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Abstract—This article addresses the problems of word spotting and word recognition on images. In word spotting, the goal is to
find all instances of a query word in a dataset of images. In recognition, the goal is to recognize the content of the word image,
usually aided by a dictionary or lexicon. We describe an approach in which both word images and text strings are embedded
in a common vectorial subspace. This is achieved by a combination of label embedding and attributes learning, and a common
subspace regression. In this subspace, images and strings that represent the same word are close together, allowing one to cast
recognition and retrieval tasks as a nearest neighbor problem. Contrary to most other existing methods, our representation has
a fixed length, is low dimensional, and is very fast to compute and, especially, to compare. We test our approach on four public
datasets of both handwritten documents and natural images showing results comparable or better than the state-of-the-art on
spotting and recognition tasks.
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1 INTRODUCTION

T EXT understanding in images is an important
problem that has drawn a lot of attention from the

computer vision community since its beginnings. Text
understanding covers many applications and tasks,
most of which originated decades ago due to the
digitalization of large collections of documents. This
made necessary the development of methods able
to extract information from these document images:
layout analysis, information flow, transcription and
localization of words, etc. Recently, and motivated
by the exponential increase of publicly available im-
age databases and personal collections of pictures,
this interest now also embraces text understanding
on natural images. Methods able to retrieve images
containing a given word or to recognize words in a
picture have also become feasible and useful.

In this paper we consider two problems related to
text understanding: word spotting and word recogni-
tion. In word spotting, the goal is to find all instances
of a query word in a dataset of images. The query
word may be a text string – in which case it is usually
referred to as query by string (QBS) or query by
text (QBT) –, or may also be an image, – in which
case it is usually referred to as query by example
(QBE). In word recognition, the goal is to obtain
a transcription of the query word image. In many
cases, including this work, it is assumed that a text
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dictionary or lexicon is supplied at test time, and that
only words from that lexicon can be used as candidate
transcriptions in the recognition task. In this work we
will also assume that the location of the words in
the images is provided, i.e., we have access to images
of cropped words. If those were not available, text
localization and segmentation techniques [2], [3], [4],
[5] could be used, but we consider that out of the
scope of this work1.

Traditionally, word spotting and recognition have
focused on document images [6], [7], [8], [9], [10],
[11], [12], [13], [14], where the main challenges come
from differences in writing styles: the writing styles of
different writers may be completely different for the
same word. Recently, however, with the development
of powerful computer vision techniques during the
last decade, there has been an increased interest in
performing word spotting and recognition on natural
images [15], [16], [3], [4], [17], [5], which poses differ-
ent challenges such as huge variations in illumination,
point of view, typography, etc.

Word spotting can be seen as a particular case of
semantic content based image retrieval (CBIR), where
the classes are very fine-grained – we are interested
in exactly one particular word, and a difference of
only one character is considered a negative result –
but also contain a very large intra-class variability
– writing styles, illumination, typography, etc, can
make the same word look very different. In the same
way, word recognition can be seen as a special case

1. One may argue that, when words are cropped, one is no longer
performing word spotting but word ranking or word retrieval.
However, word spotting is the commonly accepted term even when
the word images are cropped, and we follow that convention in this
work.
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Figure 1: Overview of the proposed method. Images are first projected into an attributes space with the
embedding function φI after being encoded into a base feature representation with f . At the same time, labels
strings such as “hotel” are embedded into a label space of the same dimensionality using the embedding
function φY . These two spaces, although similar, are not strictly comparable. Therefore, we project the
embedded labels and attributes in a learned common subspace by minimizing a dissimilarity function
F (I,Y;U, V ) = ||UTφI(I) − V TφY(Y)||22 = ||ψI(I) − ψY(Y)||22. In this common subspace representations are
comparable and labels and images that are relevant to each other are brought together.

of very fine-grained, zero-shot classification, where
we are interested in classifying a word image into
(potentially) hundreds of thousands of classes, for
which we may not have seen any training example.
The examples on Figs. 9 and 10 illustrate these issues.

In this work we propose to address the spotting
and recognition tasks by learning a common repre-
sentation for word images and text strings. Using
this representation, spotting and recognition become
simple nearest neighbor problems. We first propose
a label embedding approach for text labels inspired
by the bag of characters string kernels [18], [19] used
for example in the machine learning and biocom-
puting communities. The proposed approach embeds
text strings into a d−dimensional binary space. In a
nutshell, this embedding –which we dubbed pyrami-
dal histogram of characters or PHOC – encodes if
a particular character appears in a particular spatial
region of the string (cf . Fig 2). Then, this embedding is
used as a source of character attributes: we will project
word images into another d−dimensional space, more
discriminative, where each dimension encodes how
likely that word image contains a particular character
in a particular region, in obvious parallelism with
the PHOC descriptor. By learning character attributes
independently, training data is better used (since the
same training words are used to train several at-
tributes) and out of vocabulary (OOV) spotting and
recognition (i.e., spotting and recognition at test time
of words never observed during training) is straight-
forward. However, due to some differences (PHOCs
are binary, while the attribute scores are not), direct
comparison is not optimal and some calibration is
needed. We finally propose to learn a low-dimensional
common subspace with an associated metric between
the PHOC embedding and the attributes embedding.

The advantages of this are twofold. First, it makes
direct comparison between word images and text
strings meaningful. Second, attribute scores of images
of the same word are brought together since they
are guided by their shared PHOC representation. An
overview of the method can be seen in Figure 1.

By having images and text strings share a common
subspace with a defined metric, word spotting and
recognition become a simple nearest neighbor prob-
lem in a low-dimensional space. We can perform QBE
and QBS (or even a hybrid QBE+S, where both an
image and its text label are provided as queries) using
exactly the same retrieval framework. The recognition
task simply becomes finding the nearest neighbor of
the image word in a text dictionary embedded first
into the PHOC space and then into the common
subspace. Since we use compact vectors, compression
and indexing techniques such as Product Quantiza-
tion [20] could now be used to perform spotting in
very large datasets. To the best of our knowledge, we
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Figure 2: PHOC histogram of a word at levels 1, 2, and
3. The final PHOC histogram is the concatenation of
these partial histograms.
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are the first to provide a unified framework where we
can perform out of vocabulary (OOV) QBE and QBS
retrieval as well as word recognition using the same
compact word representations.

The rest of the paper is organized as follows. In
Section 2, we review the related work in word spot-
ting and recognition. In Section 3 we describe how to
encode our images into a low-dimensional attribute
representation. In Section 4 we describe the proposed
common subspace learning. Section 5 suggests some
practices to learn the attributes space and the common
subspace when training data is scarce. Section 6 deals
with the experimental validation of our approach.
Finally, Section 7 concludes the paper.

This paper is an extended version of the work ini-
tially published in ICCV 2013 [1]. Novel contributions
include a better base feature representation tailored
for word images (Section 3), a more detailed formu-
lation of the common subspace problem (Section 4),
a bagging approach to learn with scarce data (Section
5), and evaluation on recognition tasks, as well as new
datasets, including two popular benchmarks based on
natural images (Section 6).

2 RELATED WORK

Here we review the works most related to some key
aspects of our proposed approach.

2.1 Word Spotting and Recognition in Document
Images
Word spotting in document images has attracted at-
tention in the document analysis community during
the last two decades [6], [7], [8], [9], [10], [11], [12],
and still poses lots of challenges due to the difficul-
ties of historical documents, different scripts, noise,
handwritten documents, etc.

Because of this complexity, most popular techniques
on document word spotting have been based on
describing word images as sequences of features of
variable length and using techniques such as Dynamic
Time Warping (DTW) or Hidden Markov Models
(HMM) to classify them. Variable-length features are
more flexible than feature vectors and have been
known to lead to superior results in difficult word-
spotting tasks since they can adapt better to the
different variations of style and word length [6], [7],
[10], [11], [12], [14], [21].

Unfortunately, this leads to two unsatisfying out-
comes. First, due to the difficulties of learning with
sequences, many supervised methods cannot perform
OOV spotting, i.e., only a limited number of key-
words, which need to be known at training time,
can be used as queries. Second, because the methods
deal with sequences of features, computing distances
between words is usually slow at test time, usually
quadratic with respect to the number of features. With
efficient implementations they may be fast enough

for some practical purposes (e.g., making a search
constrained in a particular book [14]), although deal-
ing with very large volumes of data (e.g. millions of
images) at testing time would be very inefficient.

Indeed, with the steady increase of datasets size
there has been a renewed interest in compact, fast-
to-compare word representations. Early examples of
holistic representations are the works of Manmatha et
al. [8] and Keaton et al. [22]. In [8], a distance between
binary word images is defined based on the result of
XORing the images. In [22], a set of features based
on projections and profiles is extracted and used to
compare the images. In both cases, the methods are
limited to tiny datasets. A more recent work [23]
exploits the Fisher kernel framework [24] to construct
the Fisher vector of a HMM. This representation has
a fixed length and can be used for efficient spotting
tasks, although the paper focuses on only 10 dif-
ferent keywords. Finally, recent approaches that are
not limited to keywords can be found in [25], [26],
[27]. Gatos et al. [25] perform a template matching
of block-based image descriptors, Rusiñol et al. [26]
use an aggregation of SIFT descriptors into a bag of
visual words to describe images, while Almazán et
al. [27] use HOG descriptors [28] combined with an
exemplar-SVM framework [29]. These fast-to-compare
representations allow them to perform word spotting
using a sliding window over the whole document
without segmenting it into individual words. Al-
though the results on simple datasets are encouraging,
the authors argue that these fixed-length descriptors
do not offer enough flexibility to perform well on
more complex datasets and especially in a multi-
writer scenario.

Through this paper we follow these recent works
[27], [26] and focus on fixed-length representations,
which are faster to compare and store and can be used
in large-scale scenarios. Our proposed approach based
on attributes directly addresses the aforementioned
problems: our attributes framework very naturally
deals with OOV query words at test time, while
producing discriminative, compact signatures that are
fast to compute, compare, and store.

Regarding word recognition, handwritten recogni-
tion still poses an important challenge for the same
reasons. As in word spotting, a popular approach
is to train HMMs based on grapheme probabilities
[13]. A model is first trained using labeled train-
ing data. At test time, given an image word and
a text word, the model computes the probability of
that text word being produced by the model when
fed with the image word. Recognition can then be
addressed by computing the probabilities of all the
lexicon words given the query image and retrieving
the nearest neighbor. As in the word spotting case, the
main drawback here is the comparison speed, since
computing these probabilities is orders of magnitude
slower than computing an Euclidean distance or a dot
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product between vectorial representations.

2.2 Word Spotting and Recognition in Natural Im-
ages

The increasing interest in extracting textual informa-
tion from real scenes is related to the recent growth
of image databases such as Google Images or Flickr.
Some interesting tasks have been recently proposed,
e.g. localization and recognition of text in Google
Street View images [15] or recognition in signs har-
vested from Google Images [30]. The high complexity
of these images when compared to documents, mainly
due the the large appearance variability, makes it
very difficult to apply traditional techniques of the
document analysis field. However, with the recent
development of powerful computer vision techniques
some new approaches have been proposed.

Some methods have focused on the problem of
end-to-end word recognition, which comprises the
tasks of text localization and recognition. Wang et al.
[15] address this problem by combining techniques
commonly applied in object recognition, such as Ran-
dom Ferns and Pictorial Structures. They first detect
a set of possible character candidates windows using
a sliding window approach and then each word in
the lexicon is matched to these detections. Finally, the
one with the highest score is reported as the predicted
word. Neumann and Matas [3], [4] also address this
problem of end-to-end word recognition. In [3] they
pose the character detection problem as a sequential
selection from the set of Extremal Regions. Then, the
recognition of candidate regions is done in a separate
OCR stage using synthetic fonts. In [4] they introduce
a novel approach for character detection and recog-
nition where they first detect candidate characters
as image regions which contain strokes of specific
orientations and then, these characters are recognized
using specific models trained for each character and
grouped into lines to form words. Bissacco et al. [5]
take advantage of recent progress in machine learning,
concretely in deep neural networks, and large scale
language modeling. They first perform a text detec-
tion process returning candidate regions containing
individual lines of text, which are then processed for
text recognition. This recognition is done by iden-
tifying candidate character regions and maximizing
a score that combines the character classifier and
language model likelihoods. Although they use the
lexicon information in a post-process to correct some
recognition errors, one important advantage of this
method is that it does not requiere an available lexicon
for a full recognition of the image words.

Different problems are also explored by Mishra et al.
[30], [16], [31]. In [30] they focus only on the problem
of recognition and present a framework that uses the
n-gram information in the language by combining
these priors into a higher order potential function in a

Conditional Random Field model defined on the im-
age. In [31] they propose a method to perform image
retrieval using textual cues. Instead of relying on a
perfect localization and recognition to retrieve images
containing a given text query, they propose a query-
driven search: they find approximate locations of the
characters in the text query, and then impose spatial
constrains. By contrast, [16] address this problem from
a different point of view. Rather than pre-selecting a
set of character detections, they define a global model
that incorporates language priors and all potential
characters. They present a framework that exploits
bottom-up cues, derived from Conditional Random
Field models on individual character detections, and
top-down cues, obtained from a lexicon-based prior.
Goel et al. [32] address the problem of recognition as
a retrieval framework: lexicon words are transformed
in a collection of synthetic images and the recogni-
tion is posed as retrieving the best match from the
lexicon image set. They use gradient-based features to
represent the images and a weighted Dynamic Time
Warping to perform the matching.

In general, the main structure of these methods
consists of a first step of probabilistic detection of
character candidate regions in the image, and a sec-
ond step of recognition using character models and
grouping constrains. This leads to models tailored for
recognition, but with a limited usability for other tasks
such as comparing two word images (for QBE), or
storing word images using a compact representation
for indexing purposes. Our model, by contrast, ad-
dresses these issues in a natural way and is useful
both for recognition and retrieval tasks.

2.3 Zero-Shot Learning and Label Embedding

To learn how to retrieve and recognize words that
have not been seen during training, it is necessary to
be able to transfer knowledge between the training
and testing samples. One of the most popular ap-
proaches to perform this zero-shot learning in com-
puter vision involves the use of visual attributes [33],
[34], [35], [36]. In this work we use character attributes
to transfer the information between training and test-
ing samples. Although the idea of separating words
into characters and learning at the character level
has been used before (see, e.g., the character HMM
models of [6], [37]), these approaches have been tied
to particular HMM models with sequence features,
and so their performance has been bounded by them.
In our case, we propose a broader framework since we
do not constrain the choice of features or the method
to learn the attributes.

Our work can also be related to label embedding
methods [38], [39], [17], where labels are embedded
into a different space and a compatibility function
between images and labels is defined. Of those, the
work of Rodriguez and Perronnin [17] is the most
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related to our work, since it also deals with text
recognition and presents a text embedding approach
(spatial pyramid of characters or SPOC) very similar
to ours2. The main difference stems from how the
embedding is used. While in our case, we use it
as a source of attributes, and only then we try to
find a common subspace between the attributes and
the PHOCs, Rodriguez and Perronnin try to find a
common subspace directly between their image repre-
sentation (Fisher vectors [40]) and their SPOCs using
a structured SVM framework. Our approach can be
seen as a more regularized version of theirs, since we
enforce that the projection that embeds our images
into the common subspace can be decomposed into
a matrix that projects the images into an attributes
space.

3 ATTRIBUTES BASED WORD REPRESEN-
TATION

In this section we describe how we obtain the at-
tributes based-representation of a word image. We
start by motivating our pyramidal histogram of char-
acters (PHOC) representation, which embeds label
strings into a d−dimensional space. We then show
how to use this PHOC representation to encode word
images.

One of the most popular approaches to perform
supervised learning for word spotting is to learn
models for particular keywords. A pool of positive
and negative samples is available for each keyword,
and a model (usually a HMM) is learned for each
of them. At test time, it is possible to compute the
probability of a given word being generated by that
keyword model, and that can be used as a score. Note
that this approach restricts one to keywords that need
to be learned offline, usually with large amounts of
data. In [12], this problem is addressed by learning a
semicontinuous HMM (SC-HMM). The parameters of
the SC-HMM are learned on a pool of unsupervised
samples. Then, given a query, this SC-HMM model
can be adapted, online, to represent the query. This
method is not restricted to keywords and can perform
OOV spotting. However, the labels of the training
words were not used during training.

One disadvantage of these approaches that learn
at the word level is that information is not shared
between similar words. For example, if learning an
HMM for a “car” keyword, “cat” would be considered
a negative sample, and the shared information be-
tween them would not be explicitly used. We believe
that sharing information between words is extremely
important to learn good discriminative representa-
tions, and that the use of attributes is one way to
achieve this goal. Attributes are semantic properties
that can be used to describe images and categories

2. Both the conference version of this paper [1] and the work of
Rodriguez and Perronnin [17] appeared simultaneously.

[34], and have recently gained a lot of popularity for
image retrieval and classification tasks [34], [33], [41],
[42], [36]. Attributes have also shown ability to trans-
fer information in zero-shot learning settings [33], [34],
[35], [36] and have been used for feature compres-
sion since they usually provide compact descriptors.
These properties make them particularly suited for
our word representation task, since they can transfer
information from different training words and lead to
compact signatures. The selection of these attributes
is commonly a task-dependent process, so for their
application to word spotting we should define them
as word-discriminative and appearance-independent
properties. In the following subsection we describe
our label embedding approach, which embeds text
strings into a binary vectorial space, and later we will
show how to use this embedding as a source of word-
discriminative visual attributes.

3.1 Text Label Embedding with PHOCs
One straightforward approach to embed text strings is
to construct a (binary) histogram of characters. When
using digits plus the English alphabet, this leads to a
histogram of 36 dimensions3, where each dimension
represents whether the text string contains a particular
character or not. In an attributes context, these can
be understood as the labels for attributes defined as
“word contains an x” or “word contains a y”.

However, this label embedding is not word-
discriminative: words such as “listen” and “silent”
share the same representation. Therefore, we propose
to use a pyramid version of this histogram of char-
acters, which we dubbed PHOC (see Fig. 2). Instead
of finding characters on the whole word, we focus on
different regions of the word. At level 2, we define
attributes such as “word contains character x on the
first half of the word” and “word contains character
x on the second half of the word”. Level 3 splits
the word in 3 parts, level 4 in 4, etc. In practice,
we use levels 2, 3, 4, and 5, leading to a histogram
of (2 + 3 + 4 + 5) × 36 = 504 dimensions. Finally,
we also add the 50 most common English bigrams
at level 2, leading to 100 extra dimensions for a
total of 604 dimensions. These bigrams let us encode
relations between adjacent characters, which may
help to disambiguate when finding a low-dimensional
common subspace (cf . Section 4). In this case, when
using a pyramidal encoding and bigrams, “listen” and
“silent” have significantly different representations.

Given a transcription of a word we need to de-
termine the regions of the pyramid where we assign
each character. For that, we first define the normalized
occupancy of the k-th character of a word of length n

3. We do not make any distinction between lower-case and
upper-case letters, which leads to a case-insensitive representation.
It is trivial to modify it to be case-sensitive, at the cost of adding
another 26 attributes. It is also straightforward to include other
punctuation marks.
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representation of the images and the i-th value of the PHOC representation as label.

as the interval Occ(k, n) = [ kn ,
k+1
n ], where the position

k is zero-based. Note that this information is extracted
from the word transcription, not from the word image.
We remark that we do not have access to the exact
position of the characters on the images at training
time, only their transcription is available. We use the
same formula to obtain the occupancy of region r at
level l. Then, we assign a character to a region if the
overlap area between their occupancies is larger or
equal than 50% the occupancy area of the character,
i.e., if |Occ(k,n)∩Occ(r,l)|

|Occ(k,n)| ≥ 0.5, where |[a, b]| = b − a.
This is trivially extended to bigrams or trigrams.

3.2 Learning Attributes with PHOCs

As we mentioned, the PHOC histograms can be seen
as labels of attributes asking questions such as “word
contains character x on the first half of the word” or
“word contains character y on the second half of the
word”. These attributes are word-discriminative, since
they are based on the word-discriminative PHOC
embedding. If the attributes are learned using data
coming from different writers or sources, the resulting
models will also be robust to changes in appearance,
style, etc.

To learn these attributes we use linear SVMs. Word
images are first encoded into feature vectors, and
these feature vectors are used together with the PHOC
labels to learn SVM-based attribute models. The ap-
proach is illustrated in Figure 3. To represent the
images, we use Fisher vectors (FV) [40], a state-of-
the-art encoding method [43] which works well with
linear classifiers. The FV can be seen as a bag of visual
words [44] that encodes not only word counts but also
higher-order statistics. In a nutshell, at training time,
low-level descriptors (SIFTs in our case) are extracted
from the training images and used to learn a Gaussian
mixture model (GMM) λ = {wk, µk,Σk, k = 1 . . .K},
where w are the mixing weights, µ are the means,
Σ the (diagonal) covariances, and K is the number of
Gaussians. Then, to compute the representation of one
image, one densely extracts its low-leveldescriptors
and aggregates the gradients of the GMM model with
respect to its parameters (usually only means and

Figure 4: Spatial pyramids on word images. The sizes
and contents of each spatial region are very dependent
on the length of the word.

variances are considered, since weights add little extra
information) evaluated at those points. This leads to a
highly discriminative, high-dimensional signature. We
note however that there is absolutely no requirement
to use Fisher vectors or SVMs. Any encoding method
and classification algorithm that transforms the input
image into attribute scores could be used to replace
them. We chose SVMs and FVs for their simplicity
and effectivity.

3.3 Adding Spatial Information

One problem with many image encoding methods,
including the FV, is that they do not explicitly encode
the position of the features, which is extremely impor-
tant to describe word images. If the spatially-aware
attributes allow one to ask more precise questions
about the location of the characters, spatial informa-
tion on the image representation is needed to be able
to correctly answer those questions.

One well-established approach to add spatial in-
formation is to use spatial pyramids [45]. Instead of
aggregating the descriptors of the whole image, the
image is first divided in k regions, and the features of
each region are aggregated independently. This pro-
duces k independent descriptors that are concatenated
to produce the final descriptor. When dealing with
word images, however, this poses a problem: words of
different lengths will produce regions of very different
sizes and contents, see Fig. 4.

A different approach that works well in combina-
tion with FVs was proposed by Sánchez et al [46].
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Figure 5: Word image and the automatically adjusted
reference box that defines the coordinates system.

In a nutshell, the SIFT descriptors of the image are
enriched by appending the normalized x and y co-
ordinates and the scale they were extracted at. Then,
the GMM is learned not on the original SIFT features
but on these enriched ones. When computing the FV
using these features and GMM, the representation
implicitly encodes the position of the features inside
the word. They showed that, for natural images, this
achieved results comparable to spatial pyramids with
much lower-dimensional descriptors. When dealing
with natural images, the x and y coordinates were
normalized between −0.5 and 0.5. In the case of word
images we follow the same approach. However, crop-
ping differences during annotation lead to changes
of the word position inside the image, making these
coordinates less robust. Because of this, instead of
using the whole word image as a coordinate system,
we automatically and approximately find the begining
and end, as well as the baseline and the median line of
the word (by greedily finding the smallest region that
contains 95% of the density of the binarized image)
and use that for our reference coordinates system. The
center of that box corresponds to the origin, and the
limits of the box are at [−0.5, 0.5]. Pixels outside of that
reference box are still used with their corresponding
coordinates. See Figure 5 for an illustration.

Either when using spatial pyramids or xy enriching,
the GMM vocabulary is learned using the whole im-
age. We propose to improve these representations by
learning region-specific GMMs. At training time, we
split the images in regions similar to spatial pyramids,
and learn an independent, specialized vocabulary on
each region. These GMMs are then merged together
and their weights are renormalized to sum 1.

We evaluated these different representations on the
IAM dataset (cf. Section 6 for more details regarding
the dataset). The goal here is to find which rep-
resentation leads to better results at predicting the
attributes at the right location; correctly predicting
the attributes is of paramount importance, since it
is deeply correlated with the final performance at
retrieval and recognition tasks. We used the training
set of IAM to learn the attributes, and then evaluate
the average precision of each attribute on the test
set and report the mean average precision. Figure 6
shows the results. It is clear that some type of spatial
information is needed, either xy enriching or spatial
pyramid. The specialized GMMs do not work well
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Figure 6: Results of the attributes classifiers for differ-
ent Fisher vector configurations on the IAM dataset.

when used directly, which is not surprising, since the
distribution of characters in words is in general (close
to) uniform, and so the specialized GMMs are actu-
ally very similar. However, when learning specialized
GMMs on enriched SIFT features, the coordinates add
some information about the position that the special-
ized GMM is able to exploit independently on each
region. The final result is that the specialized GMMs
on enriched SIFTs lead to the best performance, and
is the representation that we will use through the rest
of our experiments.

4 ATTRIBUTES AND LABELS COMMON
SUBSPACE

Through the previous section we presented an
attributes-based representation of the word images.
Although this representation is robust to appearance
changes, special care has to be put when comparing
different words, since the scores of one attribute may
dominate over the scores of other attributes. Directly
comparing embedded attributes and embedded text
labels is also not well defined: although both lie in a
similar space of the same dimensionality, the embed-
ded text labels are binary, while the attribute scores
are not and have different ranges. Even if directly
comparing those representations yields reasonable re-
sults due to their similarities, such direct comparison
is not well principled. Therefore, some calibration of
the attribute scores and PHOCs is necessary.

One popular approach to calibrate SVM scores is
Platts scaling. It consists of fitting a sigmoid over
the output scores to obtain calibrated probabilities,
P (y = 1|s) = (1 + exp(αs + β))−1, where α and
β can be estimated using MLE. In the recent [47],
Extreme Value Theory is used to fit better probabilities
to the scores and to find a multi-attribute space simi-
larity. After the calibration, all scores are in the range
[0− 1], which makes them more comparable between
themselves –useful for the QBE task–, as well as
more comparable to the binary PHOC representation
– useful for the QBS and recognition tasks.
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One disadvantage of such approaches is that they
do not take into account the correlation between the
different attributes. In our case this is particularly
important, since our attributes are very correlated
due to multilevel encoding and the bigrams. Here we
propose to perform the calibration of the scores jointly,
since this can better exploit the correlation between
different attributes. To achieve this goal, we first
propose to address it as a ridge regression problem.
However, this only takes into account the correlation
between the attribute scores, and ignores the corre-
lations between the attributes themselves. Therefore,
we also propose a common subspace regression (CSR)
that leads to a formulation equivalent to Canonical
Correlation Analysis.

Let I = {In, n = 1, . . . , N} be a set of N im-
ages available for training purposes, and let Y =
{Yn, n = 1, . . . , N} be their associated labels. Let also
A = φI(I) ∈ <d×N be the N images embedded
in the d−dimensional attribute space, and let B =
φY(Y) ∈ {0, 1}d×N be the N labels embedded in the
d−dimensional label space. Then, one straightforward
way to relate the attribute scores of A to the em-
bedded labels of B is to define a distance function
F (Ii,Yi;P ) = ||PTφI(Ii)− φY(Yi)||22, with P ∈ <d×d,
and to minimize the distance across all the samples
and their labels,

argmin
P

N∑
i

1

2
F (Ii,Yi;P ) +

1

2
Ω(P ) =

argmin
P

1

2
||PTA−B||2F +

1

2
Ω(P ),

(1)

and where Ω(P ) = α||P ||2F is a regularization term
and α controls the weight of the regularization. In this
case this is equivalent to a ridge regression problem
and P has a closed form solution P = (AAT +
αI)−1ABT , where I is the identity matrix. Since d
is the number of attributes, which is low, solving
this problem (which needs to be solved only once,
at training time) is extremely fast.

As we mentioned, however, this formulation only
exploits the correlation of the attribute scores and
ignores the correlations between the attributes them-
selves. We therefore modify it to project both views
into a common subspace of dimensionality d′ (see Fig.
7). We define a new distance function F̂ (Ii,Yi;U, V ) =
||ψI(Ii) − ψY(Yi)||22, with ψI(I) = UTφI(I) and
ψY(Y) = V TφY(Y) being two linear embedding func-
tions that use projection matrices U, V ∈ <d×d′

to
embed φI(I) and φY(Y) into a common subspace.
Then, analogous to the previous case, the goal is to
minimize the distance across all the samples and their

labels,

argmin
U,V

N∑
i

1

2
F̂ (Ii,Yi;U, V ) +

1

2
Ω(U) +

1

2
Ω(V ) =

argmin
U,V

1

2
||UTA− V TB||2F +

1

2
Ω(U) +

1

2
Ω(V ),

s.t.

ψI(I)ψI(I)T = I

ψY(Y)ψY(Y)T = I,
(2)

where the orthogonality constrains ensure that the
solutions found are not trivial.

By using lagrangian multipliers, taking derivatives
with respect to U and V , and making them equal to
zero, one arrives to the following equalities:

λ(AAT + αI)uk = ABT vk

λ(BBT + αI)vk = BATuk,
(3)

where uk and vk are the k−th columns of matrices U
and V , and λ appears due to the lagrangian multipli-
ers. When solving for uk, one arrives to the following
generalized eigenvalue problem:

ABT (BBT + αI)−1BATuk = λ2(AAT + αI)uk (4)

The first k generalized eigenvectors form the first k
columns of the projection matrix U . This allows one
to choose the final dimensionality d′. An analogous
process can be used to obtain the projection matrix
V . We can observe how, in this case, we explicitly use
more relations between the data than in the regression
case, which leads to better models. This model also
allows one to control the output dimensionality and
perform dimensionality reduction. In some of our
experiments we will reduce the final dimensionality of
our representations down to 80 dimensions while still
obtaining state-of-the-art results. As in the regression
case, the matrices U and V are very fast to obtain since
they depend on the dimensionality of the attribute
space, which is low.

Interestingly, these equations are also the solution
to the Canonical Correlation Analysis (CCA) problem,
where one tries to find the projections that maximize
the correlation in a common subspace [48]. CCA is
a tool to exploit information available from different
data sources, used for example in retrieval [49] and
clustering [50]. In [51], CCA was used to correlate
image descriptors and their labels, which brought
significant benefits for retrieval tasks. We believe this
is the most similar use of CCA to our approach.
However, while [51] combined images and labels with
the hope of bringing some semantic consistency to
the image representations, our goal here is to bring
the imperfect predicted scores closer to their perfect
value in a common subspace.

The optimization shown in Equation (2) aims at
minimizing the distance between the images and
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Figure 7: Projection of predicted attribute scores and
attributes ground truth into a more correlated sub-
space with CSR.

their corresponding labels, but makes no effort in
pushing apart negative labels and learning to rank.
It is inviting to, instead, learn the parameters of F̂
that optimize the ranking loss directly, as done for
example in Weston et al. [52]. However, we found
that the results of the CSR were similar or superior to
those obtained optimizing the ranking loss directly.
We believe this is due to the non-convexity of the
optimization problem. Interestingly, similar results
were obtained in the text embedding method of [17],
where the structured SVM approach used to optimize
their (similar) compatibility function barely improved
over the initialization of the parameters based on
regression.

One may also note that the relation between the
attribute scores and the binary attributes may not
be linear, and that a kernelized approach (KCSR)
could yield larger improvements. In this case, we
follow the approach of [51]: we explicitly embed
the data using a random Fourier feature (RFF) map-
ping [53], so that the dot-product in the embedded
space approximately corresponds to a Gaussian kernel
K(x, y) = exp(−γ||x − y||2) in the original space,
and then perform linear projection on the embedded
space. In this case, at testing time, a sample is first
projected into the attribute space, then embedded
using the RFF mapping, and finally projected into the
common subspace using the learned projections.

5 LEARNING WITH SCARCE DATA

One inconvenience of learning the attribute space and
the common subspace in two independent steps is the
need of sufficiently large amounts of training data.
This is because the data used to learn the common
subspace should be different than the data used to
learn the attribute space. The reason is that, if we
embed the same data used to train the attributes into
the attributes space, the scores of the SVMs will be
severely overfit (most of them will be very close to
−1 or 1), and therefore the common subspace learned
using that data will be extremely biased, leading to
inferior results. If enough training data is available,
one can construct two disjoint training sets, train the
attribute on one of the sets, and train the common

subspace using the other set. However this does not
fully exploit the training data, since each training
sample is used only to learn the attributes or the
common subspace, but not both.

To overcome this problem, we propose to use a
variant of bagging. The training data is split in sev-
eral folds of training and validation partitions. The
training and validation data of each fold is disjoint,
but different folds will have overlapping data. In each
fold, a model is learned using the training data of that
fold, and this model is used to score the validation
data. Therefore, the scores on the validation data are
(almost) unbiased. Through several folds, the valida-
tion scores are added, and, for each sample, a counter
that indicates how many times it has been scored
is kept. At the end of the process, a global model
is produced by averaging all the local models. By
normalizing the score of every sample by the number
of times it was scored, we also produce unbiased
scores of the train set, which can be used to learn the
common subspace without problems. The process to
learn the model of one attribute and score the training
set is depicted in Algorithm 1 using a Matlab-like
notation. Note that some care needs to be taken to
ensure that all training samples appear at least once
in the validation set so they can be scored.

6 EXPERIMENTS

We start by describing the datasets we use through
our experiments. We then describe the most relevant
implementation details of our approach. After that,
we present our results and compare them with the
published state-of-the-art.

6.1 Datasets:

We evaluate our method in four public datasets: two
datasets of handwritten text documents, and two
datasets of text in natural scenes.

The IAM off-line dataset 4 [54] is a large dataset
comprised of 1, 539 pages of modern handwritten
English text written by 657 different writers. The
document images are annotated at word and line level
and contain the transcriptions of more than 13, 000
lines and 115, 000 words. There also exists an official
partition for writer independent text line recognition that
splits the pages in three different sets: a training set
containing 6, 161 lines, a validation set containing
1, 840 lines and a test set containing 1, 861 lines.
These sets are writer independent, i.e., each writer
contributed to one and only one set. Thorough our
spotting and recognition experiments we will use this
official partition, since it is the one most widely used
and eases comparison with other methods.

4. http://www.iam.unibe.ch/fki/databases/
iam-handwriting-database
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Algorithm 1 Learn attribute model with bagging

Input: Training data X ∈ <D×N

Input: Training labels Y ∈ {0, 1}N
Input: Number of folds F
Output: Model W ∈ <D

Output: Training data embedded onto the attribute
space A ∈ <N

W = zeros(1, D)
A = zeros(1, N)
count = zeros(1, N)
f = 1
while f ≤ F do

Split data in train and val partitions
TrainIdx, V alIdx = split(N, f)
TrainData = X(:, T rainIdx)
TrainLabels = Y (TrainIdx)
V alData = X(:, V alIdx)
V alLabels = Y (V alIdx)
Learn model using training data. Use validation
set to validate the parameters.
Wf = learnSVM(TrainData, TrainLabels,

V alData, V alLabels)
Encode the validation set into the attributes
space and keep track of the number of updates
A(V alIdx) = A(V alIdx) +WT

f V alData
count(V alIdx) = count(V alIdx) + 1
Add Wf to the global model W
W = W +Wf

f = f + 1
end while
Normalize and end
W = W/F
A = A/count
End

The George Washington (GW) dataset5 [10] con-
tains 20 pages of letters written by George Washing-
ton and his associates in 1, 755. The writing styles
present only small variations and it can be considered
a single-writer dataset. The dataset contain approxi-
mately 5, 000 words annotated at word level. There
is no official partition for the GW dataset. We follow
the approach of [7], [55] and split the GW dataset in
two sets at word level containing 75% and 25% of
the words. The first set is used to learn the attributes
representation and the calibration, as well as for vali-
dation purposes, and the second set is used for testing
purposes. The experiments are repeated 4 times with
different train and test partitions and the results are
averaged.

The IIIT 5K-word (IIIT5K) dataset6 [30] contains
5, 000 cropped word images from scene texts and

5. http://www.iam.unibe.ch/fki/databases/
iam-historical-document-database/washington-database

6. http://cvit.iiit.ac.in/projects/SceneTextUnderstanding/
IIIT5K.hmtl

born-digital images, obtained from Google Image en-
gine search. This is the largest dataset for natural
image word spotting and recognition currently avail-
able. The official partition of the dataset contains two
subsets of 2, 000 and 3, 000 images for training and
testing purposes. These are the partitions we use in
our experiments. The dataset also provides a global
lexicon of more than half million dictionary words
that can be used for word recognition. Each word is
associated with two lexicon subsets: one of 50 words,
and one of 1, 000 words.

The Street View Text (SVT) dataset7 [15] is com-
prised of images harvested from Google Street View
where text from business signs and names appear. It
contains more than 900 words annotated in 350 dif-
ferent images. In our experiments we use the official
partition that splits the images in a train set of 257
word images and a test set of 647 word images. This
dataset also provides a lexicon of 50 words per image
for recognition purposes.

6.2 Implementation Details
We use Fisher vectors [40] as our base image rep-
resentation. SIFT features are densely extracted at
6 different patch sizes (bin sizes of 2, 4, 6, 8, 10,
and 12 pixels) from the images and reduced to 62
dimensions with PCA. Then, the normalized x and
y coordinates are appended to the projected SIFT
descriptors. To normalize the coordinates, we use the
automatically detected reference boxes on the IAM
and GW datasets. On IIIT5K and SVT, we observed
that the minibox approach did not perform as well
due to the nature of the backgrounds, which difficults
the fitting of the bounding box, so we use the whole
image as reference system. These features are then
aggregated into a FV that considers the gradients
with respect to the means and variances of the GMM
generative model.

To learn the GMM we use 1 million SIFT features
extracted from words from the training sets. We use
16 Gaussians per GMM, and learn the GMM in a
structured manner using a 2 × 6 grid leading to a
GMM of 192 Gaussians. This produces histograms
of 2 × 64 × 192 = 24, 576 dimensions. For efficiency
reasons, however, on the IAM dataset, we use SIFT
features reduced to 30 dimensions instead of 62. This
produces histograms of 12, 288 dimensions. This re-
duction improved the training speed and storage costs
while barely affecting the final results. The descriptors
are then power- and L2- normalized. Please cf . [56]
for more details and best practices regarding the
construction of FV representations.

When computing the attribute representation, we
use levels 2, 3, 4 and 5, as well as 50 common bigrams
at level 2, leading to 604 dimensions when considering
digits plus the 26 characters of the English alphabet.

7. http://vision.ucsd.edu/∼kai/svt/
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Table 1: Retrieval results on the IAM, GW, IIIT5K and SVT datasets. Accuracy measured in mean average
precision.

IAM GW IIIT5K SVT
QBE QBS QBE QBS QBE QBS QBE QBS

FV 15.66 – 62.72 – 24.21 – 22.88 –
Att. 44.60 39.25 89.85 67.64 55.71 35.91 48.94 60.32
Att. + Platts 48.09 66.86 93.04 91.29 62.05 62.30 51.47 76.01
Att. + Reg. 46.59 60.95 90.54 87.02 61.06 58.12 52.51 71.88
Att. + CSR. 52.61 73.54 92.46 90.81 63.79 66.24 55.86 79.65
Att. + KCSR. 55.73 73.72 92.90 91.11 63.42 65.15 55.87 79.35

We learn the attributes using the bagging approach
of Algorithm 1 with 10 folds on all datasets. Since the
training set of SVT is very small (only 257 images), we
augment it by using the whole 5K dataset as training
set. Note that other recent works that evaluate on
SVT also augment the data, either producing synthetic
training [32] or by using in-house datasets [5].

When learning and projecting with CSR and KCSR,
the representations (both score attributes and embed-
ded labels) are first L2-normalized and mean centered.
We use CSR to project to a subspace of 80 dimen-
sions on all datasets. For KCSR, we project into 160
dimensions on all datasets. Then, once projected, the
representations are L2 normalized once again. This
L2 normalization is important to compensate for the
loss of energy after the dimensionality reduction [57]
and significantly improved the overall accuracy of
the methods. After L2 normalization, both euclidean
distance and dot product produce equivalent rankings
since both measures are proportional after L2 normal-
ization. We therefore use the dot product, since we
observed it to be approximately 20 times faster than
using the euclidean distance on our system.

6.3 Word Spotting
6.3.1 Protocol
In the word spotting task, the goal is to retrieve
all instances of the query words in a “database”
partition. Given a query, the database elements are
sorted with respect to their similarity to the query. We
then use mean average precision as the accuracy mea-
sure. Mean average precision is a standard measure
of performance for retrieval tasks, and is essentially
equivalent to the area below the precision-recall curve.
Note that, since our search is exhaustive, the recall is
always 100%. We use the test partition of the datasets
as database, and use each of its individual words as
a query in a leave-one-out style. When performing
query-by-example, the query image is removed from
the dataset, and queries that have no extra relevant
words in the database are discarded. When perform-
ing query-by-string, only one instance of each string is
considered as a query, i.e., words that appear several
times in the dataset are only used as a query once. In

the IAM dataset it is customary to not use stopwords
as queries. However, they still appear in the dataset
and act as distractors. We follow this approach and
not use stopwords as queries in the IAM dataset. The
IAM dataset also contains a set of lines marked as
“error”, where the transcription of the line is dubious
and may or may not be correct. We have filtered out
those lines, and they are not used neither at training
nor at testing.

Some methods in the literature have used slightly
different protocols, that we will adopt when compar-
ing to them. On the QBS experiments of Table 2, we
report results using only queries that also appear on
the training set, as the other approaches do, even if
all the methods are able to perform OOV spotting.
An exception is Aldavert et al. [55], that on GW
reports results both using only queries that appear
on training, and using all the queries. We follow the
same approach. The results between parenthesis and
marked with an asterisk denote that all queries were
used. Furthermore, on the QBS experiments on IAM,
we follow the state-of-the-art approach of [7] and
perform line spotting instead of word spotting, i.e., we
retrieve whole lines that are correct if they contain
the query word. To do so we group all the words in
each line as a single entity, and define the distance
between a query and a line as the distance between
the query and the closest word in the line. Frinken et
al. [7] also use only a subset of the test set containing
approximately half of the test lines. We obtained the
exact lines after contacting the authors and use only
those lines when comparing to them.

For the spotting task on IIIT5K, we compare our-
selves with the results of Rodrı́guez and Perronnin
[17]. However, they use precision at 1 instead of mean
average precision as the accuracy metric. Further-
more, instead of retrieving the test queries on the
test partition, they retrieve test queries directly on the
training partition. We follow the same approach when
comparing to them in Table 3.

6.3.2 Results

The results of our approach on the word spotting task
are shown on Table 1. For each dataset, we compare
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the FV baseline (which can only be used in QBE tasks),
the uncalibrated attributes embedding (Att.), the at-
tributes calibrated with Platts (Att. + Platts), the one-
way regression (Att. + Reg), the common subspace
regression (Att. + CSR), and the kernelized common
subspace regression (Att. + KCSR). We highlight the
following points:

FV baseline vs attributes. It is clear how the use
of attributes dramatically increases the performance,
even when no calibration at all is performed. This
is not surprising, since the attributes space has been
learned using significant amounts of labeled training
data. It reinforces the idea that exploiting labeled data
during training is very important to obtain compet-
itive results. The QBS results however are not par-
ticularly good, since the direct comparison between
attribute scores and PHOCs is not well principled.

Platts vs reg vs CSR. By learning a non-linear cali-
bration using Platts, the attribute results significantly
improve for all datasets. Although Platts does not
find a common subspace, it puts the attributes em-
bedding and the label embedding in the same range
of values, which obviously helps the performance,
particularly in the QBS case. The results obtained with
regression are unstable. Although they outperform
the uncalibrated attributes, they only bring a slight
improvement over Platts, and only in some cases.
While regression exploits the correlation of attribute
scores, the nonlinearity of Platts seems to give it
an edge. However, when considering the common
subspace regression, which exploits the correlations
of both the attribute scores and the embedded labels,
the results increase drastically, always outperforming
Platts or regression except on the GW dataset, where
they are very close.

CSR vs KCSR. The kernelized version of CSR
obtains results very similar to CSR. Our intuition is
that, due to the higher dimensionality of Random
Fourier Features, the method is more prone to overfit,
and requires more training data to show its benefits.
Indeed, in the IAM dataset, which contains larger
amounts of training data, KCSR clearly outperforms
CSR.

Hybrid retrieval. We also explore a hybrid spotting
approach, where both an embedded image ψI(Ii) and
its embedded transcription ψY(Yi) are available as
a query. Since both representations lie in the same
space after the projection, we can create a new hybrid
representation by a weighted sum, i.e., ψH(Ii,Yi) =
αψI(Ii) + (1− α)ψY(Yi) and use it as a query. Figure
8 shows the results of this hybrid approach on our
datasets as a function of the α weight. We observe
how the results improve when using both representa-
tions at query time.

Comparison with the state-of-the-art. We compare
our approach with recently published methods on
document and natural images. For the document
datasets (Table 2), we first focus on QBE and com-

(a) IAM (b) GW

(c) IIIT5K (d) SVT

Figure 8: Hybrid spotting results with KCSR as a
function of the weight α assigned to the visual part
of the query.

pare our approach with the FV baseline and a DTW
approach based on Vinciarelli [58] features. On GW,
we report the results of [12] on DTW as well as
their results with semi-continuous HMM (SC-HMM).
Although the results of [12] are not exactly compa-
rable, since partitions are different (we followed [7],
[55] instead of [12]), we provided both our DTW
results and the ones reported on their paper to at
least provide an approximate idea of the expected
differences due to the partition.

Table 2: Word spotting comparison with the state-of-
the-art on IAM and GW. Results on QBS only use
queries that also appear on the training set, except
those marked with an asterisk. QBS results on IAM
perform line spotting instead of word spotting, and
use only half of the lines of the test set.

IAM GW

QBE

Baseline FV 15.66 Baseline FV 62.72
DTW 12.30 DTW 60.63

DTW [12] 50.00
SC-HMM [12] 53.00

Proposed (Platts) 48.09 Proposed (Platts) 93.04
Proposed (KCSR) 55.73 Proposed (KCSR) 92.90

QBS

cHMM [6], [7] 36.00 cHMM [6], [7] 60.00
Aldavert et al. [55] 76.20 (56.54*)

Frinken et al. [7] 78.00 Frinken et al. [7] 84.00
Proposed (KCSR) 80.64 Proposed (KCSR) 93.93 (91.11*)

We observe how the FV baseline is already com-
parable or outperforms some popular methods on
both datasets. This is in line with the findings of [23],
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where the FV of a HMM outperforms the standard
HMM on keyword classification tasks. Also, despite
the possible differences in partitions, the advantage
of the proposed method over methods that do not
perform supervised learning is clear. For the QBS case,
we compare ourselves with the recent methods of [7]
and [55], as well as with the character HMM approach
of [6] as evaluated in [7]. All these works use labeled
training data, which translates into more competitive
results than in the QBE case. However, the expres-
siveness of the attributes, the use of discriminative
image representations, and the learning of a common
subspace, give an edge to the proposed method. We
also note how our results do not particularly suffer
when using words that were not seen during training
(93.93 vs 91.11 on GW), as opposed to the approach of
[55] (76.2 vs 56.54), showing a much nicer adaptation
to unseen words.

We also compare our approach on natural images,
see Table 3. We compare ourselves with the recent
label-embedding method of [17], as well as their DTW
baseline. Note that in this case the reported measure
is precision at 1 instead of mean average precision. We
observe how our approach clearly outperforms their
results. Part of this improvement may however be due
to using better Fisher vectors, since we use structured
GMMs with enriched SIFT descriptors and Rodriguez
and Perronnin use spatial pyramids.

Table 3: Word spotting comparison with the state-of-
the-art in IIIT5K dataset for the QBE task.

Method Top-1 acc.

FV 40.70
DTW [17] 37.00
Rodrı́guez and Perronnin [17] 43.70
Proposed (KCSR) 72.28

Qualitative results. We finally show qualitative re-
sults with samples from the IAM and IIIT5K datasets
on Figure 9. We observe how some difficult words
are correctly retrieved. Some common errors include
words with common patterns (like a double tt) or dif-
ferent terminations (“window” vs “windows”, “bill-
boards” vs “billboard”).

6.4 Word Recognition
6.4.1 Protocol
In word recognition, the goal is to find the transcrip-
tion of the query word. In our experiments, the tran-
scription is limited to words appearing in a lexicon.
IIIT5K and SVT have officially associated lexicons. In
SVT, each query word has an associated lexicon of 50
words, one of which corresponds to the transcription
of the query. IIIT5K has two associated lexicons per
word, one of 50 words and one of 1, 000 words. For
IAM, we use a closed lexicon that contains all the

words that appear in the test set, as in one of the
experiments of [13]. In our case, since we embed
both images and strings into a common subspace,
the transcription problem is equivalent to finding the
nearest neighbor of the query image in a dataset
containing the lexicon embedded into the common
subspace. In IIIT5K and SVT, the standard evaluation
metric is precision at one, i.e., is the top retrieved
transcription correct? In document datasets, more
common measures are the word error rate (WER)
and character error rate (CER). The CER between two
words is defined as the edit distance or Levensthein
distance between them, i.e., the minimum number
of character insertions, deletions, and substitutions
needed to transform one word into the other, nor-
malized by the length of the words. We report the
mean CER between the queries and their top retrieved
transcription. The WER is defined similarly, but con-
sidering words in a text line instead of characters
inside a word. This is done typically because many
transcription methods work on whole lines at the
same time. If words are already segmented, WER is
equivalent to a Hamming distance between words in
a line, and the dataset WER is the mean percentage
of words that are wrongly transcribed in each line.

6.4.2 Results
The results on word recognition on IAM are on Table
4, where we compare with the state-of-the-art ap-
proach of [13], which uses a combination of HMMs
and neural networks to clean and normalize the im-
ages and produce word models. We compare our
results in terms of WER and CER, where a lower score
is better. Although we do not match the results of [13],
our results are competitive without performing any
costly preprocessing on the images and with much
faster recognition speeds.

Table 4: Recognition error rates on the IAM dataset.

Method WER CER

España-Bosquera et al. [13] 15.50 6.90
Proposed (KCSR) 20.01 11.27

Table 5 shows results on the IIIT5K an SVT datasets.
We observe how our approach clearly outperforms all
published results on IIIT5K. On SVT, our method is
only outperformed by Google’s very recent PhotoOCR
[5] approach. However, [5] uses 2.2 million training
samples labeled at the character level, while we use
only 5 thousand images labeled at the word level.

Finally, Figure 10 shows some qualitative results
on image recognition with samples from the IAM,
IIIT5K and SVT datasets. Common errors include very
similar-looking words (“Heather” and “feather”),
low-resolution images (“Mart” and “man”), or un-
orthodox font styles (“Neumos” vs “bimbos”).
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Figure 9: Qualitative results on word spotting on the IAM and IIIT5K. Relevant words to the query are outlined
in green.

security ✔ undue ✔ independence ✔ breakfast ✔ feather ✘

regency ✔ cottage ✔ summer ✔ vijayawada ✔ 560 ✔

motorsports ✔ sushi ✔ hotel ✔ man ✘ burbank ✔

bimbos ✘store ✘ salon ✘ bookstore ✔starbucks ✔

Figure 10: Qualitative results on word recognition on the IAM, IIIT5K, and SVT datasets.

Table 5: Recognition results on the IIIT5K and SVT
dataset. Accuracy measured as precision at 1.

Dataset Method |y| = 50 |y| = 1000

IIIT5K
Mishra et al. [30] 64.10 57.50
Rodrı́guez and P. [17] 76.10 57.40
Proposed (KCSR) 88.57 75.60

SVT

ABBY [32] 35.00 -
Mishra et al. [16] 73.26 -
Goel et al. [32] 77.28 -
PhotoOCR [5] 90.39 -
Proposed (KCSR) 87.01 -

6.5 Computational Analysis

The improvements of our approach are not only in
terms of accuracy and memory use. Our optimized
DTW implementation in C took more than 2 hours
to compare the 5, 000 queries of IAM against the
16, 000 dataset words on an 8-core Intel Xeon W3520
at 2.67GHz with 16Gb of RAM, using one single

core. By contrast, comparing the same queries using
our attributes embedded with CSR involves only one
matrix multiplication and took less than 1 second on
the same machine, about 0.2 milliseconds per query.
For recognition tasks we only need to compare the
query with the given lexicon. Recognizing a query
with a lexicon of 1, 000 in IIIT5K takes less than 0.02
milliseconds. At query time we also need to extract
the FV representation of the query image, which in-
volves the dense SIFT extraction and the FV encoding,
and then embed it into the CSR/KCSR subspace. This
process takes, on average, 0.77 seconds per image.

In general, these numbers compare favorably with
other approaches. The method proposed by [7] takes
a few milliseconds to process a single line in the
IAM for the QBS task. PhotoOCR [5] reports times
of around 1.4 seconds to recognize a cropped image
using a setup tuned for accuracy. An unoptimized
implementation of the method proposed in [4] takes
35 seconds to locate and recognize the words in an
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image, and the same task takes around 8 seconds with
the method in [31].

Regarding the cost of learning an attribute model
with an SVM, learning a single model on the IAM
database using our SGD implementation on a single
core with more than 60, 000 training samples took, on
average, 35 seconds, including the crossvalidation of
the SVM parameters. That is, the complete training
process of the attributes, including the bagging, can be
done in about 2 days on a single CPU. Since attributes
and folds are independent, this is trivially paralleliz-
able. Training the Deep Neural Network proposed in
[5] took 2 days on a 200 cores cluster. Learning the
CSR and KCSR projections is also very fast since the
dimensionality of the attribute space is low: approx-
imately 1.5 seconds for CSR and approximately 60
seconds for KCSR. As the attribute models, this needs
to be learned only once, offline.

7 CONCLUSIONS AND FUTURE WORK

This paper proposes an approach to represent and
compare word images, both on document and on nat-
ural domains. We show how an attributes-based ap-
proach based on a pyramidal histogram of characters
can be used to learn how to embed the word images
and their textual transcriptions into a shared, more
discriminative space, where the similarity between
words is independent of the writing and font style,
illumination, capture angle, etc. This attributes rep-
resentation leads to a unified representation of word
images and strings, resulting in a method that allows
one to perform either query-by-example or query-by-
string searches, as well as image transcription, in a
unified framework. We test our method in four public
datasets of documents and natural images, outper-
forming state-of-the-art approaches and showing that
the proposed attribute-based representation is well-
suited for word searches, whether they are images or
strings, in handwritten and natural images.

Regarding future work, we have observed em-
pirically that the quality of the attribute models is
quite dependent on the available number of training
samples, and that the models for rare characters in
rare positions were not particularly good. We believe
that having larger training sets could improve the
quality of those models and lead to better overall
results. Towards this goal, we have experimented with
augmenting the training sets by applying transforma-
tions such as changes in slant to the available images.
Preliminary results indicate that this can significantly
boost the results. As an example, we improved the
QBE results on IAM from 55.73 to 59.62. In the same
line, our learning approach is currently based on
whole word images and does not require to segment
the individual characters of the words during training
or test, which we consider an advantage. However, it
has been shown that learning on characters can lead

to large improvements in accuracy [5]. We want to
study how we could learn on individual segmented
characters (using existing datasets such as Char74K
[59]) and transfer that information into our system
without needing to actually segment the characters of
the target dataset at any time. We are also interested
in lifting the need to have cropped word images
by integrating the current word representation in an
efficient sliding window framework.
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