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Abstract—In this paper, we propose a Circular Blurred Shape
Model descriptor to deal with the problem of symbol detection
and classification as a particular case of object recognition.
Feature extraction is performed by capturing the spatial ar-
rangement of significant object characteristics in a correlogram
structure. Shape information from objects is shared among
correlogram regions, where a prior blurring degree defines the
level of distortion allowed in the symbol, making the descriptor
tolerant to irregular deformations. Moreover, the descriptor is
rotation invariant by definition. We validate the effectiveness of
the proposed descriptor in both multi-class symbol recognition
and symbol detection domains. In order to perform symbol
detection the descriptors are learnt using a cascade of classifiers.
In the case of multi-class categorization, the new feature space
is learnt using a set of binary classifiers which are embedded
in an Error-Correcting Output Codes design. The results over
four symbol data sets show significant improvements of the
proposed descriptor compared to the state-of-the-art descriptors.
In particular, the results are even more significant in those cases
where symbols suffer from elastic deformations.

Index Terms—Symbol recognition, Multi-class categorization,
Object detection, Symbol description, Error-Correcting Output
Codes.

I. INTRODUCTION

Object recognition can be divided in two main problems:
object detection and object categorization. Object detection
techniques must be able to locate the target object while
discarding most part of the image, meanwhile multi-class cat-
egorization must classify the object by its corresponding true
class given a large set of possible classes. Symbol recognition
is a particular problem of object recognition. Symbols are
graphical entities made by humans to be read by humans. The
problem of symbol recognition is a classical interest among
the community of Document Image Analysis and Recogni-
tion. Recognition of technical documents or logo spotting for
document database retrieval are typical applications. In the last
years, Symbol Recognition has been also focused on images of
natural scenes (e.g. traffic signs). Rotation, partial occlusions,
elastic deformations, intra-class and inter-class variations, or
high variability among symbols due to different writing styles
(in the case of handwritten documents), are just a few problems
in this domain.

Shape is one of the most important visual cues for describ-
ing objects, and as well as color or texture, it is widely used
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for describing the content of the object. There is an increasing
interest in the development of good shape recognition methods
in the area of Pattern Recognition. In general, the design of a
shape-based approach can be divided in two main steps: the
definition of expressive and compact shape descriptors, and
the formulation of robust classification methods for detection
and classification.

Shape representation is a difficult task because of several
object distortions, such as occlusions, elastic deformations,
discontinuities, or noise. A good shape descriptor should
guarantee inter-class compactness and intra-class separability,
even when describing noisy and distorted shapes. The main
techniques for shape recognition are reviewed in [1]. They
are mainly classified in continuous and structural approaches.
Zernike moments and Angular Radial Transform are examples
of continuous approaches, which extract information from the
whole shape region. Zernike moments [2] maintain properties
of the shape, and are invariant to rotation, scale, and defor-
mations. Angular Radial Transform (ART) [3] decomposes
the shape in an orthogonal basis, making use of a radial
and angular function. It has good performance for general
shapes and uses few features by descriptor. On the contrary,
other continuous approaches only use the external contour
(silhouette) for computing the features, i.e. Curvature Scale
Space (CSS) or Shape context [4]. CSS [5] is a standard of
the MPEG7 [6] that is tolerant to rotation, but it can only
be used for closed curves. Shape Context [4] can work with
non-closed curves, and has good performance in hand drawn
symbols, because it is tolerant to deformations, but it requires
point-to-point alignment of the symbols.

Structural approaches use to represent shapes with relational
information between compounding primitives. Straight lines
and arcs are usually the basic primitives, which approximate
contours and skeletons. Strings, graphs or trees represent the
relations between these primitives. The similarity measure
is performed by string, tree, or graph matching. Attributed
graph grammars, Deformable models, and Region Adjacency
Graphs are a few examples of structural approaches. Attributed
graph grammars [7] can cope with repetitive subpatterns, while
Region Adjacency Graphs [8] reach good performance in front
of distortions in hand drawn documents. Deformable models
on graph based representations of vectorized line drawings [9]
are invariant to distortions and rotation, but require good
initialization and robust edge detection.

Symbol descriptors robust to some affine transformations
and occlusions are not effective enough when dealing with
elastic deformations. Thus, the research of a descriptor that can
cope with elastic deformations and non-uniform distortions is
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still required. In the work of [10], the Blurred Shape Model
(BSM) was presented. It is a descriptor that can deal with soft,
rigid, and elastic deformations, but it is sensitive to rotation.

In this paper, we present an evolution of the Blurred Shape
Model descriptor, which not only copes with distortions and
noise, but it is also rotation invariant. The Circular Blurred
Shape Model (CBSM) codifies the spatial arrangement of
object characteristics using a correlogram structure. Based
on a prior blurring degree, object characteristics are shared
among correlogram regions. By rotating the correlogram so
that the major descriptor densities are aligned to the x-axis,
the descriptor becomes rotation invariant. We validate the de-
scriptor in two scenarios: symbol detection and categorization.
In order to deal with the problem of symbol detection [11],
different pattern recognition methods are proposed in the
literature, such as geometric features, region-based approaches
using connected components, or structural symbol represen-
tation [12]. In our case, the new descriptor is learnt using
a cascade of classifiers with Adaboost, and tested with a
windowing strategy in order to locate the target object. The
validation of the detection procedure is performed over an
architectural image data set and an old music score image
data set. In this case, our method shows better performance
than the standard SIFT descriptor by tolerating large changes
in symbol orientations. Moreover, the original BSM descriptor
requires the object alignment previous to its description, which
considerably increases the computational cost in comparison
to the proposed circular approach.

Referring the categorization of several object classes, many
classification techniques have been developed. One of the
most well-known techniques is the Adaboost algorithm, which
has been shown to be suitable for feature selection and
achieves high performance when applied to binary categoriza-
tion tasks [13]. The extension of this approach to the multi-
class case is usually solved by combining the binary classifiers
in a voting procedure, such as one-versus-one or one-versus-
all voting schemes. In order to extend binary classifiers to the
multi-class case, Dietterich et. al. [13] proposed the Error Cor-
recting Output Codes framework (ECOC), which benefits from
error correction properties, obtaining successful results [14].
In this paper, we learn the CBSM features by a dichotomizer
based on the Adaboost classifier, and then, we combine the
binary problems in an ECOC configuration, which extends
the system to deal with multi-class categorization problems.
The multi-class classification methodology has been used
to compare the state-of-the-art descriptors: BSM, Zernike,
Zoning and SIFT on the public MPEG7 data set and a grey-
level symbol data set.

The paper is organized as follows: Section 2 presents the
Circular Blurred-Shape Model descriptor. Section 3 shows
the multi-class categorization and object detection method-
ologies considered to evaluate the CBSM descriptor. Section
4 presents the experimental evaluation on different binary
and grey-level multi-class symbol categorization and detection
problems. Finally, concluding remarks and perspectives are
presented.

II. CIRCULAR BLURRED-SHAPE MODEL

In this section, we present a circular formulation of the
Blurred Shape Model descriptor [10]. By defining a correl-
ogram structure from the center of the object region, spatial
arrangement of object parts is shared among regions defined
by circles and sections. The method aims to achieve a rotation
invariant description by rotating the correlogram according
to the predominant region density, which implies the full
redefinition of the BSM descriptor. We divide the description
of the algorithm into three main steps: the definition of the
correlogram parameters, the descriptor computation, and the
rotation invariant procedure.

Correlogram definition: Given a number of concentric
circles C, a radius R, a number of sections S, and an image
region I , a correlogram B = {b{1,1}, .., b{C,S}} is defined as
a radial distribution of sub-regions of the image, as shown
in Figures 1(a),(b). Each region b is defined by its centroid
coordinates b∗ (see Fig. 1(c)). Then, the regions around b are
defined as the neighbors of b. Note that depending on the
spatial location of the analyzed region, different number of
neighbors can be defined (see Fig. 1(d)). Different correlogram
structures are shown in Figure 2 for different values of C and
S.

Descriptor computation: In order to compute the CBSM
descriptor, first, a pre-processing of the input region I to obtain
the shape features is required. For several symbols, relevant
shape information can be obtained by means of a contour
map (though based on the object properties we can define a
different pre-processing step). In this paper, we use the Canny
edge detector procedure.

Given the object contour map, each point of the image
belonging to a contour is taken into account in the description
process (see Fig. 1(e)). First of all, the distances from the
contour point x to the centroids of its corresponding region
and neighboring regions are computed. The inverse of these
distances is normalized by the sum of total distances. These
values are then added to the corresponding positions of the
descriptor vector ν (see Fig. 1(f)). This makes the description
tolerant to irregular deformations. Concerning the computa-
tional complexity, note that for a correlogram of C×S sectors
and k contour points considered for obtaining the CBSM
descriptor, only O(k) simple operations are required. The
description procedure is detailed in Algorithm 1.

Rotation invariant descriptor: In order to obtain a ro-
tation invariant description, a second step is included in the
description process. We look for the main diagonal Gi of
the correlogram B that maximizes the sum of the descriptor
values. This diagonal is then taken as a reference for rotating
the descriptor. The orientation in the rotation process, so that
Gi is aligned to the x-axis, is the one corresponding to the
highest density of the descriptor at both sides of Gi. This
procedure is detailed in Algorithm 2. A visual result of the
rotation invariant process can be observed in Figure 3, in which
two bats with different descriptor orientations are rotated and
aligned.

In this way, the output descriptor ν for an input region I rep-
resents a distribution of probabilities of the symbol structure
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(a) (b)

(c) (d)

(e) (f)
Fig. 1. (a) CBSM correlogram parameters, (b) regions distribution, (c) region
centroid definition, (d) region neighbors, (e) object point analysis, and (f)
descriptor vector update after the analysis of point x.

(a) (b) (c)

Fig. 2. Correlogram structures obtained for different C×S sizes: (a) 4×4,
(b) 10× 10, and (c) 16× 16.

considering spatial distortions, where the number of regions
(defined by parameters C and S) defines the blurring degree
allowed. The blurring degree defines the degree of spatial
information taken into account in the description process. In
Figure 3, a bat instance from the public MPEG7 data set [15]
is described with different C × S correlogram sizes. Note
that when we increase the number of regions, the description
becomes more local. Thus, optimal parameters of C and S
should be obtained for each particular problem (e.g. via cross-
validation, splitting the training data into two subsets, one to
train and the remaining one to validate the method parameters).
The selected number of regions (and consequently, the blurring
degree) is the one which attains the highest performance on

Algorithm 1 Circular Blurred Shape Model Description Al-
gorithm.
Require: a binary image I (of dimensions Y xZ), a number of concentric circles C,

and a number of sections S
Ensure: descriptor vector ν, and the set of bins B

1: Define R = max(Y/2, Z/2) as the radius of the most outer concentric circle.
2: Define d = R/C and g = S/360 as the distance between consecutive concentric

circles and the degrees between consecutive sectors, respectively (Figure 1(a)).
3: Define B = {b{1,1}, .., b{C,S}} as the set of bins for the circular description

of I , where bc,s is the bin of B between distances [(c − 1)d, c · d) to the
origin of coordinates o, and between interval angles [(s−1)g, s ·g) to the origin
of coordinates o and x-axis (Figure 1(b)).

4: Define b∗{c,s} = (sinα d, cosα d) the centroid coordinates of bin b{c,s}, and
B∗ = {b∗{1,1}, .., b

∗
{C,S}} the set of centroids in B (Figure 1(c)).

5: Define Xb{c,s} = {b1, .., bc·s} as the sorted set of the elements in B∗ so that
d(b∗{c,s}, b

∗
i ) ≤ d(b∗{c,s}, b

∗
j ), i < j.

6: Define N(b{c,s}) as the neighbor regions of b{c,s}, defined by the initial
elements of Xb{c,s} :

N(b{c,s}) =

{
X′, |X′| = S + 3 if b{c,s} ∈ IN
X′, |X′| = 9 if b{c,s} ∈MI
X′, |X′| = 6 if b{c,s} ∈ EX

being IN , MI , and EX , the inner, middle, and outer regions of B, respectively
(Figure 1(d)).

7: Initialize νi = 0, i ∈ [1, .., C · S], where the order of indices in ν are:
8: ν = {b{1,1}, .., b{1,S}, b{2,1}, ..b{2,S}, .., b{C,1}, ..b{C,S}}
9: for each point x ∈ I , I( x ) = 1 (Figure 1(e)) do

10: D = 0
11: for each bi ∈ N(bx) do
12: di = d(x, bi) = ||x− b∗i ||

2

13: D = D + 1
di

14: end for
15: Update the probabilities vector ν positions as follows (Figure 1(f)):
16: ν(bi) = ν(bi) +

1
diD

, ∀i ∈ [1, .., C · S]

17: end for
18: Normalize the vector ν as follows:
19: d′ =

∑C·S
i=1

νi, νi =
νi
d′ , ∀i ∈ [1, .., C · S]

Algorithm 2 Rotation invariant ν description.
Require: a number of circles C, a number of sections S and a set of bins B
Ensure: Rotation invariant descriptor vector νk

1: Define G = {G1, .., GS/2} the S/2 diagonals of B, where
Gi = {ν(b{1,i}), .., ν(b{C,i}), .., ν(b{1,i+S/2}), .., ν(b{C,i+S/2})}

2: Select Gi so that
∑2C

j=1
Gi(j) ≥

∑2C

j=1
Gk(j), ∀k ∈ [1, .., S/2]

3: Define LG and RG as the left and right areas of the selected Gi as follows:
4: LG =

∑
j,k

ν(b{j,k}, j ∈ [1, .., C], k ∈ [i + 1, .., i + S/2− 1]

5: RG =
∑

j,k
ν(b{j,k}, j ∈ [1, .., C], k ∈ [i + S/2 + 1, .., i + S − 1]

6:
7: if LG > RG then
8: B is rotated k = i + S/2− 1 positions to the left:
9: νk = {ν(b{1,k+1}), .., ν(b{1,S}), ν(b{1,1}), .., ν(b{1,k}), ..,

10: , .., ν(b{C,k+1}), .., ν(b{C,S}), ν(b{C,1}), .., ν(b{C,k})}

11: else
12: B is rotated k = i− 1 positions to the right:
13: νk = {ν(b{1,S}), .., ν(b{1,S−k+1}), ν(b{1,1}), .., ν(b{1,S−k}), ..,
14: , .., ν(b{C,S}), .., ν(b{C,S−k+1}), ν(b{C,1}), .., ν(b{C,S−k})}
15: end if

the validation subset, defining the optimum number of sizes,
encoding the different distortions on each particular problem,
and offering the required trade-off between inter-class and
intra-class variabilities in a problem-dependent way.

The CBSM correlogram is defined by means of a number
of sectors S and number of concentric circles C in a linear
correlogram design. It implies that the area of the outer sectors
is higher than the area corresponding to inner sectors. Since
we define the same importance to all analyzed shape points, it
seems intuitive to define sectors with the same area. However,
in this paper we define a linear concentric circles definition
which implies more local description on the center of the
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Bat1 Bat1 5×5 Bat1 24×24 Bat1 54×54

Bat2 Bat2 5×5 Bat2 24×24 Bat2 54×54

Fig. 3. Examples of image descriptors at different sizes for two object
instances. The more regions are used for the description, the more local
information about the shape is obtained. Notice that the two descriptors are
correctly rotated and aligned.

description meanwhile the distortion degree allowed at the
external sectors is increased. We use this approximation based
on the fact that the outer appearance of symbols is usually
higher compared to the inner variabilities (i.e. the external
strokes in hand-drawn symbols). On the other hand, if we
want to define a correlogram structure where all sectors have
the same area, we simply need to change the distance among
correlogram sectors to satisfy the new constraints.

III. CBSM DETECTION AND CLASSIFICATION SYSTEM

For the sake of completeness, in this section we overview
the object categorization and symbol detection methodologies
considered for validating the proposed descriptor.

A. Symbol classification system

The proposed symbol classification system consists of two
different stages: description and classification. For the first
stage, the above described rotation invariant CBSM descriptor
is computed. For the second stage, the Error Correcting Output
Codes (ECOC) framework is used. The whole process is
shown in Figure 4.

Error Correcting Output Codes [13] is a meta-learning
strategy that divides a multi-class problem in a set of bi-
nary problems, solves them individually, and aggregates their
responses into a final multi-class framework. ECOC have
been successfully applied to many machine vision tasks [16],
[17], [18], [19], showing interesting properties in statistical
learning, reducing both the bias and the variance of the base
classifiers [20].

The ECOC meta-learning algorithm consists of two steps:
the learning/coding step, where an ECOC encoding matrix is
constructed in order to define the combination of classifiers
in the coding matrix T, and the decoding step, where a
new sample x is classified according to the set of binary
classifiers of T. Formally, given a set of N training sam-
ples X = {x1, . . . ,xN}, where each xi belongs to a class
Ci ∈ {C1, . . . , CK}, an ECOC encoding consists of con-
structing M binary problems using the original K classes.
Each binary problem splits two meta-classes, and values +1

Fig. 4. Symbol Classification System. In the training step, the CBSM
descriptor is computed for all the symbols, and the ECOC encoding matrix is
constructed for defining the combination of classifiers. In the testing step, the
CBSM descriptor is computed for the input symbols, and after their alignment,
they are classified using the ECOC decoding algorithm.

and -1 are assigned to each class belonging to the first
and second meta-classes, respectively. If a class does not
belong to any meta-class, the membership value is set to
0. This creates a K × M matrix T. When a new sample
must be classified, the outputs of the classifiers trained on
each binary problem (columns of the matrix T) are used to
construct the codeword that is compared with each row of the
matrix T. The class codeword with the minimum distance is
selected as the classifier output. The ECOC scheme allows
to represent in a common framework well-known strategies
such as one-versus-all or all-pairs (one-versus-one), as well
as more sophisticated problem-dependent encodings, namely
discriminant ECOC [21] or sub-class ECOC [14], without a
significant increment of the codeword length. Literature shows
that one of the most straightforward and well-performing
approaches disregarding the properties of the particular base
learner is the one-versus-one strategy.

The final part of the ECOC process is based on defining
a suitable distance for comparing the output of the classifiers
with the base codewords. The authors of [22] have recently
shown that weighted decoding achieves the minimum error
with respect to most state-of-the-art decoding measures. The
weighted decoding strategy decomposes the decoding step of
the ECOC technique in two parts: a weighting factor for each
code position and any general decoding strategy. In [22] the
authors have shown that for obtaining a successful decoding,
two conditions must be fulfilled: the bias induced by the zero
symbol should be zero and the dynamic range of the decoding
strategy must be constant for all the codewords. The complete
decoding strategy weights the contribution of the decoding at
each position of the codeword by the elements of a weighting
matrix W that ensures that both conditions are fulfilled. As
such, the final decoding strategy is defined as,

δ(y,T(i, ·)) =
M∑
j=1

W(i, j) · L(T(i, j) · hj(x))
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where

w(i, j) =

{
ri(S,T(·, j),T(i, j)) T(i, j) ̸= 0
0 otherwise

M∑
j=1

w(i, j) = 1,∀i ∈ {1 . . .K}

We define the meta-class relative accuracy (r-value) of class
k on the set S given the definition of the meta-class ρ as,

rk(S, ρ, i) =
#elements of class k classified as meta-class i in the set S

#elements belonging to class k in the set S
(1)

where ρ defines which classes belong to which meta-class.
The second part of the weighting decoding relies in a

base decoding strategy. In this paper, we use the Linear
Loss-based decoding as base decoding strategy. Linear Loss-
based decoding was introduced by Allwein et al. [23] and is
defined in the following way: given the input sample x and
the binary code y resulted of applying all the dichotomizers
(h1, h2, . . . , hM ) to the input test sample, the decoding value
is defined as follows,

δ(y,T(i, ·)) =
M∑
j=1

L(T(i, j) · hj(x))

where T(i, ·) denotes the codeword for class i, hj(x) is the
prediction value for dichotomizer j, and L is a loss function
that represents the penalty due to the miss-classification. In
the case of Linear Loss-based decoding, we have L(ρ) = −ρ.

Note that the ECOC framework just requires K · M tests
to perform multi-class classification, being K the number
of possible object categories and M the number of trained
classifiers.

B. Symbol detection system

In order to design a symbol detection methodology, two
stages must be defined. A first stage (namely training) should
learn to distinguish among the target object and background
(i.e. learning a binary classifier). A second stage (namely
testing) should perform a search over the whole image using
the trained classifier in order to locate those regions containing
the target object. The whole process is shown in Figure 5.

For the first step, we propose to learn a binary classifier
using Adaboost [24] with a set of positive and negative object
instances. Since we need to apply this classifier to a huge
number of regions in the second step, the final detection time
for an image is very high. In order to address this limitation,
Viola & Jones introduced a cascade architecture of multiple
strong classifiers [25]. The underlying idea is to use only the
necessary computation cost in order to reject a non-object
regions while more complex analysis is performed in unclear
cases. Those regions that arrive to the last stage of the cascade
are classified as objects, and then selected as object regions,
meanwhile the rest of the regions are rejected. Each stage of
the cascade only analyzes the objects accepted by the previous
stages, and thus, the non-objects are analyzed only until they
are rejected by a stage. The number of applied classifiers is

Fig. 5. Symbol Detection System. In the training step, the CBSM descriptor
is computed for all the symbols, and the cascade of classifiers is used for
learning the positive and negative object instances. In the testing step, the
CBSM descriptor is computed for all the candidate subregions, and the cascade
of classifiers is used for detecting the regions containing the target object.

Algorithm 3 Attentional cascade training algorithm.
Require: A set of positive examples P and a set of negative examples N , a maximum

false alarm rate f , a minimum accuracy a, and a number of cascade levels L.
Ensure: A cascade of strong classifiers h.

1: for i = 1 to L do
2: Fi ← 1, ni ← 0
3: while Fi > f do
4: ni ← ni + 1
5: Use P and N to train a classifier with ni features using Adaboost
6: Fi ← Evaluate current cascaded classifier on validation set
7: Decrease threshold for the ith classifier until the current cascaded classifier

satisfies a detection rate of a (this also affects Fi)
8: end while
9: N ← 0

10: Evaluate the current cascaded detector on the set of non-object images and put
any false detections into the set N .

11: end for

reduced exponentially due to the cascade architecture. This
strategy is detailed in Algorithm 3.

Once the cascade of classifiers is learnt, a windowing
strategy is applied on the whole test image. The method is
described in Algorithm 4.

Algorithm 4 Object detection using a cascade of classifiers.
Require: An image I , a cascade of classifiers h, an initial window size SI , a final

window size SF , a shift s, and an increment i.
Ensure: Target object regions R

1: for windows W of size SI , increasing by i, to SF do
2: for each region r in I of size W with shift s among regions, increasing by i

do
3: test cascade h over region r
4:

h(r) =

{
1 if detected as positive (object instance)

save region→ R = R ∪ r
0 if detected as negative (background).

5: end for

6: end for

IV. EXPERIMENTAL EVALUATION

We divide the experimental evaluation in two main blocks:
multi-class symbol categorization and symbol detection.
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A. Multi-class symbol categorization

In order to present the multi-class categorization results, we
discuss the data, methods, and validation of the experiments:
• Data: For comparing our CBSM multi-class methodology,

we used two multi-class data sets: first, the public 70-class
MPEG71 binary repository data set [15], which contains a
high number of classes with different appearance of symbols
from a same class, including rotation. The second data set is
a 17-class data set of grey-level symbols2, which contains the
common distortions from real-environments, such as illumi-
nation changes, partial occlusions, or changes in the point of
view.
• Methods: The descriptors considered in the comparison

results are SIFT [26], BSM [10], Zoning [1], and Zernike
moments [2]. The details of the descriptors used for the
comparison results are the following: the optimum correlogram
size of the CBSM descriptor is estimated applying cross-
validation over the training set using a 10% of the samples to
validate the different sizes of S = {8, 12, 16, 20, 24, 28, 32}
and C = {8, 12, 16, 20, 24, 28, 32}. For the sake of fairness,
the Zoning and BSM descriptors are set to the same number
of regions as the CBSM descriptor. Rotation invariance for the
BSM descriptor is achieved by means of principal components
alignment before descriptor computation [10]. Concerning the
Zernike moments descriptor, 7 moments are used. Gentle
Adaboost with 50 decision stumps [24] is used for training
the binary problems of the one-versus-one ECOC design [23]
with the Loss-Weighted decoding (LW) [22] to solve the multi-
class categorization problems. We also consider a Support
Vector Machine with a Radial Basis Function base classifier
for the ECOC design with C = 1 and γ = 1 and a 3-
Nearest Neighbor classifier in the comparison results. The
regularization parameter C and the γ parameter are set to
one for the experiments. We selected this parameter after
a preliminary set of evaluations. We decided to keep the
parameter fixed for the sake of simplicity and easiness of
replication of the experiments, though we are aware that this
parameter might not be optimal for the analyzed data sets.
• Validation: The classification score is computed by means

of stratified ten-fold cross-validation [27], testing for the 95%
of the confidence interval CI with a two-tailed t-test [28],
computed as:

CI =
1.96 σXj√

NT
(2)

where σXj is the standard deviation of the performance of the
tests Xj , and NT is the number of tests.

Next, we describe the experiments performed, comparing
our descriptor with state-of-the-art descriptors over two multi-
class categorization problems (with binary and grey-level
symbols).

1) MPEG7 Multi-classification data set: In this experiment,
we used the 70 object categories from the public MPEG7
binary object data set [15] to compare the whole set of

1MPEG7 Repository Database: http://www.cis.temple.edu/ late-
cki/research.html

2These data sets and ground truths are publicly available under request to
the authors of this paper.

Descriptor 3NN ECOC LW Adaboost ECOC LW SVM
CBSM 71.84(6.73) 80.36(7.01) 78.32(6.38)
BSM 65.79(8.03) 77.93(7.25) 78.14(8.12)

Zernike 43.64(7.66) 51.29(5.48) 49.33(6.37)
Zoning 58.64(10.97) 65.50(6.64) 61.22(6.87)
SIFT 29.14(5.68) 32.57(4.04) 28.18(5.91)

TABLE I
CLASSIFICATION ACCURACY AND CONFIDENCE INTERVAL (IN BRACKETS)

ON THE 70 MPEG7 SYMBOL CATEGORIES FOR THE DIFFERENT
DESCRIPTORS USING 3-NEAREST NEIGHBOR AND THE ONE-VERSUS-ONE
ECOC SCHEME WITH GENTLE ADABOOST AND RBF SVM AS THE BASE

CLASSIFIERS.

descriptors in a multi-class categorization problem. A pair of
samples of some classes of this data set are shown in Figure 6.

Fig. 6. MPEG7 samples.

The classification results and confidence interval after test-
ing using a stratified ten-fold cross-validation with a 3-NN
and the ECOC configuration with Gentle Adaboost and RBF
SVM base classifiers are shown in Table I. The value in
brackets corresponds to the confidence interval. Note that the
best performance is obtained by the CBSM descriptor for
all classifiers, followed in all cases by the BSM descriptor.
Moreover, the ECOC configurations always obtain higher
performance than classifying with a nearest neighbor classifier.
On the other hand, Adaboost performs better than RBF SVM
as ECOC base classifier in this data set.

2) Grey-scale Multi-classification symbol data set: The
second data set of symbols consists of grey-level samples from
17 different classes, with a total of 550 samples acquired with a
digital camera from real environments. The samples are taken
so that there are large affine transformations, partial occlu-
sions, background influence, and high illumination changes.
A pair of samples for each of the 17 classes are shown in
Fig. 7. Some examples of the data set of this experiment and
their corresponding CBSM descriptors are shown in Fig. 8. In
this type of data sets, the SIFT descriptor has shown to be the
one which attains the highest performance in comparison to
the state-of-the-art descriptors. Due to this reason, we compare
our CBSM with the SIFT descriptor [26] as well as with the
BSM descriptor [10].

Table II shows the performances and confidence intervals
obtained in this experiment using a ten-fold cross-validation
with the CBSM, BSM, and SIFT descriptors in an one-
versus-one ECOC scheme with Gentle Adaboost as the base
classifier and Loss-Weighted decoding. One can see that the
result obtained by the CBSM descriptor adapted to grey-scale
symbols outperforms the result obtained by the SIFT and BSM
descriptors. This difference is produced in this data set because
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Fig. 7. Grey-scale symbol data set samples.

Fig. 8. CBSM descriptors from samples of the grey-level symbols data set.

of the high changes in the point of view of the symbols and
the background influence, which produce significant changes
of the SIFT orientations. Moreover, the rotation invariance of
the CBSM descriptor makes it faster and more robust than the
BSM descriptor with previous alignment based on principal
components.

B. Symbol detection

In order to show the evaluation of the detection results,
we first describe the test data, the methods that have been
compared with our algorithm, and validation framework to
measure the experimental evaluation.
• Data: To test the detection CBSM methodology, we

selected the predefined architectural plan files of the Smart
Draw software [29] and the old handwritten musical scores
from a collection of modern and old handwritten musical
scores (19th century) of the Archive of the Seminar of Canet
de Mar, Barcelona3.
• Methods: The descriptors considered in the comparison

results are SIFT [26] and BSM [10]. The parameters used
are the same than in the previous experiment. We trained 10
levels of the cascade with Gentle Adaboost classifier with 50
decision stumps [24], and 5000 random background images
from Google were used as negative set.

3These data sets and ground truths are publicly available under request to
the authors of this paper.

CBSM BSM SIFT
77.82(6.45) 75.23(7.18) 62.12(9.08)

TABLE II
CLASSIFICATION ACCURACY AND CONFIDENCE INTERVAL OF THE CBSM,
BSM, AND SIFT DESCRIPTORS ON THE GREY-SCALE SYMBOLS DATA SET
USING AN ONE-VERSUS-ONE ECOC SCHEME WITH GENTLE ADABOOST

AS THE BASE CLASSIFIER.

• Validation: We apply the evaluation framework of [30] for
the detection rate criterion. The detection rate measures how
correct the detector selects the target regions, which have been
previously manually labeled. Then, the accuracy is measured
by the amount of overlapping between the detected region and
the labeled one. We consider that two regions are matched if
they satisfy:

1− Rd ∩Ro

Rd ∪Ro
< ϵ (3)

where Rd is the detected region and Ro is the original
one. We set the maximum overlap error ϵ to 40%, as in [30].
Moreover, we introduce the false alarm rate criterion, defined
as the ratio between the number of detected regions that do
not match which the original labeled ones (false positives) and
the total number of detected regions. This measure should be
as small as possible.

Next, we describe the experiments performed, comparing
our descriptor with state-of-the-art descriptors on two binary
and grey-level symbol detection problems.

1) Symbol detection in raster images of scanned archi-
tectural plans: In this experiment, we used 20 predefined
architectural plan files of the Smart Draw software [29]. We
trained a cascade of classifiers with the parameters previously
defined for the CBSM, BSM, and SIFT descriptors. We used
30 positive door symbol samples for training the cascade.
Since there will be many overlapped detections, we will define
an accepted positive region as the region which has a minimum
of 3 positive detections with an intersection area greater than
the 70% of the area of the smallest overlapped detection.
Note that many positive windows can appear around the target
object. In this way, we also discard false positive isolated
detection. Two examples of doors and their CBSM rotation
invariant descriptors are shown in Figure 9.

Fig. 9. Two examples of door positive images and their corresponding CBSM
visual descriptors.

Some visual results testing the CBSM detection procedure
with a window shift of five pixels (which has been experimen-
tally set) are shown in Figure 11. Note that all the doors are
detected even when connected with different types of walls and
on different rotation degrees. The numerical detection results
for three descriptors are shown in Figure 10(a). From the total
number of doors in the 20 architectural plan images, the 32 test
doors were successfully detected by the three descriptors using
the measure of eq. (3), obtaining a hit ratio of 100%. Moreover,
only one false positive region was detected in the case of
the CBSM descriptor, corresponding to a 3% of the detected
regions. Note that one positive region from the thousands of
analyzed regions is insignificant4.

4A video file showing the learning and symbol detection process for
architectural symbols has been submitted together with the paper.



8

(a) (b)
Fig. 10. (a) Detection results over the architectural plan images. (b) Detection
results over the musical score images.

2) Symbol detection in old handwritten musical scores:
In this last experiment, we used 20 old handwritten musical
scores from a collection of modern and old handwritten
musical scores (19th century) of the Archive of the Seminar of
Canet de Mar, Barcelona. We trained a cascade of classifiers
with the parameters previously defined for the CBSM, BSM,
and SIFT descriptors. We compare with the SIFT descriptor
since it is the most widely applied on grey-level intensity
images. We used 144 positive music clef samples for training
the cascade.

As in the previous experiment, we consider a positive region
if there are a minimum of three intersections, and discard
false positive isolate detection. Some results testing the CBSM
detection procedure with a window shift of also five pixels on
different staffs are shown in Figure 12. Note that all the clefs
are detected. One false positive is shown at the end of the
music sheet. Notice that under this false positive a rotation of
the region appears so that it looks as the beginning of a staff,
where a clef can appear. It is the main reason why the detection
procedure confuses the region. The numerical detection results
for the three descriptors are shown in Figure 10(b). In this case,
the degradation of the images reduces the accuracy of three
descriptors in comparison to the previous case. In particular,
from the total number of 30 test clefs in the images, the best
accuracy is obtained by the CBSM descriptor, detecting 28
symbols using the measure of eq. (3), which corresponds to a
hit ratio of 93.33%. Regarding the false positives, the lowest
false alarm rate is also obtained by the CBSM descriptor,
detecting only 7 false positive regions.

V. CONCLUSIONS AND PERSPECTIVES

In this last section, we summarize the contributions of our
work and present open issues.

A. Conclusions

In this paper, a Circular Blurred Shape Model descriptor
has been presented. The new descriptor is suitable to describe
and recognize, in a fast way, symbols that can suffer from
several distortions, such as occlusions, rigid or elastic de-
formations, discontinuities, or noise. The descriptor encodes
the spatial arrangement of symbol characteristics using a
correlogram structure. A prior blurring degree defines the level
of degradation allowed to the symbol. Moreover, the descriptor
correlogram is rotated guided by the major density, becoming
rotation invariant.

The new descriptor is used to solve object detection and
multi-class categorization problems. In the case of multi-class

Fig. 11. Smartdraw architectural plan images and door symbol detection.

Fig. 12. Clef detection in old handwritten music score images. A false
positive is shown at the bottom of the figure.

symbol recognition, the new symbol descriptions are learnt
using Adaboost binary classifiers and embedded in an Error-
Correcting Output Codes framework. The experimental results
on different binary and grey-level multi-class categorization
problems show that the CBSM descriptor obtains higher per-
formance than the state-of-the-art descriptors, specially when
classifying high number of symbol classes that suffer from
irregular deformations.

For the detection problem, the descriptor is learnt using
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a cascade of classifiers with Adaboost to discard non-object
regions, and tested over whole images, detecting the target ob-
jects. The symbol detection procedure presented in this paper
has shown to robustly locate object instances in documents,
such as binary symbols in architectural plans and grey-level
symbols in old handwritten musical scores, outperforming the
accuracy of the state-of-the-art descriptors and reducing the
false alarm rate.

B. Perspectives

Contour map image points have been used in this work.
However, depending on the kind of objects to be described,
different types of features could be considered and blurred
among the CBSM sectors. In this sense, the contours could
be labeled based on different structure properties (such as
those defined in [31]) and then the CBSM descriptor could
be defined of this new set of features.
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Autònoma de Barcelona and the Université Paris,
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