently, all these s elements belong to the same music
sheet and should be assigned to only one class. For the

purpose of comparison, our experiments also show the

case where no combination of results is attempted (the

s images extracted from a same page can be assigned
to different classes).

Next, the results of each individual writer identifi-
cation approach are shown. In addition, some Feature

Selection Methods have been applied for discussing the

suitability of the feature sets. Finally, the individual

approaches are compared with the combination of the

two approaches. The score is computed by means of
stratified five-fold cross validation, testing for the 95%

confidence interval CI with a two-tailed t-test [19], [21],

computed as:

CI =
1.96 σXj√

NT
(6)

where σXj
is the standard deviation of the performance

of the tests Xj , and NT is the number of tests.

6.1 Results Using Music Line Features

Table 1 shows the writer identification results using

line features with different number of samples (s =

{1, 2, 3, 4, 5}) generated for each music page. Thus, from
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the 200 music pages, if we generate one music line per

music sheet, we have a data set of 200 lines. In case we

generate five music lines for each music page, we gener-

ate a total of 1000 music lines (5 x 10 pages x 20 writ-

ers) for computing the feature vectors. From the exper-
imental results, we can see that using one line per page

we obtain a writer identification (W.I.) rate of 65%,

using two lines we obtain a W.I. rate of 70%, which

increases to 76% using three lines per page. Contrary,
with the generation of four and five samples there is no

significant improvement (75% and 78% respectively),

whereas the number of samples generated per page in-

creases considerably (1000 with 5 samples instead of 600

with 3 samples), and consequently, the computational
time. For this reason, we have decided to generate ex-

actly three lines for each music page, obtaining a good

trade-off between performance and computational cost.

Table 1 Writer identification rates and confidence values using
line features with different number of samples (s = number of
samples generated for each music page). It shows the results for
different values of the k-NN, and with the combination of features
using the Majority Voting (MV), the Borda Count (BC) method,
or without any combination.

W.I.Rates (%) and conf. values

s Comb. 1-NN 3-NN 5-NN 7-NN 9-NN

1 None 61(11) 65(10) 60(6) 57(8) 56(6)

2 None 65(6) 67(7) 64(8) 66(8) 64(8)
2 MV 62(9) 69(9) 65(10) 64(10) 66(12)
2 BC 62(9) 70(7) 68(9) 67(8) 67(8)

3 None 67(7) 70(6) 68(4) 68(6) 69(7)
3 MV 72(7) 76(8) 74(8) 71(8) 72(12)
3 BC 72(7) 75(5) 75(10) 73(10) 73(9)

4 None 70(8) 69(7) 69(8) 68(10) 68(11)
4 MV 75(7) 73(9) 73(11) 72(13) 72(12)
4 BC 75(7) 74(7) 74(7) 72(9) 71(12)

5 None 69(6) 68(6) 70(8) 72(9) 68(8)
5 MV 74(6) 74(9) 78(10) 77(12) 74(11)
5 BC 74(6) 75(10) 75(11) 77(10) 76(11)

Table 2 shows the writer identification results using

line features for an increasing number of writers. From

the database, the first 5 writers have been selected. The

classification rates have been obtained for different val-

ues of k in the k-NN classifier and also for different
combinations of the results obtained from the classifica-

tion of the three music lines per page (None, Majority

Voting and Borda Count). Iteratively, 5 writers have

been added to the database, and the experiments have
been repeated. It can be observed that 3-NN and 5-NN

obtain in most cases better recognition rates than 7-

NN. Results using Majority Voting or Borda Count are

better than results using no combination at all. Con-

cerning the scalability of the method, in the best case,

the recognition rate of 84% for 5 writers decreases to

76% for 20 writers, showing that the method scales well.

Table 2 Classification Results: Writer identification rates
(W.I.Rates) and confidence values (given in brackets), using 98
line features for different database sizes (w = number of writers)
and different combination of results.

W.I.Rates (%) and confidence values

w Combination 3-NN 5-NN 7-NN

5 None 77.3(12.1) 77.3(6.7) 73.3(4.1)
5 MV 84(14.7) 76(7.8) 72(9.6)
5 BC 84(14.6) 84(14.6) 72(9.6)

10 None 75.3(7.9) 72(8.9) 68(8.4)
10 MV 80(10.7) 74(4.8) 68(7.3)
10 BC 80(12.4) 76(10) 72(11.4)

15 None 69.3(7.7) 69.7(4.7) 69.3(5.4)
15 MV 78.6(8.6) 74.6(9.6) 70.6(8.9)
15 BC 77.3(8.9) 73.3(10.9) 73.3(10.9)

20 None 70.6(5.9) 68.3(4.3) 68.6(6.1)
20 MV 76(8.4) 74(8.4) 71(7.8)

20 BC 75(5.4) 75(10.3) 73(9.6)

6.2 Results Using Music Textural Features

Similar to the line features experiments, we show the

writer identification results using textural features with
different number of samples (s = {1, 2, 3, 4, 5}) gener-

ated for each music page. Thus, if we generate one mu-

sic texture image per music sheet, we have a data set of

200 texture images, and if we generate five music tex-
ture images for each music page, we generate a total of

1000 music texture images (5 x 10 pages x 20 writers).

The writer identification rates obtained using Gabor,

GSCM and both (Gabor and GSCM) set of features

are shown in Tables 3, 4, and 5 respectively. We can
see the results for different values of k = {1, 3, 5, 7, 9}
for the Nearest Neighbor, and also with the Majority

Voting and Borda Count method for the combination of

classification results. From the experimental results, we
can see that the generation of three texture images for

each page is a good trade-off between performance and

computational cost (a W.I. rate of 73% with 600 tex-

ture images). Notice that the combination of the Gabor

and GSCM features in one single vector of 92 features
increases the final recognition rates (73% with 3 tex-

ture images). One can see that the Majority Voting and

Borda Count method obtain the best classification re-

sults, and in most of the cases, the k = 5 value slightly
increases the final classification rates.

As a summary, it can be said that the Resize Tex-

tures with the combination of both Gabor ad GSCM
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Table 3 Writer identification rates and confidence values using
the Gabor features (s = number of samples used for the classifi-
cation). It shows the results for different values of the k-NN, and

with the combination of features using the Majority Voting (MV),
the Borda Count (BC) method, or without any combination.

W.I.Rates (%) and conf. values (with 32 Gabor features)

s Comb. 1-NN 3-NN 5-NN 7-NN 9-NN

1 None 49(6) 53(7) 53(5) 56(9) 56(6)

2 None 58(6) 59(7) 60(6) 62(5) 62(3)
2 MV 59(7) 66(6) 64(8) 68(7) 65(3)
2 BC 59(7) 65(4) 65(4) 68(5) 69(5)

3 None 57(6) 59(7) 59(5) 62(6) 61(5)
3 MV 59(7) 67(11) 67(7) 65(7) 67(8)
3 BC 59(7) 67(10) 64(10) 66(8) 68(7)

4 None 56(6) 58(6) 58(5) 58(5) 60(5)
4 MV 56(8) 68(7) 66(7) 66(7) 69(6)
4 BC 56(8) 65(5) 69(7) 68(7) 68(9)

5 None 55(5) 59(5) 59(4) 59(5) 58(6)
5 MV 66(9) 70(7) 71(7) 69(4) 71(6)
5 BC 66(9) 69(8) 71(8) 71(7) 71(7)

Table 4 Writer identification rates and confidence values using
the GSCM features (s = number of samples used for the classi-
fication), with different values of the k-NN, and with the combi-
nation of features using the Majority Voting, the Borda Count
method, or without any combination.

W.I.Rates (%) and conf. values (with 60 GSCM features)

s Comb. 1-NN 3-NN 5-NN 7-NN 9-NN

1 None 64(6) 61(8) 65(11) 60(12) 58(7)

2 None 64(7) 64(9) 63(7) 62(9) 64(10)
2 MV 65(5) 65(11) 61(9) 62(7) 62(8)
2 BC 65(5) 64(10) 65(11) 65(11) 64(12)

3 None 64(8) 64(8) 64(8) 61(7) 60(9)
3 MV 64(7) 64(7) 65(9) 61(11) 62(10)
3 BC 64(7) 64(7) 66(9) 66(9) 64(12)

4 None 64(10) 64(9) 64(9) 64(8) 62(8)
4 MV 65(9) 65(8) 63(8) 65(10) 61(9)
4 BC 65(9) 65(10) 64(8) 64(8) 66(10)

5 None 65(11) 63(10) 64(9) 64(9) 64(9)
5 MV 63(11) 64(10) 66(9) 66(9) 65(10)
5 BC 63(11) 64(10) 65(10) 66(9) 67(10)

features are the best choice, obtaining a writer identi-

fication rate of 73% using Borda Count and the 5-NN

classifier, or using Majority Voting and 3-NN. A Resize

texture has the highest number of symbols for each tex-
ture image, and visually, the texture images belonging

to the same writer are very similar. As a consequence,

the intra-class distance is reduced, helping in the clas-

sification.

Concerning the scalability of the method, Table 6

shows the writer identification rates of music textures

Table 5 Writer identification rates and confidence values using
the Gabor and GSCM features (s = number of samples used for
the classification), with different values of the k-NN, and with

the combination of features using the Majority Voting, the Borda
Count method, or without any combination.

W.I.Rates (%) and conf. values (with 92 features)

s Comb. 1-NN 3-NN 5-NN 7-NN 9-NN

1 None 65(3) 61(6) 62(7) 62(7) 64(6)

2 None 66(6) 67(7) 69(9) 66(8) 65(7)
2 MV 65(4) 71(11) 69(9) 67(6) 61(8)
2 BC 65(4) 71(9) 70(10) 70(12) 70(12)

3 None 65(7) 67(7) 68(6) 68(8) 69(6)
3 MV 68(5) 73(9) 72(8) 71(10) 71(8)

3 BC 68(5) 70(8) 73(11) 71(11) 71(11)

4 None 64(6) 65(6) 70(5) 67(7) 69(7)
4 MV 69(6) 71(9) 75(13) 72(11) 71(8)
4 BC 69(6) 69(8) 71(9) 74(10) 73(9)

5 None 66(5) 67(6) 66(6) 67(6) 68(7)
5 MV 70(4) 70(4) 75(6) 74(6) 74(8)
5 BC 70(4) 70(4) 73(5) 74(6) 74(6)

Table 6 Classification Results of the Resize Textures: Writer
identification rates and confidence values using the 92 textu-
ral features (Gabor and GSCM) for different k-NN values and
database sizes (w = number of writers), and different combina-
tions of results.

W.I.Rates (%) and confidence values

w Combination 3-NN 5-NN 7-NN

5 None 93(5.8) 93(5.8) 89(12.1)
5 MV 96(7.9) 92(9.6) 88(15.7)
5 BC 92(9.6) 92(9.6) 92(9.6)

10 None 81(9.6) 81(10.2) 82(12.1)
10 MV 86(11.8) 82(15.7) 80(13.9)
10 BC 84(7.8) 84(13.3) 82(15.7)

15 None 67(6.8) 68(6.2) 69(7)
15 MV 71(9.8) 75(10.5) 71(9.8)
15 BC 69(6.7) 73(10.9) 72(12.7)

20 None 67(6.6) 68(6.2) 68(8.1)
20 MV 73(9) 72(8) 71(8.4)
20 BC 70(8.2) 73(11) 71(11.3)

with the 92 textural features for different database sizes.

It is important to notice that the writer identification
rate decreases significantly when adding more writers to

the database (from 96% with 5 writers to 73% with 20

writers) because the different writer styles become very

close. In fact, the analyzed confusion matrices show that
the disciples of the same musician, or writers that be-

long to the same place and time period, tend to have a

very similar writing style (see Figure 11).
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(a) (b)

Fig. 11 Resize texture images from two writers: Both texture
images are very similar although they belong to different classes.

6.3 Results Using Feature Selection Methods

The suitability of the line and textural features has

been analyzed, because some of them could be unnec-

essary or even redundant. The goal of feature selection
is to find the best subset of features that perform bet-

ter than the whole set of features. We have performed

the Sequential Forward Search (SFS), Sequential Back-

ward Search (SBS), Sequential Floating Forward Search

(SFFS), Sequential Floating Backward Search (SFBS)
(see [20], [26]). For the experiments, wrappers are used

as objective function, where one of the five subsets is

used as the test set and the others as the prototypes in

the 5-NN classifier. To evaluate the quality of a selected
feature subset, iteratively three subsets are used in the

classifier and the remaining set is used to measure the

quality of the considered feature subset. Once the algo-

rithm finds the best feature subset, the fifth subset is

used for the final writer identification rate.
Table 7 shows the line features results of feature

selection algorithms for the dataset of 20 writers. The

first row shows the baseline rate (with a 76% or iden-

tification rate), where all the features are used for the
classification. The next ones show the writer identifica-

tion rates using SFS, SBS, SFFS and SFBS feature set

search methods. It is important to remark that results

show that they do not improve the baseline. In fact, the

SFS and SBS obtain about 65% of identification rate,
which is remarkably lower that 76%, probably because

the methods reach some local minima or maxima and

cannot improve the final identification rate. In fact, in

the SFS method, when a feature Y is selected, it will
be for sure in the final solution set. In a similar way, if

a feature Z is removed from the set in the SBS, it will

never be considered again. For this reason, SFFS and

SFBS reach higher identification rates (70% and 75%),

because a feature W can be added and removed several
times from the set of features during the training step.

In Table 8 results of Resize textures of feature se-

lection algorithms are shown. The first row again shows

Table 7 Classification Results: Writer identification rates for
20 writers using Feature Set Search methods for Line features.
It shows the results for different values of the k-NN and differ-

ent number of features (f = number of features), and also with
the combination of features using the Majority Voting (MV), the
Borda Count (BC) method, or without any combination.

W.I.Rates (%)

Method Comb. f 3-NN 5-NN

All Features None 98 70.6 68.3
All Features MV 98 76 74
All Features BC 98 75 75

SFS None 43 60 58.3
SFS MV 43 65 60
SFS BC 43 65 60

SBS None 54 65 58.3
SBS MV 54 60 65
SBS BC 54 65 60

SFFS None 35 65 66.6
SFFS MV 35 70 70
SFFS BC 35 70 70

SFBS None 20 66.6 68.3
SFBS MV 20 70 75
SFBS BC 20 75 75

Table 8 Classification Results: Writer identification rates for 20
writers using Feature Set Search methods for Textural features.

W.I.Rates (%)

Method Comb. f 3-NN 5-NN

All Features None 92 67 68
All Features MV 92 73 72
All Features BC 92 70 73

SFS None 32 61.6 60
SFS MV 32 70 60
SFS BC 32 65 70

SBS None 18 66.6 63.3
SBS MV 18 65 65
SBS BC 18 65 65

SFFS None 28 65 66.6
SFFS MV 28 70 65
SFFS BC 28 70 70

SFBS None 11 68.3 71.6
SFBS MV 11 70 70
SFBS BC 11 70 70

the baseline rate, and the next ones show the results us-

ing SFS, SBS, SFFS and SFBS feature set search meth-

ods. Similarly to the feature selection methods applied
to line features, SFFS and SFBS reach better results

than SFS and SBS. In this case, the identification re-

sults of SFFS and SFBS do not improve the baseline

(SFBS reaches 71.6% which is a little bit lower than

73% of the baseline rate).

It must be said that, although feature selection meth-

ods do not reach any improvement over the baseline, the

dimensionality reduction is significant (from the 98 line
features and 92 textural features to the 20 and 11 fea-

tures selected by SFBS). This fact shows that there are

many dependent or irrelevant features in the original
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feature set, giving us the possibility to select a subset

for obtaining similar results in this database.

6.4 Comparison of the Two Approaches

We have also compared the two symbol-independent

writer identification approaches. Fig. 12 shows the writer

identification results of both methods. We have decided

to compare the best result for each size of the database
and method, independently of the value of k-NN and

the combination method. Thus, for example, in some

cases the best value is obtained using 3-NN with Ma-

jority Voting, and in others, the best rate is obtained

using 5-NN with Borda Count. Having a look at the
results, one can see that textural features reach higher

performance for a database of few writers (86% of w.i.r.

with 10 writers with textural features versus the 82%

with line features), whereas the line features lead to
higher results for a database with 15 or 20 writers (76%

versus 73% of w.i.r. with 20 writers for line features and

textural features respectively). Since the writer identi-

fication rate of 76% is not a significant improvement of

the 73% rate, we can conclude that line and textural
features reach similar identification rates for this spe-

cific database.

Fig. 12 Classification Results: Writer identification rates using
98 line features and 92 textural features for different database
sizes.

6.5 Combination of the Two Approaches

The ensemble architecture proposed in this paper has

been evaluated on the same set of 200 music sheets (10

pages for each one of the 20 writers) that has been used
for testing the two individual w.i. methods. For a fair

comparison, these sets are identical to those that have

been used for testing the writer identification methods

Table 9 Combination of the results of the two writer identifi-
cation approaches. We show the identification rates of each test
and the average with the corresponding confidence value.

W.I.Rates (%) and conf. values

Test Average

Experiment 1 2 3 4 5

Lines 65 75 95 70 70 75 (10.3)
Textures 65 55 80 85 80 73 (11)
Both 80 95 100 95 90 92 (6.6)

based on music lines and textures. For the combination,

we have used the Euclidean distance, the 5-NN classifier

and the Borda Count combination method.

Table 9 shows the writer identification rate (w.i.r.)

for each one of the 5 tests, and the final identification

rate. The first two rows show the identification rates
when using line features (76%) and textural features

(73%). The third row corresponds to the combination

of line and textural features, reaching a writer identifi-

cation rate of 92%, which is a significant improvement
in comparison with the two individual approaches.

It must be noticed that the proposed architecture
extracts information about the music symbols, avoid-

ing any dependence on the symbols’ density. The num-

ber and the kind of symbols appearing in the music

score is closely related to the rhythm and the melody

of the composition. In our approach, we try to avoid
this dependence. In the first w.i. approach, the value of

features extracted from music lines is averaged (e.g. we

compute the mean of the distance between connected

components, or the mean of the slant of the music sym-
bols). In the second w.i. approach, texture images are

generated by randomly selecting symbols and resizing

them. Thus, we minimize the effect of the different num-

ber and kind of symbols in the music sheets. As an ex-

ample, Fig.13 shows two music scores written by the
same writer, which have been correctly classified. One

can see that although the density and the kind of sym-

bols is different, the writing style is very similar (com-

pare the shape of notes, clefs, ending signature).

The high performance of the combination of the

two approaches is remarkable. It is much higher than

the rates obtained from the two individual approaches.
Thanks to the combination of results, when one ap-

proach has misclassified a test image, the other ap-

proach is sometimes able to correct this missclassifi-

cation. In fact, it might occur that even though both
classifiers made a wrong decision, an input test image

is correctly classified due to the combination of the pre-

vious classifications.
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(a)

(b)

Fig. 13 Two music scores of the same writer: Although the den-
sity of symbols is different, both music sheets are correctly clas-
sified as belonging to the same class.

7 Conclusions

This work has addressed the task of writer identifi-

cation in old music scores, as an example of graphic

documents. In this paper we have proposed the combi-

nation of two symbol-independent writer identification
approaches, avoiding the dependence on good symbol

recognition methods. It must be noticed that the writer

identification methods for text documents can not be

directly applied to graphical documents, such as music

scores. We need a specific a preprocessing stage in order
to remove the staff lines. In addition, the normalization

of music lines is not similar to the text lines, because

contrary to handwritten text, music symbols are dis-

tributed over the staff in different positions. Concerning
the generation of texture images, we have investigated

several approaches, concluding that one particular dis-

tribution of symbols in a texture is the best option.

The steps of the system are the following. In the

preprocessing step, the image is binarized, de-skewed,
and staffs and lyrics are removed. Then, the first ap-

proach generates three normalized music lines and ex-

tracts 98 line features, while the second approach gener-

ates three texture images and computes 92 textural fea-

tures (GSCM and Gabor features). The classification is

performed using the Euclidean distance, the k-Nearest

Neighbour classifier, and the Majority Voting or Borda

Count combination method. For combining the results,
each classifier gives votes to the nearest neighbor classes

according to the confidence rate. Finally, the input mu-

sic sheet is classified as the writer that has received the

highest number of votes.

As in other application domains, the experimental

results show that the combination of two different ap-

proaches, obtaining an identification rate of 92%, in-

creases the writer identification rates obtained individ-
ually from the two approaches (76% and 73% respec-

tively). The significant improvement of combination re-

sults demonstrates the suitability of the classifiers pro-

posed architecture.

As a summary, we can conclude that for this spe-

cific database, the combination of the two approaches

has demonstrated to be the best choice. As far as we

know, this is one of the very few works addressing the
problem of writer identification in handwritten docu-

ments of graphical contents. We believe that the work

described in this paper constitutes a step forward in

the field of graphics recognition. Further work will fo-

cus on increasing the size of the database, and adding
specific features for musical notation to the current set

of features. In fact, we are planning to extract informa-

tion about the shape of music symbols, thus obtaining

a symbol-dependent method. In this context, a semi-
automatic approach could be the best option, because

the user could supervise the symbol recognition step.

Although the addition of the user in the loop would

probably decrease the speed of the system (specially

when working with large data sets), the system could
reach higher identification rates.
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