
Segmentation-Free Word Spotting with Exemplar SVMs

Jon Almazána, Albert Gordo1b, Alicia Fornésa, Ernest Valvenya

aComputer Vision Center – Dept. Ciències de la Computació

Universitat Autònoma de Barcelona, 08193 Bellaterra (Barcelona), Spain
bINRIA Grenoble - Rhône-Alpes research centre

655 Avenue de l’Europe, 38330 Montbonnot, France

Abstract

In this paper we propose an unsupervised segmentation-free method for word spotting in docu-

ment images. Documents are represented with a grid of HOG descriptors, and a sliding-window

approach is used to locate the document regions that are most similar to the query. We use the

Exemplar SVM framework to produce a better representation of the query in an unsupervised

way. Then, we use a more discriminative representation based on Fisher Vector to rerank the

best regions retrieved, and the most promising ones are used to expand the Exemplar SVM train-

ing set and improve the query representation. Finally, the document descriptors are precomputed

and compressed with Product Quantization. This offers two advantages: first, a large number of

documents can be kept in RAM memory at the same time. Second, the sliding window becomes

significantly faster since distances between quantized HOG descriptors can be precomputed. Our

results significantly outperform other segmentation-free methods in the literature, both in accu-

racy and in speed and memory usage.

Keywords: word spotting, segmentation-free, unsupervised learning, reranking, query

expansion, compression

1. Introduction

This paper addresses the problem of query-by-example word spotting: given a dataset of doc-

ument images and a query word image, the goal is to identify and retrieve regions of those

documents where the query word may be present. From decades ago this problem has attracted

a lot of interest from the computer vision community [1, 2, 3, 4, 5], since making handwritten

texts or ancient manuscripts available for indexing and browsing is of tremendous value. Inter-

esting applications for word spotting are, for example, retrieving documents with a given word

in company files, or searching online in cultural heritage collections stored in libraries all over

the world. In this work, we specially focus on the unsupervised word-spotting problem, where

no labeled data is available for training purposes. This is a very common scenario since correctly

labeling data is a very costly and time consuming task.

1Part of this work was done while A. Gordo was a PhD student at the Computer Vision Center in Barcelona, Spain.

Email addresses: almazan@cvc.uab.es (Jon Almazán), albert.gordo@inria.fr (Albert Gordo),

afornes@cvc.uab.es (Alicia Fornés), ernest@cvc.uab.es (Ernest Valveny)

URL: www.cvc.uab.es/~almazan (Jon Almazán)

Preprint submitted to Pattern Recognition June 18, 2014

Traditionally, word-spotting systems have followed a well defined flow. First, an initial layout

analysis is performed to segment word candidates. Then, the extracted candidates are represented

as sequences of features [6, 7, 8]. Finally, by using a similarity measure – commonly a Dynamic

Time Warping (DTW) or Hidden Markov Model (HMM)-based similarity –, candidates are com-

pared to the query word and ranked according to this similarity. Examples of this framework are

the works of Rath and Manmatha [2] and Rodrı́guez-Serrano and Perronnin [5]. One of the main

drawbacks of these systems is that they need to perform a costly and error prone segmentation

step to select candidate windows. Any error introduced in this step will negatively affect the

following stages, and so it is desirable to avoid segmenting the image whenever possible. Unfor-

tunately, since the comparison of candidate regions, represented by sequences, is based on costly

approaches such as a DTW or a HMM, it is not feasible to perform this comparison exhaustively

with a sliding-window approach over the whole document image.

Late works on word spotting have proposed methods that do not require a precise word seg-

mentation, or, in some cases, no segmentation at all. The recent works of [3, 4] propose methods

that relax the segmentation problem by requiring only a segmentation at the text line level. One

of their drawbacks, however, is that they require a large amount of annotated data to train the

Hidden Markov Models [3] or the Neural Networks [4] that they use. Additionally, the line

segmentation still has to be very precise to properly encode the lines.

In [9], Gatos and Pratikakis perform a fast and very coarse segmentation of the page to de-

tect salient text regions. Queries are represented with a descriptor based on the density of the

image patches.Then, a sliding-window search is performed only over the salient regions of the

documents using an expensive template-based matching.

The methods proposed by Leydier et al. [10] and Zhang and Tan [11] avoid segmentation

by computing local keypoints over the document images. While [10] represents the document

images with gradient-based features, [11] uses features based on the Heat Kernel Signature. The

main drawback of these approaches is that they use a costly distance computation, which is not

scalable to large datasets.

The work of Rusiñol et al. [12] avoids segmentation by representing regions with a fixed-

length descriptor based on the well-known bag of visual words (BoW) framework [13]. In this

case, comparison of regions is much faster since a dot-product or Euclidean distance can be

used, making a sliding window over the whole image feasible. To further improve the system,

unlabeled training data is used to learn a latent space through Latent Semantic Indexing (LSI),

where the distance between word representations is more meaningful than in the original space.

Rothacker et al. [14] exploits the use of the BoW representation to feed a HMM and avoids the

segmentation step by means of a patch-based framework. Comparison of regions is slower than

the BoW-based approach of [12], so it could not be directly applied in a large-scale scenario, but,

thanks to the sequential encoding of the BoW features of the HMM, they obtain a more robust

representation of the query.

Howe [15] uses a generative model for word appearance from a single positive sample, re-

sulting in an example of a one-shot learning approach. The model consists of a set of nodes

connected via springlike potentials, and arranged in a tree structure whose a priori minimum

energy configuration conforms to the shape of the query word.

In this work we focus on this family of segmentation-free word-spotting approaches and we

argue that previously described current methods can be improved in several ways. First, they

can be improved in the choice of low level features. The features of [6, 7, 8, 14] produce

sequence representations, which are usually slower to compare than fixed-length representations.

The work of [9] uses a descriptor based on the patch density, which is insufficient to capture all

2

(a) HOG grid. (b) (c)

Figure 1: a) Grid of HOG cells. Only one small part of the image is shown. b) Two random queries of the George

Washington dataset. The windows adjust around the HOG cells. c) A query (in green) and some positive samples (in

red) used to learn the Exemplar SVM. To avoid clutter, only some of the positive windows are shown.

the fine-grained details. The bag of visual words approach of [12] fixes the size of the scanning

window for efficiency reasons, which makes the accuracy of the method very dependent of the

size of the query. We address these issues by using a sliding-window approach based on HOG

descriptors [16], which have been shown to obtain excellent results when dealing with large

variations in the difficult tasks of object detection and image retrieval. The document images are

represented with a grid of HOG descriptors, where each cell has the same size in pixels. (cf . Fig

1(a)). In this case, we do not have a fixed window size; instead, the window size is adjusted to

the query size, covering several HOG cells (cf . Fig 1(b)).

HOG descriptor provides a good trade-off between speed and memory requirements and dis-

criminative power. However, more discriminative representations exist, but cannot be used in

practice when dealing with large volumes of data – such as those of large-scale datasets or

sliding-window setups. We propose to apply a common solution that consists of, first, using

affordable features (i.e. HOG) to produce an initial ranking over all the dataset, and then, use

more powerful and expensive representations to rerank only the most promising candidates re-

turned by the first stage. Since only a small subset of the whole dataset is scanned, it is feasible to

use more expensive features. In the case of word spotting, however, it is not clear which features

would be better suited for this task. Therefore, we have included in the experiments a comparison

of low-level features to represent the word images with the objective of analyzing their use on a

reranking step. This reranking step can significantly improve the accuracy with a cost that does

not depend on the number of documents on the dataset.

Second, spotting methods can be improved in the learning of a more discriminative space.

In [12], LSI is used to learn a latent space where words and documents are more related. How-

ever, learning a semantic space with LSI may be too conditioned to the words used in the un-

supervised training stage, and adapting to new, unseen words may be complicated. Instead,

we propose to perform this unsupervised learning once the query has been observed, and adapt

the learning to the particular query. For this task, we propose to use a similar approach to the

Exemplar SVM framework of [17, 18]. Additionally, to further improve the representation of

the query, we propose to combine reranking with a query expansion step, which uses the best

candidates after the reranking step to construct a new, more informative representation of the

query, and use it to query again the dataset to further improve the results. As a consequence of

this reranking step it may be necessary to train several exemplar models per query. We propose

to use a fast solver based on Stochastic Gradient Descent (SGD) to considerably speed up the

3

Reranking

E-SVM
Query

Query
E-SVM

Query

Reranking

Query

X1

X2

X3

X1

X2

X3

X1

X2 X3

(a) (b)

(c) (d)

Figure 2: General scheme of the method proposed. (a) E-SVM training and sliding-window search. (b) First reranking

of the best retrieved regions. (c) E-SVM retraining and sliding-window search applying query expansion with the first

reranked regions. (d) Second reranking using the expanded training set.

training process.

Finally, these methods can be improved in the cost of storing the descriptors of all the

possible windows of all the dataset items. Assuming HOG descriptors of 31 dimensions repre-

sented with single-precision floats of 4 bytes each (i.e., 124 bytes per HOG), and 50,000 cells per

image, storing as few as 1,000 precomputed dataset images would require 5.8GB of RAM. Since

documents will not fit in RAM memory when dealing with large collections, we are left with

two unsatisfying options: either recomputing the descriptors of every document with every new

query, or loading them sequentially from a hard disk or a solid-state drive (SSD). Any of these

approaches would produce a huge performance drop in the speed at query time3. To address

this problem, we propose to encode the HOG descriptors using Product Quantization (PQ) [19].

Encoding the descriptors with PQ would allow us to reduce the size of the descriptors and to

preserve a much larger amount of images in RAM at the same time. As a side effect, computing

the scores of the sliding window also becomes significantly faster.

In summary, we present a full system for efficient unsupervised segmentation-free word

spotting that will be shown to outperform existing methods in two standard datasets. The use of

HOG templates provides a very natural model, and its discriminative power is improved through

the use of Exemplar SVMs with SGD solvers. The use of PQ drastically improves the efficiency

of the system at test time. Finally, the use of more informative features in combination with

reranking and query expansion improves the final accuracy of the method at a reduced cost. A

general scheme of the method can be seen in Figure 2.

3A similar point can be argued about the methods of [9], [12] or [14].

4

A preliminary version of our system was described in [20]. The system described here extends

the work of [20] in the following ways: the comparison of different low-level features for word

representation, the introduction of reranking and query expansion to improve performance, the

analysis of different configurations of the PQ compression method, the use of a faster Stochastic

Gradient Descent-based solver for learning the Exemplar SVM and new experiments with the

full system integrating all these steps.

The rest of the paper is organized as follows. Section 2 describes the basic configuration

of a HOG-based word-spotting approach. Section 3 extends it to make use of the Exemplar

SVM framework, and Section 4 introduces the use of PQ to compress the HOG descriptors of

the document. Then, reranking and query expansion are described in Section 5 and Section 6.

Finally, Section 7 deals with the experimental validation and Section 8 concludes the paper.

2. Baseline System

Word spotting – and, particularly, handwritten word spotting – is a challenging problem for

descriptors because they have to deal with many sources of variability such as deformations,

different styles, etc. Moreover, in a large-scale and segmentation-free scenario, it is mandatory

to use descriptors that are both fast to compute and compare, and that could be integrated in

a sliding-window based search. Traditionally, features for word spotting have been based on

sequences [6, 7, 8] and compared using methods such as Dynamic Time Warping or Hidden

Markov Models. The rationale behind this is that these types of variable-length features would

be able to better adapt to the word they represent and capture information independently of

deformations caused by different styles, word length, etc. The main drawback of these methods

is that comparing representations is slow, with usually a quadratic cost with respect to the length

of the feature sequence, which makes them impractical in large-scale scenarios as well as in a

sliding-window setup.

Interestingly, it has been shown that these variable-length features do not always lead to the

best results and can be outperformed by fixed-length representations. The work of Perronnin

and Rodrı́guez-Serrano [21] exploits the Fisher kernel framework [22] to construct the Fisher

Vector of a HMM, leading to a fixed-length representation that outperforms standard HMM over

variable-length features. Rusiñol et al. [12] represent document image regions with a descriptor

based on the well-known bag of visual words framework [13] over densely extracted SIFT de-

scriptors, obtaining a reasonable performance in segmentation-free word spotting. Unfortunately,

although these features are superior to some sequence-based ones, they still remain impractical

for a sliding-window setup since computing the descriptors for every window is usually quite

slow. Rusiñol et al. [12] address this issue by fixing the window size and precomputing offline

the descriptors of all possible windows of that size. This, however, makes the results very depen-

dent on the size of the query, since very small or very large queries will not correctly adapt to the

precomputed windows.

Because of these reasons here we advocated for the use of HOG descriptors [16], which have

been shown to obtain excellent results in difficult tasks such as pedestrian and object detection

and image retrieval (see, e.g., [23] or [18]). Although in general HOG descriptors cannot com-

pete in terms of accuracy with other more powerful features, they are very fast to compute and

compare, and are particularly suited for problems that require a sliding-window search such as

this one, providing a very good trade-off between accuracy and speed. Now, as we will show

in Section 5, it is actually possible to use more powerful and discriminative features during a

5

second step to rerank the best candidate words yielded by the sliding-window approach at a very

reasonable cost, overcoming the main deficiency of HOG descriptors for this task.

In our system, the document images are divided in equal-sized cells (see Fig 1a) and rep-

resented with HOG histograms, which encode local gradients. We follow [23] and use HOG

histograms of 31 dimensions (9 contrast insensitive orientation features, 18 contrast sensitive

orientation features and 4 features to reflect the overall gradient energy around the cell) to rep-

resent each cell. Queries are represented analogously using cells of the same size in pixels. In

this case, as opposed to [12], we do not have a fixed window size; instead, the window size

depends on the query size, covering Hq × Wq HOG cells (cf . Fig 1(b)), leading to a descrip-

tor of Hq × Wq × 31 dimensions. Note that the number of cells in a query, and therefore the

final dimensionality of the descriptor, depends on the size of the query image. The score of

a document region x of Hq × Wq cells with respect to the query q is then calculated as a 3D

convolution, sim(q, x) = q ∗ x. This could also be understood as calculating the dot-product

between the concatenated HOGs of the query q̄ = vec(q) and the concatenated HOGs of the

document region x̄ = vec(x), i.e., sim(q, x) = q̄Tx̄, but we remark that at test time we perform a

convolution instead of concatenating the descriptors explicitly. Following this approach, we can

compute the similarity of all the regions in the document image with respect to the query using a

sliding window and rank the results. To avoid returning several windows over the same region,

Non-Maximum Suppression (NMS) is performed to remove windows with an overlap over union

larger than 20%.

We further modify the baseline in two ways. First, instead of using the HOG descriptors di-

rectly, we reduce their dimensionality down to 24 dimensions with PCA. We observed no loss

in accuracy because of this, probably because of the “simplicity” of text patches. Second, in-

stead of calculating the dot-product, we are interested in the cosine similarity, i.e., calculating

the dot-product between the L2 normalized descriptors. The cosine similarity is a typical choice

in document retrieval, and we observed experimentally that L2 normalizing the vectors can in-

deed make a significant difference in the results. Note that the L2 normalization is performed at

the region level, not at the cell level. Fortunately, we do not need to explicitly reconstruct the

regions to normalize the descriptors, since sim cos(q, x) = (
q̄

||q̄||)
T (x̄
||x̄||) =

1
||q̄||

1
||x̄|| q̄

T x̄ = 1
||q̄||

1
||x̄||q ∗ x

Therefore, we can calculate the sim(q, x) score with a convolution without explicitly concatenat-

ing the descriptors and later normalize it with the norms of the query and the document region.

The norm of the query can in fact be ignored since it will be constant for all the document re-

gions and therefore does not alter the ranking. As for the region patch, we can accumulate the

squared values while performing the convolution to construct, online, the norm of the region

patch without explicitly reconstructing it.

3. Exemplar Word Spotting (EWS)

In the previous section we introduced how HOG descriptors can be used in the framework of a

sliding-window based approach for word spotting. There, we used a basic retrieval setting based

on the cosine similarity. We note however, that the cosine similarity, despite being a reasonable

option, may not be the optimal way to compare document regions, and that learning a better

metric may yield significant improvements. In [12], this is achieved by learning, offline, a latent

space through LSI, where the cosine similarity is an appropriate measure. However, this may

be too conditioned to the words used in the unsupervised training stage, and adapting to new,

unseen words may be complicated. Additionally, it is not clear how we could adapt this latent

learning to our grid of HOGs framework.

6

Here we take a different approach and propose to learn, at query time, a new representation of

the query, optimized to maximize the score of regions relevant to the query when using the dot-

product. This new representation can be understood as weighting the dimensions of the region

descriptors that are relevant to the query. We achieve this goal by means of the Exemplar SVM

framework [17, 18]. Let us assume that we have access to a set P of positive regions that are

relevant to the query. These are described as the concatenation of their PCA-compressed HOG

descriptors, and are L2 normalized. Analogously, let us assume that we have access to a setN of

negative regions that are not relevant to the query. In this case, we could find a new representation

w designed to give a high positive score to relevant regions, and a high negative score to non-

relevant regions when using the dot-product with L2 normalized regions. This can be casted as

an optimization problem as

argmin
w

1

2
||w||2 +C1

∑

{xp,yp}∈P
L(ypwT xp) +C2

∑

{xn,yn}∈N
L(ynwT xn), (1)

where yp = 1, yn = −1, L(x) = max(0, 1 − x) is the hinge loss and C1 and C2 are the cost param-

eters of relevant and non-relevant regions. This is very similar to the standard SVM formulation

and can be solved by standard solvers such as LIBLINEAR [24]. The classifier bias can be con-

sidered implicitly by augmenting the samples as x = [x bias multiplier], where bias multiplier

usually equals 1. Solving this optimization produces a weight vector w, which can be seen as

a new representation of the query designed to maximize the separation between relevant and

non-relevant regions. As in the baseline system, we can rearrange the terms at test time so that

sim(w, x
||x̄||) =

1
||x̄||sim(w, x), where sim(w, x) can be calculated without reconstructing the region

vectors and ||x̄|| can be calculated online while performing the convolution. Note that, once

learned, the classifier bias is constant for every dataset sample given a query, and therefore it is

not needed to rank the words. However, considering the bias during the learning may lead to

a better w model, and so it is important to include it during training even if afterwards it is not

explicitly used.

Unfortunately, in most cases we will not have access to labeled data, and so P and N will be

unavailable. To overcome this problem, P is constructed by deforming the query, similarly to

what is done in [18]. In our case, we slightly shift the window around the query word to produce

many almost identical, shifted positive samples (see Fig 1(c)). As a side effect, at test time,

sliding windows that are not completely centered over a word will still produce a high score,

making the approach more resilient to the sliding window granularity. To produce the negative

setN , we sample random regions over all the documents after filtering those with very low norm.

Note that, since we do not have access to segmented words, we can not guarantee that a given

negative region will contain a complete word or a word at all. This is different from unsupervised

methods that perform word segmentation such as that of [5]: even if they do not use labeled data,

they have access to the bounding boxes of training words. As in [18], positive samples could also

appear in this randomly chosen negatives set.

In the most basic setup, this model needs to be learned only once per query independently

of the number of documents on the dataset, and so the learning time becomes small compared

to the complete retrieval time if the number of documents in the dataset is not small. Still,

using a batch solver such as LIBLINEAR [24] as was done in [20] may require between one

and two seconds per query, which is not negligible. This may be even worse when using query

expansion (cf . Section 6), since under this setup it is needed to learn the exemplar model not just

once but at least twice per query. Here we propose to use a Stochastic Gradient Descent (SGD)

7

implementation that can very significantly reduce the training time while retaining good accuracy

results. The key idea behind SGD is that the classifier is updated one sample at a time based on

the (sub-)gradient of the objective function O (Equation (1) in our case), i.e., w(t+1) = w(t)−η ∇O
∂w(t)

,

where η is the learning rate or step rate. In our case, that leads to the following update:

w(t+1) = (1 − λη)w(t) + ηδityixi, (2)

where δit = 1 if L(yiw(t)
T xi) > 0 and 0 otherwise, and λ is a regularization parameter. We

consider the set PN = P ∪ N , and we randomly sample pairs {xi, yi} ∈ PN and use them to

update w using Equation (2). The initial weight vector w(0) is initialized randomly from a Normal

distribution of mean 0 and variance 1/
√

d, where d is the dimensionality of w. The process is

repeated for several iterations until convergence. Instead of setting the C1 and C2 weights of

equation (1) directly, we follow the approach of [25] and control the proportion of negatives to

positives samples used at every iteration. As we will see experimentally, the SGD solver leads to

results comparable to LIBLINEAR while being approximately 10 times faster.

4. Feature Compression

One important drawback of sliding-window based methods such as this or [9, 12] is the cost

of recomputing the descriptors of every image with every new query. As we will see during the

experimental evaluation (cf . Section 7), computing the HOG descriptors of an image can take

between 50% and 90% of the total test time per document, and this has to be recomputed for

every new query. A possible alternative could be precomputing and storing the HOG descriptors.

However, this is usually not a feasible option because of the large amount of memory that would

be necessary to maintain them. Assuming HOG descriptors of 31 dimensions represented with

single-precision floats of 4 bytes each (i.e., 124 bytes per HOG), and 45,000 cells per image,

storing as few as 1,000 precomputed dataset images would require 5.2GB of RAM. Even if

we compress the HOG descriptors with PCA down to 24 dimensions, we can barely fit 250

documents in 1GB of Memory. Since documents have to be kept in RAM to be rapidly accessed,

storing large collections of documents would be extremely expensive or directly unfeasible.

In this section we propose to encode the HOG descriptors by means of Product Quantization

(PQ) [19]. This technique has shown excellent results on approximate nearest neighbor tasks

[26, 27], maintaining a high accuracy while drastically reducing the size of the signatures. After

compression, we can store up to 24,000 images per GB of RAM, depending on the PQ configura-

tion. As a side effect, because of the dimensionality reduction, the sliding-window comparisons

will also be faster: without PQ, we can analyze approximately 5 documents per second, and that

is excluding the time to compute the HOG descriptors of each page. After PQ, we can analyze

approximately 70 document images per second, an almost 15 fold improvement in speed.

In the following section we will first give an overview of PQ, and then we will describe how

PQ fits in our system, both in the exemplar training and the sliding-window stages.

4.1. Product Quantization

In vector quantization the goal is to find a finite number of reproduction values C = {c1, . . . ck}
(usually through k-means), and then represent the vector with the the closest reproduction value,

i.e., given a vector x ∈ RD and a quantizer q, then

q(x) = argmin
ci∈C

d(x, ci), (3)

8

where d is usually the Euclidean distance. Assuming k centroids, then quantized vectors can be

encoded using as few as log2 k bits by storing the indices of the centroids and not the centroids

themselves, which are kept in a different table. Unfortunately, vector quantization is not possible

when the dimensionality of the vectors is not trivially low: as noted in [19], to encode a descriptor

of 128 dimensions using only 0.5 bits per dimension, we would need to compute 264 centroids,

which is not feasible.

PQ addresses this issue by quantizing groups of dimensions independently. Given a set of

D-dimensional vectors, each vector is split sequentially into m groups of D/m dimensions, and

then, a different quantizer is learned for every group of sub-vectors. Assuming k centroids per

group, this leads to m× k centroids. Now, given vector x that we want to encode, we denote with

x j the j-th group of x, and with c ji ∈ C j the i-th centroid learned from group j, then

q j(x) = argmin
c ji∈C j

d(x j, c ji), (4)

and q(x) = {q1(x), q2(x), . . . , qm(x)}. The final codification of vector x results from the concate-

nation of the indices of the m centroids. In this case, to produce a b bits code, each quantizer

needs to compute only 2b/m centroids, which is reasonable if m is chosen appropriately.

In our case, we use PQ to encode our PCA-HOG descriptors of 24 dimensions. In the experi-

ments section we compare the performance when using different number m of groups of k = 256

centroids, i.e., 8 bits to represent each one.

One advantage of PQ is that to compute the distance between a query q and a (quantized)

document x from a dataset – represented by m indices to the centroids table –, it is not necessary

to quantize the query or to explicitly decode the quantized document. We can, at query time,

pre-calculate a look-up table ℓ(j, i) = d(q j, c ji). Note that this table does not depend on the

number of elements of the dataset, only on the number of groups m and centroids k, and so the

cost of computing it is negligible if the number of documents is large. Once this look-up table

has been constructed, we can calculate the distance between query q and a quantized document

x as
∑m

j=1 ℓ(j, x j), where x j is the j-th index of x, without explicitly reconstructing the document.

To learn the Exemplar SVM, we need to create the sets P andN . As seen in Figure 1(c), posi-

tive samples do not exactly align with the precomputed cells, and therefore we need to recompute

the descriptors for those regions. Note that this is a small amount of descriptors compared to the

whole image. The negative samples, however, can be chosen so that they align with the precom-

puted grid of HOGs, decoded, and then fed to the SVM training method. Similarly to [28], we

decode the features and learn our classifier on the decoded data. When calculating the sliding

window, we no longer have to compute the dot-product between the query and the HOG descrip-

tor to obtain the score of a cell, and it is enough to perform m accesses to the look-up table to

obtain that score. Intuitively, this could lead to comparisons between 24 (with m = 1) and 4 (with

m = 6) times faster with respect to the 24-dimensional HOG descriptors. In practice, we have

obtained, depending on the number m of groups, up to 15 fold speed-ups.

5. Reranking

The main advantage of the HOG-based method proposed in this paper is that it can be effi-

ciently computed over a large dataset of images in combination with a sliding window-based

search. This allows one to apply it over non-segmented documents, which is mandatory in many

real scenarios where pre-segmenting the words without errors is not possible. One drawback,

9

though, is that HOG features are in clear disadvantage in a direct comparison in performance

with other more complex and informative image representations that unfortunately cannot be

applied to all the dataset due to their cost.

In this paper we propose to improve the effectivity of the HOG-based framework using rerank-

ing, a popular technique applied in image retrieval [29, 30]: it consists of applying a second

ranking step that considers only the best windows retrieved by an initial efficient ranking step,

and that uses more discriminative (and costly) features. These features cannot be used over the

whole dataset due to their cost, but it is feasible to use them only on a small subset of win-

dows. Common methods in image retrieval use geometrical verification, which applies strong

spatial constrains, ensuring that both query image and images retrieved contain the same scene

[29]. This can be ensured because different views of the same scene can be seen as an affine

transformation of their points, and therefore techniques such as Ransac can be used to verify

this transformation accurately. However, due to the variability and inconsistency in handwriting,

transformations are not affine and we cannot apply this technique in our case.

We therefore analyze other representations that are appropriate for our problem. In the recent

[31], the authors perform a similar analysis, showing that a bag of words representation using

SIFT descriptors can outperform classic approaches such as DTW based on sequence features as

well as graph-based or pseudo-structural descriptors. We build on that work, and analyze how

the HOG features compare with respect to DTW using the popular Vinciarelli features [7]4 as

well as an encoding based on the bag of words framework, the Fisher Vector (FV) [32].

The Vinciarelli features are extracted by computing local descriptors using a horizontal

sliding-window approach over the image. At each region, the local window is divided in a 4 × 4

grid and the density of each region is computed, leading to a window descriptor of 16 dimen-

sions. The descriptor of the word image is a sequence of such 16-dimensional descriptors, where

the exact number depends on the length of the image to represent. Due to their variable length,

methods such as DTW are necessary to compare these descriptors.

The Fisher Vector [32] can be seen as a bag of words that captures not only the visual word

count but also higher order statistics. The FV was recently shown to be a state-of-the-art encoding

method for several computer vision tasks such as image retrieval and classification [33].

To the best of our knowledge, the only work that applies unsupervised reranking in a word-

spotting context is that of [34]. In this case, a bag of words was used to represent images and to

perform hashing, which allowed a fast but noisy retrieval. On a second stage, spatial pyramids

were used to improve the representation adding spatial information, which was missing on the

indexing stage. Note that in this case the reranking uses the same features, and the spatial pyramid

can be seen as a way to calibrate the score of each region of the word independently. In our case,

we are not just adding spatial information but using more powerful and discriminative features.

6. Query Expansion

Although we focus on a completely unsupervised case, and therefore only one image repre-

sentation of the query is usually available at first, this framework could be improved if several in-

stances of the query word became available, since a more discriminative model could be learned.

For example, we could make use of query expansion, a technique popular in instance-level image

retrieval works [29, 30, 35].

4These features are more discriminative than the ones used in [31].

10

Query expansion is based on improving the representation of the query using retrieved and

verified images from the dataset. In the work of Chum et al. [29] a number of the best ranked

images from the original query are verified using strong spatial constrains, and the validated

images are combined into a new query. They use BoW [13] as the image representation and they

average together the query BoW vector and BoW vectors of the new images. Arandjelović and

Zisserman [30] introduce a discriminative query expansion approach, where negative data is also

taken into account and a classifier is trained. In a different work [36], they use multiple queries

to retrieve images extracted from a text search in Google images and they propose different

ways to combine either their representations or their retrieved results. Query expansion has also

been applied to word spotting, although in combination with relevance feedback, by Rusiñol

and Lladós [37]. Their system asks the user to cast several queries instead of a single one and

combines the results by testing different strategies. To the best of our knowledge, there exist no

word-spotting methods that perform query expansion in a completely unsupervised way.

Here, like in [29], we assume that the best results retrieved correspond to the query and can

be used to improve its representation. However, due to the variability and inconsistency of hand-

writing text, we cannot apply the geometric constrains generally used in natural images. Instead,

we use as a verification step the reranking process described in Section 5. Once results retrieved

by the sliding-window search are reranked using more informative features, we define a set X,

composed by the k best windows retrieved and the original query. This is used as the set of

positive examples of the query model. Although we have no absolute guarantees that the set X
will contain only positive samples, we observed a significant improvement of the accuracy on

the tested datasets.

In this paper we explore two different ways of combining and exploiting this new set of positive

examples in the HOG-based Exemplar SVM framework:

Single-Exemplar: This approach consists of training a single Exemplar SVM withX as the set

of positive images. We build set P of relevant examples by applying the shifting deformation of

the window as described in Section 3 and showed in Figure 1(c) to every sample in X, producing

many almost identical, shifted windows. Training results in a single weight vector w, which is

used again to retrieve new windows.

Multi-exemplar: It consists of training one Exemplar SVM, as detailed in Section 3, for

every sample in X. It results in a set W that contains the weight vector wi of every Exemplar

SVM. Finally, retrieved ranked lists are combined by scoring each window by the average of the

individual scores obtained from each Exemplar SVM: 1
k

∑k
i=0 sim(wi, x).

Finally, set X can also be used to improve the FV representation of the query and perform a

second reranking process. We use as the new representation of the query the average FV of the

representations extracted from the samples in set X. Then, it is used to rerank the first regions

retrieved by the expanded model of the query, as it is described in Section 5.

7. Experiments

7.1. Experimental Setup

Datasets and Performance Evaluation. We evaluate our approach on two public datasets:

The George Washington (GW) dataset [38, 2] and the Lord Byron (LB) dataset [12]5. These

5We obtained the exact images and groundtruth after direct communication with the authors of [12].

11

(a) GW (b) LB

Figure 3: Examples of the words contained in the (a) GW and (b) LB datasets.

datasets are comprised of 20 pages each and contain approximately 5,000 words. George Wash-

ington (Figure 3(a)) contains handwritten text while Lord Byron (Figure 3(b)) only contains

typewritten text. We follow a similar protocol as used in [12]: each word is considered as a

query and used to rank all the regions of every document in the dataset. However, as opposed

to [12], the query image, if retrieved, is removed from the retrieved results and not considered

in the performance evaluation. This is consistent with most other works on word spotting. For

compatibility reasons, however, we will also report results without removing the query using

our final system to ease the comparison with [12], since it is the work most related to ours. A

region is classified as positive if its overlap over union with the annotated bounding box in the

groundtruth is larger than 50%, and negative otherwise. For every document, we keep only the

1,000 regions with the highest score and perform NMS to avoid overlaps of more than 20%.

Finally, we combine the retrieved regions of all the documents and rerank them according to

their score. We report the mean Average Precision (mAP) as our main measure of accuracy. The

mAP is a standard measure in retrieval systems and can be understood as the area below the

precision-recall curve.

Parameters. To compute the HOG grid, we use cells of 12 pixels, which resulted in a rea-

sonable trade-off in performance and time consumption. On both datasets, using this cell size

produces approximately 45,000 cells for each document. For the sliding-window search we have

also fixed the step size to one cell. An extended analysis on the effect of different cell sizes and

step sizes can be found in [20]. When performing the unsupervised learning of PCA and PQ,

we randomly sample 10,000 HOGs from all the documents, after filtering those with very low

norm, and 1.5 million SIFTs for the unsupervised learning of the GMM for the FV representa-

tion. When learning the Exemplar SVM, we used the Stochastic Gradient Descent-based solver

of the JSGD package [25] and fixed the step size η to 10−3 and the regularization parameter λ to

10−5 based on the results of a small subset of 300 queries. This provided reasonable results on

both datasets, although better results could be obtained by fine-tuning this parameter individually

for each dataset. We produce 121 positive samples (11 shifts in horizontal × 11 shifts in vertical)

for each query (and for each expanded example in case that query expansion is used) and 7,744

negative samples (64 times the number of positive samples of the query). Increasing the number

of negative samples led to a very slight improvement in the accuracy, but we did not consider it

worth the extra cost during training. Note that [17, 18] propose to use several iterations of hard

negative mining. However, we did not experience any gain in accuracy by doing so. Finally, we

evaluate reranking using different k for selecting the top-k retrieved results to be reranked and

query expansion using different number of examples to expand the query.

12

We used MATLAB’s built-in profiler to measure the running times of the different sections of

our pipeline on an Intel Xeon running at 2.67GHz using one single core. We noticed that the

profiler added approximately a 10% overhead that we have not subtracted. Therefore, the actual

times may be slightly faster than reported. Note that, although we used MATLAB, the core

sections (computing HOG and FV descriptors, training the SVM, calculating the scores with

a sliding window, and the NMS) were implemented in C. When reporting the sliding-window

times, these already include the time to perform the ranking and the NMS.

7.2. Word Spotting Results and Discussion

In [20], we already analyzed the influence of the parameters of the basic configuration of the

proposed approach: the cell size of the HOG descriptor and the step size of the sliding-window

search. Here, we will focus on evaluating the impact of the new contributions included in this

paper. First, we will analyze the performance of different features for representing word images.

For that, we will use a simplified version of the datasets where the document words have already

been segmented using the ground truth annotations. Then, in a segmentation-free setting and

relying on a sliding-window approach, we will analyze the influence of the SGD solver and the

different configurations of PQ, reranking and query expansion. Finally, we will compare the

whole system with recent word-spotting methods.

Comparison of Features. We begin our experiments by testing the proposed method on a

simplified setting, where the document words have already been segmented using the ground

truth annotations. In this setting, we test the effectivity of our HOG and HOG+SVM approaches,

and compare it with a descriptor based on Vinciarelli features with a DTW distance, as well

as with a FV representation. We also study the computational needs of each approach. The

objective of this test is twofold. First, to show that, although the accuracy of the proposed

HOG+SVM approach may be outperformed by the Vinciarelli features or the FV, the accuracy

of the HOG+SVM is reasonably high. Second, to highlight that neither the Vinciarelli nor the

FV approaches can be used in a segmentation-free approach due to their computational costs, but

can still be used to rerank a short list of results produced by the HOG+SVM approach.

Under this setup, different words may have different numbers of HOG cells, which affects their

dimensionality. To compare a query and a document word of different sizes, the document word

is first slightly enlarged by a 10%, and then the query word is “searched” inside the document

word using a sliding-window approach. The best window score is used as a measure between the

query and the word.

To compute the Vinciarelli features, we experimented with several region sizes and used the

one that yielded the best results, which gives it an slightly unfair advantage. To compute the FV

we densely extract SIFT features from the images and use a Gaussian mixture model (GMM) of

16 Gaussians. To (weakly) capture the structure of the word image, we use a spatial pyramid of

2 × 6 leading to a final descriptor of approximately 25, 000 dimensions.

The results are shown in Table 1.

Dataset HOG HOG+SVM Vinciarelli+DTW FV

GW 40.24 49.19 56.25 64.90

LB 75.37 83.04 83.47 91.75

Table 1: Retrieval performance in mAP of different descriptors for segmented words.

We observe how, indeed, the powerful FV features obtain the best results on both datasets

13

despite being a fixed-length feature. The Vinciarelli features with DTW outperform HOG and

HOG+SVM on the GW dataset, suggesting that HOG is quite rigid for the type of variations

found in this dataset, although it still achieves reasonable results. On the LB dataset, where

variations are much smaller, HOG+SVM performs similar to the Vinciarelli features, despite the

unfair advantage of the Vinciarelli features.

Regarding the computational costs, there are two separate issues: computing the descriptor

given a document window, and comparing the descriptors. With our setup, searching a query in a

document page requires on average to compute and compare about 40, 000 window descriptors.

Because of this, computing and comparing window descriptors needs to be extremely fast to be

feasible on a segmentation-free setting.

• Descriptor computation. On the HOG and HOG+SVM setup, the HOG cells of a page can

be precomputed and stored offline. At test time, computing the descriptor of a window re-

quires only to access the corresponding elements of the precomputed grid, and so the cost is

negligible. A similar technique can be applied for the Vinciarelli features by precomputing

an integral image of aggregated densities over a document page. At test time, the descriptor

for a window can be directly computed based on the precomputed statistics. Unfortunately,

such techniques cannot be applied to the FV formulation, and it needs to be calculated inde-

pendently each time. With our optimized implementation, we can compute approximately

60 FVs per second. Computing the 40, 000 descriptors per page would require approxi-

mately 700 seconds, which makes it unfeasible. Precomputing the descriptors is also not

possible, since only one page would require approximately 4Gb of memory.

• Descriptor comparison. On the case of HOG, HOG+SVM, and FV, comparing descriptors

is fast since it is based on dot-products of vectors of same size. The distances between a FV

query and 1, 000 FV words can be computed in less than 15 ms, and comparing the HOG

descriptors is an order of magnitude faster due to their reduced dimensionality. However,

comparing the Vinciarelli features is slower since it is based on DTW. Again, using our

optimized DTW implementation in C, comparing one query against 1, 000 words takes on

average 350ms, a hundred times slower than comparing HOGs.

Because of these reasons, the underlying costs of Vinciarelli and FV makes them unfit for a

segmentation-free task. However, it is possible to perform the segmentation-free search using

the HOG+SVM approach with a reasonable success, and use the FV features to rerank only the

best scored candidates.

Influence of SVM solvers. Here we compare the results of the Exemplar SVM over HOG

descriptors using a batch solver as was done in [20] and using an SGD implementation based on

[25]. In this case, as we did in the previous experiment, we do not use the annotations to segment

the words and rely on the sliding-window approach. We do not use neither PQ compression nor

reranking or query expansion for this experiment. Results are shown in Table 2. We compare the

accuracy in mAP for both datasets and compare it with the cosine approach, that does not use any

training. We also compare the training time on the GW dataset – training times on the LB dataset

are extremely similar. We can observe how the performances of both LIBLINEAR and the SGD

implementation are very similar, with differences that are not significative when compared with

the cosine approach, i.e. the baseline system. However, in terms of speed, the SGD implemen-

tation is almost ten times faster than LIBLINEAR. Through the rest of the experiments, we will

use the SGD implementation.

14

GW LB

mAP Time (ms/query) mAP

Cosine 31.86 - 66.34

LIBLINEAR 38.28 1,090 78.01

SGD 38.16 124 77.91

Table 2: Comparison of LIBLINEAR and SGD on terms of accuracy in mAP and training time in milliseconds.

Influence of PQ. We study the influence of PQ using different number of subquantizers, from

m = 1, i.e., one subquantizer of 8 bits for 24 dimensions (compression ration of 1:96), to m = 6,

i.e., one subquantizer of 8 bits for 4 dimensions (compression ratio of 1:16). We also consider the

average time in milliseconds needed to scan one page using a sliding window. Results are shown

in Table 3. After PQ, the accuracy of the methods suffers a small drop, especially when we use a

single quantizer for each HOG feature, i.e., m = 1. However, as long as we use more quantizers

per cell, this drop is reduced until it becomes insignificant. The difference between applying

PQ with m = 6 and not applying PQ is less than 1% absolute. Moreover, the sliding-window

times become between 3 and 15 times faster, depending on the configuration, and a much larger

number of documents can fit in memory at the same time. We should also consider that when

using PQ one does not need to compute the HOG descriptor of every document for every new

query since they are precomputed, saving approximately 500ms per document and query.

GW LB

mAP ms/doc docs/GB mAP

Cosine [no PQ] 31.86 218 ∼ 0.25K 66.34

EWS [no PQ] 38.16 218 ∼ 0.25K 77.91

EWS [PQ m=6] 37.36 86 ∼ 4K 77.38

EWS [PQ m=3] 35.94 45 ∼ 8K 76.88

EWS [PQ m=2] 35.39 34 ∼ 12K 76.89

EWS [PQ m=1] 34.69 14 ∼ 24K 76.72

Table 3: Comparison of different numbers of quantizers used in PQ on terms of accuracy in mAP, time to perform a

sliding-window search in milliseconds per document, and number of pages that fits in one Gigabyte of memory. Since

time and space consumption is extremely similar for both datasets we only report numbers for GW.

Effect of Reranking. We study the effect in performance obtained by the reranking process

using FV as representation as a function of the number of the first retrieved windows that have

been reranked. Figures 4(a) and 4(b) show the accuracy in mAP for different configurations of

the method for both GW and LB datasets. We plot the performance of the method using cosine

similarity and EWS with different configurations of the PQ compression (without compression

and compressing using from m = 1 to m = 6 quantizers). We see that, as the number of windows

increases, all the configurations using Exemplar SVMs converge in mAP independently of the

amount of compression used, showing that the FV representation can compensate the high com-

pression used during the first ranking step. On GW, accuracy increases as the number of windows

increases and reaches a plateau at approximately 45% of mAP using 500 windows. The effect

in LB is different. When using the inferior cosine similarity, reranking does indeed improve the

results significantly. However, when using the Exemplar model, reranking actually decreases

the performance when reranking more than 25 windows. We believe the reason is that, for the

rigidity of this dataset, the very structured cell of HOG descriptors is more accurate than the FV

15

(a) GW (b) LB

Figure 4: Retrieval results in mAP for different configurations in the (a) George Washington and (b) Lord Byron datasets.

representation, that only uses weak geometrical structure through the spatial pyramid. Note that

although in Table 1 we showed that FV obtained better results than HOG, the difference was

quite small in this dataset.

Regarding the computational cost of reranking, the time that is needed to extract the FV of

a given window and compute the new score similarity with the query is of approximately 20

milliseconds. The cost of performing the actual reranking is negligible since it only involves

sorting a few tens or hundreds of values.

Effect of Query Expansion. Finally, we study the influence in performance of the query

expansion process, as a function of the number of windows used to expand the set of positive

samples, for both combination models proposed, single-exemplar and multi-exemplar. Here we

combine the use of EWS, PQ and reranking previous and posterior to query expansion. We set

the the number m of quantizers used in PQ to 3 as a good trade-off between accuracy and time

consumption. We also set the number of windows used for the first reranking to 100 on the GW

dataset and 25 on the LB dataset. This offers a reasonable trade-off based on the results reported

in Figure 4. For the second reranking, we use 100 and 250 windows on the GW dataset and 25

on the LB dataset.

We show the results in Table 4. We see that expanding the query with the first retrieved win-

dows after reranking leads to improved results. Interestingly, only a small number of windows

has to be used: 2 in the GW dataset and 1 in LB; otherwise the results do not improve as much and

can even worsen in the case of LB. One of the reasons behind this is that, for many queries, the

number of relevant items is very small. On both GW and LB datasets, about 15% of the queries

have 2 or less relevant items. On those cases, including more results in the query expansion will

inevitably add negative samples to the set X, degrading the results.

Regarding the ways to combine the new samples with the query, multi-exemplar has a very

slight edge over single-exemplar, which is consistent with the main idea of Exemplar SVMs.

However, note that multi-exemplar has to perform as many Exemplar SVM trainings as elements

the set of positive samples contains, contrary to single-exemplar, which only requires one train-

16

expanded samples 0 1 2 4

GW

EWS RR: 100 RR2: 100
single-exemplar 43.13 45.55 45.77 44.88

multi-exemplar 43.13 45.63 45.94 45.32

EWS RR: 100 RR2: 250
single-exemplar 44.10 46.33 46.53 45.62

multi-exemplar 44.10 46.35 46.58 45.84

LB EWS RR: 25 RR2: 25
single-exemplar 77.71 77.91 76.83 75.01

multi-exemplar 77.71 78.35 77.56 76.14

Table 4: Influence of the number of examples to expand the query for different number of windows reranked. The number

of windows reranked in the reranking previous to query expansion has been fixed to 100 for GW and 25 for LB.

(a) GW (b) LB

Figure 5: Precision-recall curves for different configurations in the (a) George Washington and (b) Lord Byron datasets.

ing. This could make, for some situations, not worth the extra cost.

Finally, in Figure 5 we show precision-recall plots of the different approaches that we pre-

sented on both GW and LB datasets. We observe how indeed the Exemplar learning has a very

large influence in the results on both datasets, showing the importance of learning more dis-

criminative signatures. On GW, the reranking and query expansion also lead to a significant

improvement due to the superiority of the FV representation and the variability of the data, while

on LB, where the variability is much smaller, reranking and query expansion only bring minimal

improvements.

Comparison with other methods. We first compare our results with the segmentation-based

methods of [38] and [5]. The authors of [38] report results between 52% and 65% mAP on the

GW dataset depending on the particular fold they evaluate with, while [5] reports a 54% mAP,

which should be compared to our 46.58% using reranking and query expansion. Note however

that these results are not completely comparable since i) they use different query/database parti-

tions, with smaller database sets, which benefits the mAP metric, and ii) they work on already

segmented words, i.e., they are not segmentation-free.

Additionally, in order to be able to compare with other segmentation-free methods that reports

experiments in these datasets [12, 11, 14], we run again our method using the same final con-

17

figuration under their evaluation protocols. All these methods include the query in the retrieved

results and therefore in the mAP computation. Moreover, [14] uses an overlap over union of 20%

with the groundtruth to classify a window as positive, instead of the more traditional 50%, and

[11] only considers as queries the words with more than 5 characters. Finally, the work of [15]

also reports experiments in GW, but the results are not comparable since it performs a reranking

step based on segmentation to avoid substring matching. We show the results in Table 5, where

we can see that our baseline system already obtains quite reasonable results. Moreover, if we

use our full system, including EWS, PQ, reranking and query expansion, we considerably out-

perform the work of [12] for both GW and LB datasets. With this full system, and using their

respective protocols, we also outperform [14] and [11].

GW LB

Rusiñol et al. [12] 30.42 42.83

Cos noPQ 48.66 74.04

EWS+PQ 51.88 84.34

EWS+PQ+RR 57.46 84.51

EWS+PQ+RR+qe+RR2 59.13 84.04

Rothacker et al. [14] (overlap 20%) 61.10 –

EWS+PQ (overlap 20%) 59.51 –

EWS+PQ+RR+qe+RR2 (overlap 20%) 68.88 –

Zhang and Tan [11] (queries > 5 characters) 62.47 –

EWS+PQ (queries > 5 characters) 72.85 –

EWS+PQ+RR+qe+RR2 (queries > 5 characters) 82.23 –

Table 5: Retrieval performance in mAP and comparison with state-of-the-art when query is included in the results.

Methods have been set to the best parameters.

Finally, Figure 6(a) illustrates some typical failure cases, such as confusions with similar-

shaped words, giving too much weight to artifacts in the query word, or retrieving substrings from

longer words. We also observe how reranking and query expansion address the first two issues

by constructing more discriminative queries that are more informative and more independent of

the background. The third problem is one drawback of the segmentation-free, sliding-window

methods since, as opposed to DTW, they do not penalize matching a short word with a substring

of a long word. As observed in Figure 6(b), this can very significantly reduce the mAP of short

queries. However, this may be also seen as an interesting feature that could be exploited for

sub-word searches.

8. Conclusions

In this paper we have shown how a combination of HOG descriptors and sliding windows

can be used to perform segmentation-free, unsupervised word spotting, both on handwritten

and machine-printed text. This method can be extended using Exemplar SVMs to represent

the queries, improving the results at a minimum extra cost at query time. We have shown how

the HOG descriptors can be aggressively compressed with Product Quantization with only a

small loss in accuracy. Finally, we have shown that results can be improved by, first using more

informative and discriminative features in a reranking step of the best windows retrieved, and

second using some of these windows to expand the Exemplar SVM training set and improve the

18

EWS

EWS

+

RR-QE

EWS

EWS

+

RR-QE

EWS

EWS

+

RR-QE

EWS

EWS

+

RR-QE

(a) (b)

Figure 6: a) Failure cases. For every query we show a first row with the results retrieved by EWS and a second row

with the results retrieved by EWS combined with reranking and query expansion. First query: words have a very similar

shape. Second query: an artifact in the query leads to results with the same artifact. Third and fourth query: we detect the

query word as a substring of a longer word. This is common when querying short words. Query expansion and reranking

are able to alleviate some of the problems. b) Mean Average Precision as a function of the query length for the system

combining EWS, PQ, reranking and query expansion.

query representation. We have obtained excellent results when comparing to other segmentation-

free methods in the literature. We have published the MATLAB code implementation for training

and testing the Exemplar Word Spotting [39], as well as experiments with other datasets [40], in

the hope that it would ease the comparison for new works on word spotting.

Finally, we would like to note that the variability of the writing style on the datasets that have

been used in the experiments is very small. This variability is usually much higher in a multi-

writer scenario. For example, two writers may write the same word with very different widths,

and only one window size will not be able to correctly capture both of them. We believe that,

as presented, our method would have difficulties in this scenario. To overcome this problem, a

possible solution would be to severely deform the query varying the stretch and the slant, and

learn several Exemplar SVMs as in [17]. This would increase the query time, but not the memory

required to store the datasets.

Acknowledgments

J. Almazán, A. Fornés, and E. Valveny are partially supported by the Spanish projects

TIN2011-24631, TIN2009-14633-C03-03, TIN2012-37475-C02-02, by the EU project ERC-

2010-AdG-20100407-269796 and by a research grant of the UAB (471-01-8/09).

References

[1] R. Manmatha, C. Han, E. M. Riseman, Word spotting: A new approach to indexing handwriting, in: IEEE

Computer Vision and Pattern Recognition, 1996, pp. 631–637.

[2] T. Rath, R. Manmatha, Word spotting for historical documents, International Journal on Document Analysis and

Recognition (2007) 139–152.

[3] A. Fischer, A. Keller, V. Frinken, H. Bunke, HMM-based word spotting in handwritten documents using subword

models, in: International Conference on Pattern Recognition, 2010, pp. 3416–3419.

19

[4] V. Frinken, A. Fischer, R. Manmatha, H. Bunke, A novel word spotting method based on recurrent neural networks,

IEEE Transactions on Pattern Analysis and Machine Intelligence 34 (2012) 211–224.

[5] J. Rodrı́guez-Serrano, F. Perronnin, A model-based sequence similarity with application to handwritten word-

spotting, IEEE Transactions on Pattern Analysis and Machine Intelligence 34 (2012) 2108–2120.

[6] U.-V. Marti, H. Bunke, Using a statistical language model to improve the performance of an HMM-based cursive

handwriting recognition systems, International Journal of Pattern Recognition and Artificial Intelligence (2001)

65–90.

[7] A. Vinciarelli, S. Bengio, H. Bunke, Offline recognition of unconstrained handwritten texts using HMMs and

statistical language models, IEEE Transactions on Pattern Analysis and Machine Intelligence 26 (2004) 709–720.

[8] J. Rodrı́guez-Serrano, F. Perronnin, Local gradient histogram features for word spotting in unconstrained hand-

written documents, in: International Conference on Frontiers in Handwriting Recognition, 2008.

[9] B. Gatos, I. Pratikakis, Segmentation-free word spotting in historical printed documents, in: International Confer-

ence on Document Analysis and Recognition, 2009, pp. 271–275.

[10] Y. Leydier, A. Ouji, F. Lebourgeois, H. Emptoz, Towards an omnilingual word retrieval system for ancient

manuscripts, Pattern Recognition 42 (2009) 2089–2105.

[11] X. Zhang, C. L. Tan, Segmentation-free Keyword Spotting for Handwritten Documents based on Heat Kernel

Signature, in: International Conference on Document Analysis and Recognition, 2013, pp. 827–831.

[12] M. Rusiñol, D. Aldavert, R. Toledo, J. Lladós, Browsing heterogeneous document collections by a segmentation-

free word spotting method, in: International Conference on Document Analysis and Recognition, 2011, pp. 63–67.

[13] G. Csurka, C. R. Dance, L. Fan, J. Willamowski, C. Bray, Visual categorization with bags of keypoints, in:

Workshop on Statistical Learning in Computer Vision, European Conference on Computer Vision, 2004, pp. 1–22.

[14] L. Rothacker, M. Rusiñol, G. A. Fink, Bag-of-Features HMMs for Segmentation-free Word Spotting in Handwrit-

ten Documents, in: International Conference on Document Analysis and Recognition, 2013, pp. 1305–1309.

[15] N. R. Howe, Part-Structured Inkball Models for One-Shot Handwritten Word Spotting, in: International Conference

on Document Analysis and Recognition, 2013, pp. 582–586.

[16] N. Dalal, B. Triggs, Histograms of oriented gradients for human detection, in: IEEE Computer Vision and Pattern

Recognition, 2005, pp. 886–893.

[17] T. Malisiewicz, A. Gupta, A. Efros, Ensemble of Exemplar-SVMs for object detection and beyond, in: International

Conference on Computer Vision, 2011, pp. 89–96.

[18] A. Shrivastava, T. Malisiewicz, A. Gupta, A. A. Efros, Data-driven visual similarity for cross-domain image

matching, ACM Transaction of Graphics (TOG) (Proceedings of ACM SIGGRAPH ASIA) 30 (2011) 154:1–

154:10.

[19] H. Jégou, M. Douze, C. Schmid, Product quantization for nearest neighbor search, IEEE Transactions on Pattern

Analysis and Machine Intelligence 33 (2011) 117–128.

[20] J. Almazán, A. Gordo, A. Fornés, E. Valveny, Efficient exemplar word spotting, in: British Machine Vision

Conference, 2012, pp. 1–11.

[21] F. Perronnin, J. Rodrı́guez-Serrano, Fisher kernels for handwritten word-spotting, in: International Conference on

Document Analysis and Recognition, 2009, pp. 106–110.

[22] T. Jaakkola, D. Haussler, Exploiting generative models in discriminative classifiers, in: Neural Information Pro-

cessing Systems, 1999, pp. 487–493.

[23] P. Felzenszwalb, R. Girshick, D. McAllester, D. Ramaman, Object detection with discriminatively trained part

based models, IEEE Transactions on Pattern Analysis and Machine Intelligence 32 (2010) 1627–1645.

[24] R. Fan, K. Chang, C. Hsieh, X. Wang, C. Lin, LIBLINEAR: A library for large linear classification, Journal of

Machine Learning Research 9 (2008) 1871–1874.

[25] Z. Akata, F. Perronnin, Z. Harchaoui, C. Schmid, Good practice in large-scale learning for image classification,

IEEE Transactions on Pattern Analysis and Machine Intelligence 36 (2013) 507–520. http://lear.inrialpes.

fr/src/jsgd/.

[26] H. Jégou, M. Douze, C. Schmid, P. Pérez, Aggregating local descriptors into a compact image representation, in:

IEEE Computer Vision and Pattern Recognition, 2010, pp. 3304–3311.

[27] H. Jégou, R. Tavenard, M. Douze, L. Amsaleg, Searching in one billion vectors: re-rank with source coding, in:

International Conference on Acoustics, Speech, and Signal Processing , 2011.

[28] J. Sánchez, F. Perronnin, High-dimensional signautre compression for large-scale image classification, in: IEEE

Computer Vision and Pattern Recognition, 2011, pp. 1665–1672.

[29] O. Chum, J. Philbin, J. Sivic, M. Isard, A. Zisserman, Total recall: Automatic query expansion with a generative

feature model for object retrieval, in: International Conference on Computer Vision, 2007, pp. 1–8.

[30] R. Arandjelović, A. Zisserman, Three things everyone should know to improve object retrieval, in: IEE Computer

Vision and Pattern Recognition, 2012, pp. 2911–2918.

[31] J. Lladós, M. Rusiñol, A. Fornés, D. Fernández, A. Dutta, On the influence of word representations for handwritten

word spotting in historical documents, International Journal of Pattern Recognition and Artificial Intelligence 26

20

(2012).

[32] F. Perronnin, J. Sánchez, T. Mensink, Improving the Fisher Kernel for large-scale image classification, in: European

Conference on Computer Vision, 2010, pp. 143–156.

[33] K. Chatfield, V. Lempitsky, A. Vedaldi, A. Zisserman, The devil is in the details: an evaluation of recent feature

encoding methods, in: British Machine Vision Conference, 2011, pp. 1–12.

[34] R. Shekhar, C. Jawahar, Word Image Retrieval using Bag of Visual Words, in: International Workshop on Docu-

ment Analysis Systems, 2012, pp. 297–301.

[35] O. Chum, A. Mikulı́k, M. Perdoch, J. Matas, Total recall II: Query expansion revisited, in: IEE Computer Vision

and Pattern Recognition, 2011, pp. 889–896.

[36] R. Arandjelović, A. Zisserman, Multiple queries for large scale specific object retrieval, in: British Machine Vision

Conference, 2012, pp. 1–11.

[37] M. Rusiñol, J. Lladós, The Role of the Users in Handwritten Word Spotting Applications: Query Fusion and

Relevance Feedback, in: International Conference on Document Analysis and Recognition, 2012, pp. 55–60.

[38] T. Rath, R. Manmatha, Word image matching using dynamic time warping, in: IEEE Computer Vision and Pattern

Recognition, 2003, pp. 521–527.

[39] J. Almazán, A. Gordo, Exemplar Word Spotting library, http://almazan.github.io/ews/.

[40] D. Fernández-Mota, J. Almazán, N. Cirera, A. Fornés, J. Lladós, BH2M: the Barcelona Historical Handwritten

Marriages database, in: International Conference on Pattern Recognition, 2014.

21

