
Writer Identification in Handwritten Musical Scores

with Bags of Notes

Albert Gordo∗, Alicia Fornés, Ernest Valveny

Computer Vision Center, Universitat Autònoma de Barcelona, Barcelona, Spain

Abstract

Writer Identification is an important task for the automatic processing of

documents. However, the identification of the writer in graphical documents

is still challenging. In this work, we adapt the Bag of Visual Words frame-

work to the task of writer identification in handwritten musical scores. A

vanilla implementation of this method already performs comparably to the

state-of-the-art. Furthermore, we analyse the effect of two improvements

of the representation: a Bhattacharyya embedding, which improves the re-

sults at virtually no extra cost, and a Fisher Vector representation, that very

significantly improves the results at the cost of a more complex and costly

representation. Experimental evaluation shows results more than 20 points

above the state-of-the-art in a new, challenging dataset.
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1. Introduction

Document Image Analysis and Recognition (DIAR) is an important field

in Pattern Recognition, whose aim is to analyze contents of document images.

One of the most active research areas of DIAR is handwriting analysis, which

covers the tasks of recognition, interpretation, identification and verification

of documents.

The aim of writer identification is to determine the author of a piece of

handwriting from a set of writers. Writer Identification is an important task

for the automatic processing of documents, allowing, for instance, the anal-

ysis of digital libraries, where document classification is performed based on

the authorship of the document. It can also be applied to forensic docu-

ment examination, where the personal identification is based on handwriting

individuality instead of face, fingerprint, iris or voice.

While in handwriting recognition and interpretation it is important to fil-

ter out the variations in handwriting style in order to determine the meaning,

these variations in handwriting style are fundamental for handwriting iden-

tification and verification. Hence, there are two important factors in writer

identification: individual characteristics (within-writer variability) and class

characteristics (between-writers variation). The goal is to find an optimal

trade-off between intra-class compactness (minimizing individual character-

istics) and inter-class separability (maximizing class characteristics).

Writer identification in handwritten text documents has been extensively

researched [1, 2, 3, 4, 5]. However, the identification of the writer in graphical

documents is still challenging. Graphical documents use graphical languages,

which consist of symbols and combination rules, to describe ideas in a com-
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pact way. In this scenario, the identification of the writer can be performed

by analyzing the shape of the symbols appearing in graphic documents.

Music Scores are a particular kind of graphic document, which include not

only graphic elements, but also text (e.g. tempo markings, lyrics, etc.). Al-

though the research is mainly focused on Optical Music Recognition (OMR)

[6, 7, 8], writer identification in music scores seems to have awaken some

interest [9, 10, 11]. In fact, many historical archives contain a large number

of musical compositions without information about the composer. In this

sense, the research in writer identification can help musicologists in two dif-

ferent ways: First, when dealing with original drafts (manuscripts written

by the composer, not the scribe or copyist), in addition to melody, harmony

and rhythm, scholars in musicology also analyze the handwriting style by

comparing the shape of music symbols (notes, clefs, rests, accidentals, etc.).

Second, in case of manuscripts that are written by scribes of copyists, the

identification of the writer can help in the geographic location and dating of

the music composition as a first step in the identification process. In both

cases, the handwriting analysis is a time consuming task (especially when

dealing with big databases), and for this purpose, a system for automatic

writer identification in music scores could be very useful.

Although several methods for writer identification of music scores exist in

the literature [12, 11, 13], we will show in Section 4 that their performance

drops significantly in a challenging dataset such as the CVC-MUSCIMA

dataset [14] recently released.

In a previous paper [15], we presented a method based on the Bag of

Visual Words (BOV) framework –called the Bag of Notes (BON) approach–
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that achieved very good performance in a simpler dataset [12]. In this paper,

we will apply some modifications to the BON approach of [15] that permit

to keep a high accuracy in the new CVC-MUSCIMA dataset. We will start

with a vanilla version of the method, using a hard codebook obtained with

k -means and a linear classifier. Results on the small dataset of [12] are very

similar to those obtained with the more elaborated schema of [15], which

uses probabilistic codebooks and an RBF kernel, and are comparable to

the state-of-the-art. Then, we will improve the basic version and analyse the

effect of the modifications in the newer, more challenging dataset of [14]. This

basic version has been improved in two different ways: first, we show how

square-rooting this vanilla descriptor (which, as noted in [16] corresponds to

an explicit embedding of the Battacharyya kernel) can substantially improve

the vanilla results at almost zero cost. Second, we extend the method to make

use of the Fisher Vector (FV) framework [17]. In a nutshell, the FV can be

seen as an extension of the BOV; the FV encodes not only the number of

features assigned to each word, but also higher order statistics as the position

and the sparseness. This framework has been successfully used in different

applications such as image classification [18], retrieval [19], handwritten word

spotting [20], document classification [21], or aesthetics assessing [22]. In the

experiments we will see that the modified BON approach can achieve 99%

accuracy in the new challenging dataset, whereas the performance of all other

methods is significantly lower.

The rest of the paper is organized as follows. In Section 2 we review

existing work on writer identification of music scores. The Bag of Notes

approach is described in Section 3; first we describe the vanilla version, and
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then we extend it using the Battacharyya embedding and the Fisher Kernel

framework. Experimental results are presented and discussed in Section 4.

Finally, Section 5 concludes the paper and proposes some future work.

2. Previous Work

To the best of our knowledge, the first attempts of writer identification

on music scores correspond to the eNoteHistory project [23, 24, 9], in which

the researchers developed a prototype for analyzing the music score and then

extracted structural information of the music symbols and notes. However,

no quantitative results have been published, and as far as we know, this work

has not been continued.

In [10, 12], two different writer identification approaches for old handwrit-

ten music scores were presented, inspired on some writer identification meth-

ods applied to text documents. Results were reported on a small dataset of 20

different writers and 200 images in total [12]. The first method extracts fea-

tures for every music line, whereas the second one extracts textural features

from music textures. The experimental results showed that both methods

achieved similar identification rates, 75% and 73% respectively. The authors

also presented a combination of both approaches [25], obtaining a significant

increase in the classification accuracy, with a final score of 92%. However,

the adaptation of writer identification approaches for text to graphic docu-

ments does not seem to be the best choice, and specific methods designed for

graphical documents may obtain better results.

As a matter of fact, the previous results were outperformed by a novel and

more simple method, which was based on the analysis of the shape of music
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symbols [13]. It consists in the analysis of the shape of certain music symbols

(clefs and notes) by the use of symbol recognition methods. Experimental

results on the same dataset demonstrated that this approach is not only

simpler than the previous ones (which are based on the adaptation of text

to graphic documents), but also the results are slightly outperformed (93%).

As far as we know, the best results on writer identification for musical

scores in the recent literature for the dataset of [12] are those published

in [11] and [15]. In [11], a Self Organizing Maps (SOM) quantization of

the musical symbols is used to construct a vocabulary where features are

assigned. The descriptors are weighted with tf-idf, and a cosine similarity is

then used along with a nearest neighbour classifier. In [15], upon which this

work stands, pages are represented by a Bag of Notes, which is an adaptation

from the well known Bag of Visual Words (BOV) framework [26, 27]. In a

nutshell, features are represented using the Blurred Shape Model (BSM)

descriptor [28]. Then, a probabilistic codebook is built using a Gaussian

Mixture Model and soft assignment is used to represent the musical scores.

Finally, they are classified using a Support Vector Machine (SVM) with an

radial basis function kernel. These papers report scores between 96% and

97% in the aforementioned dataset.

Recently, a writer identification competition in music scores has been

proposed [29]. The competition was tested on the newer CVC-MUSCIMA

database [14], a more challenging dataset containing music scores from 50

different writers. The participants’ methods were based on the computation

of edge-based directional probability distribution features, grapheme features

or run-length-based probability distribution features. Concerning classifica-
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Table 1: Methods existing in the literature.

Method Features Classification Observations

FLSB 2008 [10, 25] Lines k-NN Text-based approach

FLSB 2009 [12] Textures k-NN Text-based approach

FLSOB 2010 [25] Lines-Textures k-NN Text-based approach

FL [13] BSM and DTW-based k-NN Music approach

MMS 2010 [11] Zoning SOM Text-based approach

GFVL 2010 [15] BSM Bag of features Music approach

HA 2011 [29] edge-based / grapheme k-NN Arabic-based approach

DS 2011 [29] run-lengths k-NN/ SVM / Arabic-based approach

Multilayer Perceptron

tion, their approaches used k nearest neighbor (k -NN), SVM, and multilayer

perceptron classifiers. All these approaches had been applied to arabic writer

identification tasks and were adapted to music scores for this competition.

The best results obtained a writer identification rate of 77% in the CVC-

MUSCIMA dataset. We summarize all these existing methods in Table 1.

3. The Bag of Notes Approach

In this section, we first show a short description of the well-known BOV

framework for visual categorization. Then, we explore how this method can

be easily adapted to represent music scores aimed at writer-identification,

and show two improvements that significantly increase the accuracy of the

method.

3.1. Bag of Visual Words

In the Bag of Visual Words (BOV) framework [26, 27], images are repre-

sented by a histogram of quantized local features. First, interest points are

detected in the images, and local features, such as SIFT, are extracted from
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the images at those points. A visual vocabulary or codebook is then learned,

offline, by clustering these local features. The de facto method to cluster

these features is k -means. Images are then represented by a fixed-length

histogram that counts the number of local features assigned to each of the

codebook centres. These image descriptors can then be used for categoriza-

tion tasks (typically using SVMs), retrieval, etc.

Several improvements to this framework have been proposed for all the

stages, from interest points detection and description to vocabulary construc-

tion, whole image representation, and classification.

Through the rest of this section, we will first show how the BOV frame-

work can be adapted in a very natural way to represent musical scores for

tasks such as writer identification. Then, we will show some modifications

that will significantly improve the model at a reasonable cost.

3.2. Vanilla Bag of Notes

In a BOV, images are described by the frequency of quantized low level

features. In the same way, a musical score could be represented by the fre-

quency of different features that appear in it i.e., the different music symbols

along their writer-dependant variations. Note that, as opposed to natural im-

ages, where spatial information is very important, such information should

be avoided when representing musical scores for writer identification. Indeed,

even if spatial information would be interesting for a melodic or harmonic

analysis, it is not desirable for writer identification tasks, since the same

writer could transcribe a wide variety of music styles. The fact that we are

interested in the appearance and shape of the symbols but not in its position

is one of the main indicators that the Bag of Notes can be a good approach
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to this problem.

In the BOV framework, interest points are selected according to heuristics

or just densely sampled, without any semantic consideration, and relying on

the statistical nature of the framework to compensate for the likely mistakes.

In an analogous way, in our BON we avoid performing a costly and error-

prone symbol analysis such as the one of [13], and consider any remaining

component after staff removal as an interest component (see Fig. 1a). This

will include symbols as notes, clefs, accidentals, dynamics, etc., but may also

include noise as well as broken symbols, staff remains, etc. We will encode

all the components without distinction and rely on the statistical nature of

the method to weight them accordingly to their importance.

In the BOV framework, interest points have traditionally been repre-

sented with SIFT descriptors. SIFT produces an edge descriptor that is ro-

bust to residual small distortions, and is generally invariant to rotation and

scaling, which makes it ideal for complex image representation. However,

when trying to represent the structure of objects (such as musical symbols),

descriptors such as SIFT or SURF are not the best option, and descriptors

that capture some structure in a natural way are usually a better choice. In

our case, we use the Blurred Shape Model (BSM) [28]. This descriptor was

shown in [28] to perform better than SIFT and other descriptors in the task

of symbol classification, and is very compact and fast to compute. The BSM

is also scale invariant, which is a useful property in this writer identification

task. Furthermore, using BSM allows us to compare our method with other

approaches that used the BSM descriptor in a fairer way.

The BSM encodes the spatial probability of appearance of the shape pix-
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els and their context information in the following way: The image is divided

in a grid of n × n equal-sized subregions, and each bin receives votes from

the shape points in it and also from the shape points in the neighboring

bins. Thus, each shape point contributes to a density measure of its bin

and its neighboring ones (see Fig 1b). The output descriptor is a vector

histogram where each position corresponds to the amount of shape points

in the context of the sub-region. The resulting vector histogram, obtained

by processing all feature points, is normalized in the range [0..1] to obtain

the probability density function (pdf) of n× n bins. In this way, the output

descriptor represents a distribution of probabilities of the object shape con-

sidering spatial distortions. As a result, a robust technique in front of noise

and elastic deformations is obtained.

These feature vectors should then be clusterized, e.g . with k -means or a

Gaussian Mixture Model (GMM), to obtain a codebook and then represent

the images as in the original BOV framework. Finally, these representations

are classified with a classifier such as an SVM. A flowchart of the process can

be seen in Figure 2.

We would like to note that, at least intuitively, this representation could

be understood as counting the frequency of certain music symbols in the

page, and, as such, would be more useful for rhythm analysis purposes than

for writer identification. However, we believe it is important to remark that

this representation can indeed be used for writer identification: i) since we

have many more vocabulary words than music symbols, we will have several

words representing different styles of each possible symbol. ii) In one of the

improvements we propose, we go beyond counting, and capture higher order
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(a) (b)

Figure 1: a) Detected symbols. Every connected component is considered as

a valid symbol. That may include spurious noise, combined notes, etc. b) A

note adjusted in a BSM grid. Every black pixel of the note contributes to all

the surrounding centroids of the grid in a soft manner.

Figure 2: Flowchart of the basic Bag of Notes framework

statistics such as the position and sparseness of the symbols with respect
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to the vocabulary. This captures what makes the symbols different, and so

it contains much more discriminative information. iii) By using a classifier

such as a SVM, we expect to learn what makes authors different. This

last part is particularly important. As we will see during the experimental

section, methods using classifiers such as k -NN, where no learning has been

performed, obtain much worse results than those using classifiers that involve

learning.

3.3. Improving the vanilla Bag of Notes

In this subsection, we deal with ways to improve this vanilla BON at a

reasonable cost.

Bhattacharyya explicit embedding: One typical way to improve the

results in the BOV framework consists in using non-linear kernels such as

Bhattacharyya, intersection or χ2. However, using a linear kernel allows us

to use solvers based on Stochastic Gradient Descent or the cutting-plane

algorithm, which drastically reduce the training time of the classifier. In

[16, 30], different ways to explicitly embed the data are proposed. In this

case, using a linear kernel in the embedded space approximately corresponds

to using the non-linear kernel in the original space. In particular, both [16, 30]

note how square-rooting the original feature vectors corresponds to an exact

explicit embedding for the Bhattacharyya kernel, i.e., if kb(x, y) =
√

x′y and

φ(x) =
√

x, then φ(x)′φ(y) =
√

x
′√

y =
√

x′y = kb(x, y). Square rooting the

feature vectors has some important properties, such as reducing the weight

of the most common words, which can lead to very noticeable improvements.

This is an extremely simple and effective embedding, and, as shown in [16],

the results are competitive with other more complex kernels / embeddings
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such as χ2 or intersection. As we will see in the experimental section, simply

square-rooting the feature vectors before classification will provide a very

substantial gain in the accuracy.

We note that, in general, square-rooting the vectors has been known as an

ad-hoc way to improve the results when dealing with BOW histograms. How-

ever, in [31] it was shown that square-rooting the vectors can be understood

as approximating a non-iid (independently and identically distributed) BOW

model. In an nutshell, the BOW models assume that the words (or image

patches, music symbols, etc.) are iid. However, this is an oversimplification,

since in practice the data is not iid: if we randomly covered some parts of an

image (cf . Fig 1 of [31]), we would still be able to approximately guess their

contents based on the surrounding information. Similarly, if on one of our

music scores we observe some symbols that have details that distinguish one

of the writers, then we expect other symbols in that page to also have those

details. By square-rooting the vectors, we are approximating a model that

does not assume that the data is iid, and so is more consistent with the data

we have. We believe this is particularly important in our case. In standard

BOV applications, every image contains thousands or tens of thousands of

patches, and so the abundance of data can compensate for the defects of the

model. In our case, however, the number of components per page is limited

(from a few tens to a hundred) and so having a more realistic model becomes

more important.

The Fisher Vector: The Fisher Kernel [32] is a well-known kernel based

on the Fisher information matrix that exploits generative information of the

model. Intuitively, it describes how a new sample should be adapted in order
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to better fit the model. The Fisher Kernel considers information about how

every patch differs from the learned codebook with respect to the means and

variances, and so it encodes precisely what makes a particular patch different

from the “average” patches. This seems particularly relevant to our interests,

since capturing what makes similar symbols different is one of the important

things that define the writing styles. Unfortunately, calculating the Fisher

Kernel is a costly operation and its direct application is generally unfeasible.

One possible solution to overcome this problem is the Fisher Vector (FV)

framework [17, 18]. The FV corresponds to an explicit embedding of the

Fisher Kernel in the particular case of a Gaussian Mixture Model generative

model. In this case, it encodes not only the frequencies of the words as in

the BOV, but also their position and sparseness with respect to the means

and variances of the codebook words in a probabilistic way. This produces

a very high dimensional signature with great discriminative power, even for

very small codebooks. In the very recent [33], the FV encoding was shown

superior to other state-of-the-art encoding methods such as the Super-Vector

encoding (SV) or Locality-constrained Linear Coding (LLC).

Here, we will first review the Fisher Kernel in its natural form of [32],

and then we will follow [17] to show the closed form of the FV in the case of

using a Gaussian Mixture Model generative model.

Let T = {x1, x2, . . . , xT} be the set of T local descriptors from an image.

We assume that the generation process of X can be modeled by a probability

density function uλ with parameters λ. X can be described by the gradient

vector GX
λ = 1

T
∇λ log uλ(X).

The gradient of the log-likelihood describes the contribution of the param-
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eters to the generation process. The dimensionality of this vector depends

only on the number of parameters in λ, not on the number of patches T . A

natural kernel on these gradients is [32]:

K(X, Y ) = GX′

λ F−1
λ GY

λ (1)

where Fλ is the Fisher information matrix of uλ:

Fλ = Ex∼uλ

[

∇λ log uλ(x)∇λ log uλ(x)′
]

. (2)

As Fλ is symmetric and positive definite, it has a Cholesky decomposi-

tion Fλ = L′

λLλ and K(X, Y ) can be rewritten as a dot-product between

normalized vectors Gλ, with GX
λ = LλG

X
λ :

We will refer to GX
λ as the Fisher Vector of X. Learning a kernel classifier

using the kernel (1) is equivalent to learning a linear classifier on the Fisher

vectors GX
λ .

We follow [17] and choose uλ to be a Gaussian mixture model (GMM):

uλ(x) =
k

∑

i=1

wiui(x). (3)

We collectively denote λ = {wi, µi, Σi, i = 1, . . . , K} where wi, µi, and Σi

are respectively the mixture weight mean vector and covariance matrix of

Gaussian ui. We assume that the covariance matrices are diagonal and we

denote by σ2
i the variance vector. The GMM uλ is trained on a large number

of images using Maximum Likelihood (ML) estimation. It is supposed to

describe the content of any image. We assume that the xt’s are generated

independently by uλ and therefore:

GX
λ =

1

T

T
∑

t=1

∇λ log uλ(xt). (4)

15



We consider the gradient with respect to the mean and standard deviation

parameters (the gradient with respect to the weight parameters bring little

additional information).

Let D denote de dimensionality of the descriptors xt, let γt(i) be the

occupancy probability of descriptor xt to Gaussian i, and let GX
µ,i (resp. GX

σ,i)

be the D-dimensional gradient with respect to the mean µi (resp. standard

deviation σi) of Gaussian i. Mathematical derivations [17] lead to:

GX
µ,i =

1

T
√

wi

T
∑

t=1

γt(i)

(

xt − µi

σi

)

,GX
σ,i =

1

T
√

2wi

T
∑

t=1

γt(i)

[

(xt − µi)
2

σ2
i

− 1

]

,

(5)

where the division between vectors is as a term-by-term operation. The

final gradient vector GX
λ is the concatenation of the GX

µ,i and GX
σ,i vectors for

i = 1 . . .K and is therefore 2KD-dimensional.

In [18], the Fisher Kernel framework was further improved for catego-

rization tasks. It was shown that an L2 normalization of the GX
λ vectors

reduces the weight of the background in the signatures and yields better

classification results. It was also shown that a by-dimension square root of

the signature vectors will help to ‘unsparsify’ the signatures and will there-

fore obtain better results when using the dot-product as a similarity measure.

Both improvements will be used in our experiments.

4. Experiments

Through this section we will analyse the performance of the vanilla Bag of

Notes method as well as the proposed improvements: Bhattacharyya explicit

embedding and FV embedding.
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First, we will compare the performance of the vanilla Bag of Notes with

the other methods on the small dataset of [12]. As we will see, the vanilla

Bag of Notes already produces very competitive results. Then, we will report

results on the CVC-MUSCIMA dataset and show how the improvements lead

to better accuracy scores. Finally, we will compare our results with the state-

of-the-art in music score writer identification in the CVC-MUSCIMA dataset.

4.1. Datasets

For our experiments, we will use two different datasets:

The small dataset introduced in [12]. This dataset consists of 200

music pages from 20 different writers. These pages are extracted from a col-

lection of music scores of the 17th, 18th and 19th centuries, which have been

obtained from two archives in Catalonia, Spain: the archive of Seminar of

Barcelona and the archive of Canet de Mar. This dataset has been commonly

used in the past, and most of the methods report results in it.

We would like to make two remarks about this dataset. First, one par-

ticular piece is never transcribed by more than one author. Second, in some

cases, more than one of the pages transcribed by one particular author be-

long to one particular music piece, i.e., some pieces span through many pages.

This has rised some criticism in the past, since it is not clear what it is being

evaluated: who transcribed the page, or the rhythm of the page. Indeed, a

method that ignored the writing style and focused on the rhythm would still

score high in this dataset, independently of the writer.

The standard evaluation procedure of this dataset is a 5-fold partition.

Each test partition contains exactly one document per writer (20 documents

total) and the train partition contains the remaining documents. This is
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repeated 5 times with different partitions and the results are averaged.

The CVC-MUSCIMA dataset [14]. This dataset contains 20 differ-

ent musical sheets of different pieces and styles, transcribed by 50 different

writers, making a total of 1,000 binary images. As opposed to the previous

dataset, in this case all the writers transcribe the same pieces. The images

are presented in two flavours, with and without staff lines. This is to ensure

that writer identification results are not dependant of the quality of the staff

removal algorithms used. In our case, we will only use the staffless images.

The dataset also defines two sets of partitions of the data, each one con-

taining ten folds:

Set A, or constrained. In the first set of partitions, the training pieces

of a given fold are the same for each writer, and so none of the pieces of the

test set have been used during the training stage. If the first music page of

one writer is in the train set of a given fold, all the first music pages of the

remaining writers will also be in the train set of that particular fold.

Set B, or unconstrained. In the second set of partitions this constraint

is not satisfied, and pieces that appear in the training set of one author will

appear in the test set of a different one (for example, the first music page

will appear in the train set of one author and in the test set of another.

These partitions are particularly devised to attest that we are indeed

performing writer identification instead of rhythm classification. Indeed, if

the method was performing rhythm classification, it is reasonable to think

that, in set B, unconstrained, test pieces from one author would be matched

with the exact same pieces that appear in the train set of a different author,

and so the classification results would be significantly lower than on set A,
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where this confusion is not possible. At the same time, a writer identification

rate in set B similar to the one in set A will show that the system is classifying

according to the handwriting style and not being particularly affected by the

kind of music notes and symbols appearing in the music sheet.

In each partition, 50% of the documents of each writer belong to the

training set and the other 50% belong to the test set. Furthermore, effort

has been put in guaranteeing that each piece appears approximately 50% of

the time in training and 50% in test.

Evaluation on the CVC-MUSCIMA dataset will be done averaging the

accuracy results of the ten defined folds.

4.2. Reference methods

Our approach has been compared with some of the methodologies in the

literature that have shown the best results. The one proposed in [12] is a

symbol-independent method, which adapts the writer identification method

for text documents described in [34] to music scores. Both approaches treat

the writer identification task as a texture identification problem. For this pur-

pose, textures are generated from the original document, and the following

textural features are extracted: Gabor filters and Grey-Scale Co-occurrence

Matrices (GSCM). The authors showed in [12] that the Resize music textures

(which means taking randomly music symbols and resizing them to a fixed

height) obtained the best results of the four different possibilities when gen-

erating textures. For this reason, we have also generated the Resize textures

from the music scores database (see Fig.3a).

The method proposed in [13] is, as far as we know, the only existing

symbol-dependent writer identification approach in music scores. It is based
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(a) (b)

Figure 3: (a) Resize Texture image. The music symbols are randomly taken

from the music page and put in a reference line with the same inter-symbol

distance. The symbols are resized to a fixed size, without the preservation

of the aspect ratio in the resizing process. For this reason, some symbols

are distorted. (b) Music Clefs. The first row corresponds to treble clefs, the

second row to alto clefs, and the last row shows some bass clefs.

on the detection of the music clefs that are appearing in the document, and

then, comparing these clefs with the ones existing in the database. Since the

authors claim that the music clefs (see Fig.3b) are the music symbols with

the highest discriminative power (they look like drawings or signatures), they

concentrate on the detection, recognition and extraction of the music clefs.

For this purpose, the user must first manually segment one instance of each

one of the three music clefs (treble, alto and bass clef). Afterwards, the

system combines two symbol recognition methods (a DTW-based one, and

the BSM descriptor) for detecting and segmenting the similar shapes existing

in the database (the supposed music clefs). Once the clefs are extracted, the
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Blurred Shape Model (BSM) descriptor is used for extracting the features,

and finally these features are compared (using a k -NN classifier) with the

features of the clefs in the database for the final identification. It must be

noted that both our BON approach and the one described in [13] use the

BSM descriptor.

The method proposed in [11] is quite similar in nature to the Bag of

Notes approach, although it was published afterwards. Symbols are extracted

with connected component analysis and quantized with Self Organizing Maps

(SOM) and tf-idf weighting. Finally, nearest neighbor with a cosine similarity

is used to classify the samples. Note however that SOM requires to set more

parameters than k -means or GMM, and it is more sensitive to them. From

the paper, it is not clear how the authors tuned the parameters.

In the recent writer identification competition in music scores [29], two

different groups participated by sending a total of 8 different approaches.

The first set of methods submitted by Hassäıne et al . were based on the

computation of several sets of features. The first set uses the edge-based

directional probability distribution features (see [35]). The second set uses

grapheme features (which are fully described in [36]). A third set is composed

of the combination of both kinds of features, edge-based and grapheme-based

features. These methods have previously been applied for Arabic writer iden-

tification and for signature verification and have shown interesting results.

The classification step is performed either using a logistic regression classifier

or a k -NN algorithm.

The second participant group was composed of Djeddi and Souici-Meslati.

The proposed methods (more details in [37]) are based on the computation
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of run-lengths features, which are determined on the binary image taking

into consideration the pixels corresponding to the ink trace. The probability

distribution of white run-lengths has been used in the writer identification

experiments. There are four scanning methods: horizontal, vertical, left-

diagonal and right-diagonal. The authors calculate the run-lengths features

using the grey level run-length matrices and the histogram of run-lengths is

normalized and interpreted as a probability distribution. For the classifica-

tion stage, the authors have used k -NN, SVM (one vs . one, and one vs . all),

and multilayer perceptron classifiers, as well as a combination of them.

The first group obtained the best performance in this competition with

the combination of edge-based and grapheme features, followed by the sec-

ond participant group with the combination of classifiers approach. We will

compare our method with these two approaches.

4.3. Implementation details

To extract the low level features, we obtained the connected components

of the binary image and represented them with a BSM descriptor. In the

dataset of [12] we will use BSM descriptors of size 8 × 8 as in [15]. For the

experiments on CVC-MUSCIMA we analyse the effect of the descriptor sizes

and report the results. The BSM descriptors were later normalized using

the L1 norm. We observed no significant difference when using other norms

such as L2 or L1sqrt. Although we experimented with other descriptors such

as SIFT, we found the results with BSM to be significantly better. This is

reasonable since BSM is designed to represent shapes, while SIFT is not.

The k -means and GMM clusterings were performed using INRIA’s Yael

22



library 1. When computing the vanilla BON, the final image descriptors are

normalized with the L1 norm. When computing the FV, we will apply two

of the improvements presented in [18], namely power normalization and L2

normalization.

Classification will be made using a one vs . all SVM. Since we always use a

linear kernel, we will use a solver optimized for linear problems. Particularly,

we will use LIBLINEAR 2, which makes use of the cutting-plane algorithm

and dramatically improves the training speed of the SVM. To set the C

trade-off cost of the SVM classifier, we used the same heuristic used by the

SVMlight 3 suite. Given a set of N training vectors X = {x1, x2, . . . , xN},
we set k = 1

N

∑N

i=1 xix
′

i, and then C = 1/k2. This heuristic gave excellent

classifications results, i.e., manually setting this parameter did not bring any

substantial improvement.

When replicating the experiments with the Gabor filters and the GSCM,

we have used the same parameters as in [12].

Unfortunately, we were not able to replicate the results of [11]. We be-

lieve the reason is that we have not been able to correctly tune the many

parameters of the SOM (number of iterations, step size, bandwidth of the

Gaussian, etc.), even when trying to do so over the test set. Instead of SOM

clustering, we have used a k -means clustering. We would like to note that

the method of [11] does not exploit the structural information of the SOM,

and, therefore, the results of the method using SOM should be quite similar

1Software available at https://gforge.inria.fr/projects/yael
2http://www.csie.ntu.edu.tw/ cjlin/liblinear/
3http://svmlight.joachims.org/
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to the results using k -means.

4.4. Results and analysis

We first report the results on the small dataset on Table 2. Except for

our Bag of Notes and the reimplemented [11], all the results are quoted from

the respective papers. We can observe how the vanilla Bag of Notes performs

similarly to the best available methods. We can also observe how the reimple-

mented [11] using k -means obtains very similar results to those of the original

method. The small difference can be due to the clustering, but also due to

differences in the training protocol, low-level descriptors, normalization, etc.,

since the authors of [11] did not disclose all the details of their evaluation

protocol. Finally, we can observe how the proposed improvements obtain a

100% accuracy on this small dataset. Therefore, we will rely on the more

complex CVC-MUSCIMA dataset to study their properties and differences.

Table 2: Comparison of results on the small dataset.

Method Accuracy

Vanilla BON (128 centres) 97

BON + Bhattacharyya (128 centres) 100

FV (64 Gaussians) 100

Soft BON (128 Gaussians, unsupervised clustering) [15] 96

Soft BON (640 Gaussians, supervised clustering) [15] 97

Textural [12] 73

Music clefs [13] 93

SOM (900 centres) [11] 97

SOM (900 centres) [11] (reimplemented with k -means) 96

Tables 3 to 5 show the results of the vanilla Bag of Notes as well as the
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different improvements on the CVC-MUSCIMA dataset. Table 3 shows the

results of the vanilla setup as a function of the number of words and the

BSM descriptor size for both variants of the dataset. Table 4 with the Bhat-

tacharyya embedding and Table 5 with the FV. We can draw the following

conclusions from the proposed methods:

Influence of the descriptor size: In general, for BON and BON plus

Bhattacharyya, descriptors of sizes 8×8 and 12×12 work better than smaller

descriptors of size 4×4. The differences between 8×8 and 12×12 are usually

small, and do not follow a clear pattern. We will favor 8× 8 since it is faster

to compute and clusterize.

In the case of FV, 8×8 seems significantly better than 4×4. Note however

that, in the FV, the size of the descriptor directly affects the final signature

length. Therefore, it is still convenient to use descriptors of size 4 × 4, since

using a descriptor of size 8×8 would increase the length of the final signature

by a factor of 4. In general, increasing the number of Gaussians produces

better results than increasing the size of the BSM when aiming at a fixed

number of dimensions.

Influence of the sets: The differences between the results of the con-

strained and unconstrained sets are very small. This suggests that the

rhythm has not been taken into account by the classifier and that we are

indeed learning writing style characteristics.

Bhattacharyya embedding vs. linear kernel: The use of the Bhat-

tacharyya embedding provides a very significant improvement over the vanilla

version at essentially zero cost. This is not surprising since this embedding is

approximating a non-iid model, which is more consistent with the data than
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the vanilla BON.

Fisher Vector vs. linear kernel and Bhattacharyya embedding:

The FV significatively improves both the vanilla and the Bhattacharyya ver-

sions for a given vocabulary size, and equals the best results of the Bhat-

tacharyya embedding with as few as 16 Gaussians. Moreover, the FV cap-

tures information not available in the Bag of Notes, which can be particularly

important in the writer identification context. However, note that using the

FV can be more costly than the Bhattacharyya embedding: the FV descrip-

tor is more complex, and requires to compute a GMM vocabulary instead

of a simple k -means. The operations involved in computing the FV (cf .

equation (5)), although simple, are more costly than just counting words

and square-rooting. Finally, the Bhattacharyya vectors are sparse, while the

FV is high-dimensional and dense. The complexity of many classification

methods (including SVMs) depends on the number of non-sparse elements

of the vectors, and so training and testing with Bhattacharyya vectors can

be faster than with FVs. Therefore, the Bhattacharyya embedding can be

a very reasonable alternative in situations where that complexity cannot be

afforded.

4.5. Comparison with the state of the art

We now report the results that our implementations of the reference meth-

ods achieve in the CVC-MUSCIMA dataset.

In table 6 the writer identification results for the textural methods of [12]

are shown. One can see that the best identification rate is about 25%, and

it decreases to about 15% when using the independent set. These results

demonstrate that the textural approach is not a good choice when using
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Table 3: Hard assignment. Mean classification accuracy as a function of the

number of clusters and the descriptor size.

N. Clusters 16 32 64 128 256 512

4 × 4 31.2 44.1 59.2 74.2 86.3 93.3

Set A (const.) 8 × 8 32.2 43.7 59.6 78.1 89.2 93.6

12 × 12 31.7 45.2 57.7 76.2 88.6 93.9

4 × 4 32.1 45.1 60.0 74.9 85.0 91.4

Set B (unconst.) 8 × 8 31.0 46.6 61.3 78.3 88.3 93.5

12 × 12 32.8 46.5 59.0 76.9 87.4 93.4

Table 4: Hard assignment with a Bhattacharyya explicit embedding. Mean

classification accuracy as a function of the number of clusters and the de-

scriptor size.

N. Clusters 16 32 64 128 256 512

4 × 4 33.9 48.8 68.2 83.4 93.0 97.1

Set A (const.) 8 × 8 33.3 49.6 70.5 87.1 95.2 97.8

12 × 12 34.5 51.8 68.7 86.8 94.8 97.8

4 × 4 30.4 47.1 66.4 81.9 90.9 94.5

Set B (unconst.) 8 × 8 31.0 48.4 67.9 85.1 93.9 96.9

12 × 12 33.4 48.2 66.0 84.1 93.0 96.6

bigger datasets. In fact, the results reported in [12] demonstrated that this

approach had low scalability degree (from a writer identification rate of 92%

with 5 writers, it decreased to 73% with 20 writers). Moreover, the results

also show that it is sensitive to the rhythm of the composition, because it

decreases 10 points (from 25% to 15%) when using the unconstrained set. It
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Table 5: Fisher Vector. Mean classification accuracy as a function of the

number of clusters and the descriptor size.

N. Clusters 4 8 16 32 64

Set A (const.) 4 × 4 79.6 91.5 96.9 98.5 99.3

8 × 8 89.5 94.9 97.2 99.1 99.7

Set B (unconst.) 4 × 4 82.7 93.3 97.2 98.2 99.3

8 × 8 91.2 95.5 97.7 98.9 99.5

must be said that this important dependency on the kind of symbols in the

music page was already expected. The reason is quite obvious: the visual

appearance of a texture image highly depends on the kind of symbols that

have been used for generating the image. In other words, if we take two

music pages written by the same writer but with different music symbols

(which means different rhythm), and generate the music texture images, we

will observe that these two texture images look extremely different.

Table 6: Textural Approach [12]. Mean classification accuracy using Gabor

features, GSCM features, and both, for different number of neighbors (k -NN).

Sets Features 5-NN 7-NN 9-NN 11-NN 13-NN

Gabor 20.0 21.2 22.0 23.4 21.8

Set A (const.) GSCM 22.0 23.8 25.6 24.8 24.8

Both 20.8 24.0 24.60 25.2 25.4

Gabor 12.6 12.2 13.6 14.0 13.4

Set B (unconst.) GSCM 10.6 12.2 13.0 13.6 14.6

Both 13.4 14.0 15.0 14.2 16.6
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Table 7 show the writer identification rates of the approach proposed in

[13] when applied to our database (and using a BSM with a grid of 25x25).

We can see that the best results are obtained in the dependent set (with a

writer identification rate of about 73%) are quite close to the ones obtained

in the independent set (about 70%), demonstrating that this approach is not

rhythm dependent. These results show that the use of symbol-dependent

methods (specially music clefs) can help in the identification of the writer,

although they require a user for manually selecting the three music clefs for

each writer in the database.

Table 7: Music clefs Approach [13]. Mean classification accuracy using the

music clefs and the BSM descriptor for different number of neighbors (k -NN).

Sets 3-NN 5-NN 7-NN 9-NN

Set A (const.) 72.1 72.9 72.9 72.3

Set B (unconst.) 69.5 69.9 69.7 68.9

Table 8 shows the results of our implementation of [11] using k -means

instead of SOM. If we focus on the constrained set, we can observe how

the results are more than 10 points below our vanilla implementation. We

believe this is due using a k -NN classifier instead of a SVM. If we focus on the

unconstrained set, were confusions are possible, we observe how the results

drop drastically. Again, this is most likely due to using a k -NN classifier

instead of a SVM.

For comparison purposes, we show on Table 9 recomputed results of BON,

BON plus Bhattacharyya and FV on both sets using a k -NN classifier with a
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dot product / cosine similarity measure instead of a SVM, and compare it to

the method of [11]. We can observe how FV is the best performing method

(suggesting that writer information is more explicit in the FV representation,

as expected since it encodes higher order statistics), but also how there is

a huge drop on all the methods when using a k -NN classifier, particularly

in the unconstrained set. This shows that albeit the descriptor does contain

information about the writing style, it is of paramount importance to learn

what makes writers different with classifiers such as SVM.

Table 8: Mean classification accuracy as a function of the number of clusters

in our reimplementation of the method of [11]. We use k -means instead of

SOM.

Sets 128 256 512 1024

Set A (const.) 49.4 64.0 74.7 81.2

Set B (unconst.) 19.9 28.3 36.0 44.8

Finally, Table 10 summarizes all the results. We can highlight the follow-

ing points:

• As a general rule, the methods that directly adapt text approaches

to this new context do not perform as well as methods designed for

graphics. One exception are the methods of the ICDAR challenge [29],

which outperform the music clefs method of [13]. Note however that

the challenge methods combine several types of features and classifiers,

while the music clefs method uses a simple k -NN classifier.

• Methods that perform well on the constrained set can perform badly
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Table 9: Results of several methods using k -NN instead of SVM for a fixed

output dimensionality. BON and [11] use the cosine as a similarity measure.

BON + Bhattacharyya and FV use the dot product.

Sets Method 128D 256D 512D

Set A (const.) BON 61.1 71.4 77.7

BON + Bhattacharyya 65.8 76.7 83.2

FV 64.4 78.4 87.3

[11] (reimplemented with k -means) 49.4 64.0 74.7

Set B (unconst.) BON 32.7 39.1 45.8

BON + Bhattacharyya 24.0 29.1 35.9

FV 42.1 46.7 54.0

[11] (reimplemented with k -means) 19.9 28.3 36.0

on the unconstrained one. Even if some writer style information is

obviously being learned in those cases, it is also clear that rhythm

information prevails, leading to a severe drop of the results in the un-

constrained set where confusions are possible.

• Using classifiers such as SVM or using distances not based on whole

page representation, such as the clef distance of [13], seem to be key

points in obtaining good results in the unconstrained set.

• The proposed BON methods significantly outperform all the other

methods when using the unconstrained, more difficult set.

• FV leads to almost perfect results. However, a high-dimensionality

price is paid for just a small improvement. If such precision is not

needed, the Bhattacharyya embedding can lead to excellent results at
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a fraction of the cost.

Table 10: Comparison of results on the CVC-MUSCIMA dataset. Methods

marked with a ∗ come from the challenge of [29], and were evaluated over

only one fold of the dataset.

Method Set A Set B

BON (512 clusters, 512D) 93.6 93.5

BON (512 clusters, 512D) + Bhattacharyya Embedding 97.8 96.9

Fisher Vector (BSM 4 × 4, 64 clusters, 2048D ) 99.3 99.3

Fisher Vector (BSM 8 × 8, 64 clusters, 8192D ) 99.7 99.5

Textural (13NN) [12] 25.4 16.6

Music clefs (7NN) [13] 72.9 69.7

SOM (1024D, reimplemented with k -means) [11] 81.2 44.8

PRIP02-combination [29] - 77.0∗

TUA03-SVMOAA [29] - 76.6∗

5. Conclusions

In this work, we have adapted the Bag of Visual Words framework to

the task of writer identification in handwritten musical scores. A vanilla

implementation of this method already performs comparably to the state-of-

the-art, and further improvements yield results more than 20 points above

the current state-of-the-art methods in a new, challenging dataset.

Moreover, we have shown the importance of learning classifiers when us-

ing representations that encode the whole musical score page. The Fisher

Vector representation at 512 dimensions drops from a 96.9% to a 87.3% in

32



the constrained set and from a 97.2% to a 54.0% in the unconstrained set

when switching from an SVM classifier to a k -NN classifier.

We believe that these descriptors represent the rhythm of the document

in a natural way, and so it is of paramount importance to unveil the writer

identification information hiding in the descriptors using classifiers such as

the SVM.

Finally, this opens other future work lines such as writer retrieval. In-

deed, based on the results we have observed, directly using these descriptors

for retrieval would lead to unsatisfying results. Frameworks such as Metric

Learning could significantly help in this task.
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