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Abstract

Many successful models for predicting attention in a
scene involve three main steps: convolution with a set of
filters, a center-surround mechanism and spatial pooling
to construct a saliency map. However, integrating spatial
information and justifying the choice of various parame-
ter values remain open problems. In this paper we show
that an efficient model of color appearance in human vision,
which contains a principled selection of parameters as well
as an innate spatial pooling mechanism, can be generalized
to obtain a saliency model that outperforms state-of-the-art
models.

Scale integration is achieved by an inverse wavelet trans-
form over the set of scale-weighted center-surround re-
sponses. The scale-weighting function (termedECSF ) has
been optimized to better replicate psychophysical data on
color appearance, and the appropriate sizes of the center-
surround inhibition windows have been adjusted by training
a Gaussian Mixture Model on eye-fixation data, thus avoid-
ing ad-hoc parameter selection. Additionally, we conclude
that the extension of a color appearance model to saliency
estimation adds to the evidence for a common low-level vi-
sual front-end for different visual tasks.
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1. Introduction
Saccadic eye movements are perhaps one of the most

defining characteristics of the human visual system, allow-
ing us to rapidly sample images by changing the point of
fixation. Although many factors may determine what im-
age features are selected or discarded by our attentional
processes, it has been useful to separate these into two cat-
egories of factors: bottom-up and top-down. The former
comprises automatically-driven (instantaneous) processes
while the later comprises processes that are dependent of
the organism’s internal state (such as the visual task at hand
or the subject’s background). While the difficulties of un-
derstanding internal states are usually dealt with by ma-
chine learning techniques trained on general prior knowl-

edge, image-driven processes are usually tackled by build-
ing saliency maps, getting inspiration from low-level bio-
logical processes which are better known than the more elu-
sive top-down mechanisms. Saliency maps are topograph-
ical maps of the visually salient parts of scenes (saliency
at a given location is in turn determined by how different
this location is from its surround in color, orientation, mo-
tion, depth, etc. [10]). Computing these maps is still an
open problem whose interest is growing in computer vision
[6, 5, 3, 17, 9, 8].

Several computational models have already been pro-
posed to predict human gaze fixation, some of which are in-
spired by biological mechanisms (usually well known low-
level processes) while others are based on learning tech-
niques that directly train from human fixation data.

Among the biologically-inspired models of saliency, the
model of Itti et al. [7] is one of the most influential, sum-
ming the scale-space center-surround excitation responses
of feature maps at different spatial frequencies and orien-
tations and feeding the result into a neural network, the
output of which measures saliency. Gao et al. [4] ap-
proached saliency at a location as the discriminatory power
of a set of features describing that location to distinguish
between the region and its surround. Bruce & Tsotsos [3]
considered saliency at a location to be quantified by the self-
information of the location with respect to its surrounding
context - either the entire image, or more localized pixel
regions. Zhang et al. [17] also proposed a method based
on self-information, but using a spatial pyramid to produce
local features (with the contextual statistics being gener-
ated from a collection of natural images rather than a lo-
cal neighborhood of pixels or a single image). Seo & Mi-
lanfar [14] uses a self-resemblance mechanism to compute
saliency, where a region with dissimilar curvature compared
to its surroundings was designated as being highly salient.
In a typical learning-based approach [9, 8], salient features
are learned and combined using eye-tracking data, with the
learning techniques serving to reduce the number of model
parameters that must be tuned.

In the most common bottom-up modelling framework,
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Figure 1: (a) Two salient features of a scene outlined in green and
red. In (b) and (c) we show the spatial scale and orientations at
which each object is most prominent. Because these scales and
orientation are different for the two features, integrating informa-
tion contained in the spatial pyramid is critical.

attention in a scene involves a scale-space decomposition
of the input image using a set of linear filters, a center-
surround operation over the decomposition, and some kind
of spatial pooling to build the final saliency map. However,
two main questions at the core of this approach remain un-
resolved: (a) how to integrate the information derived from
the multiple scales of the decomposition, and (b) how to
adjust the various parameters in order to obtain a general
mechanism. Integrating scale information is of particular
importance as salient features in a scene and in different
scenes may occupy different spatial frequencies, as shown
in Figure 1. Therefore a mechanism to locate salient fea-
tures at different levels of the spatial pyramid and combine
these features into a final map is critical.

In this paper, we propose a computational model of
saliency that follows the typical three-step architecture de-
scribed above, while trying to answer the above questions
through a combination of simple, neurally-plausible mech-
anisms that remove nearly all arbitrary variables. Our pro-
posal in this paper generalizes a particular low-level model
developed to predict color appearance [13] and has three
main levels:

In the first stage, the visual stimuli are processed in a
manner consistent with what is known about the early hu-
man visual pathway (color-opponent and luminance chan-
nels, followed by a multi-scale decomposition). The bank
of filters used (Gabor-like wavelets) and the range of spatial
scales (in octaves) are biologically justified [1, 15, 16] and
commonly used in low-level vision modelling.

The second stage of our model consists of a simulation
of the inhibition mechanisms present in cells of the visual
cortex, which effectively normalize their response to stim-
ulus contrast. The sizes of the central and normalizing sur-
round windows were learned by training a Gaussian Mix-
ture Model (GMM) on eye-fixation data.

The third stage of our model integrates information at
multiple scales by performing an inverse wavelet transform
directly on weights computed from the non-linearization of
the cortical outputs. This non-linear integration is done
through a weighting function similar to that proposed by

Otazu et al. [13] and named Extended Contrast Sensitiv-
ity Function (ECSF ), but optimized to fit psychophysical
color matching data at different spatial scales.

Our fittedECSF is at the core of our proposal and repre-
sents its most novel component. It had been previously ad-
justed by fitting the same low-level model to predict match-
ing of color inductive patterns by human observers. The fact
that this function can also model saliency provides support
for the hypothesis of a unique underlying low-level mech-
anism for different visual tasks. This mechanism can be
modelled either to predict color appearance (by applying the
inverse wavelet transform onto the decomposed coefficients
modulated by the ECSF weights) or visual salience (by
applying the transform to the weights themselves instead).
In addition, we introduce a novel approach to selecting the
size of the normalization window, which reduces the num-
ber of parameters that must be set in an ad-hoc manner.

Our two main contributions can be summarized as fol-
lows:

1. A framework for integrating scale through a simple
inverse wavelet transform over the set of weighted
center-surround outputs.

2. A reduction of ad-hoc parameters. This was done by
introducing training steps on both color appearance
and eye-fixation psychophysical data.

The rest of this paper is organized as follows. In section
2 we present the low-level color vision model and our fit-
ted ECSF. In section 3, we use the resulting weights of the
model to compute saliency while in section 3.1 we evalu-
ate the model’s performance. Section 3.2 summarizes the
results and section 4 discusses further work.

2. A low level vision model
The saliency estimation method we propose in this work

is an extension of a low level visual representation derived
from the unified color induction model developed by Otazu
et al. [12, 13]. In these works the authors propose a multi-
resolution model that predicts brightness and color appear-
ance, respectively. Color perception is the result of several
adaptation mechanisms which cause the same patch to be
perceived differently depending on its surround. Areas A
and B of both images in Figure 2 are perceived as having
different brightness (in panel a) and/or different color (in
panel c) respectively, although in both cases they are phys-
ically identical (intensity and RGB color channel profiles
are plotted as solid lines in the corresponding panels (b) and
(d)). These illusions 1 are predicted by the color model of
Otazu et al.[13], shown in dashed lines in Figure 2 (panels

1the Checkershadow and Beau-lotto illusions were created by E.H.
Adelson and Beau Lotto respectively.



(b) and (d)). For example, area A is darker in graphic (b)
and area B is more orange-ish in graphic (d).

100 150 200 250
Row #

0

200

400

600

800

L
um

in
an

ce

Area A Area B

Actual digital value
Color model prediction

Adelson checkershadow
Luminance profile

(a) (b)

100 150 200 250 300
Row #

200 200

400 400

600 600

800 800

L
um

in
an

ce

Beau Lotto color cube
Luminance and chromaticity profiles

100 150 200 250 300
Row #

-0.4

-0.2

0

0.2

0.4

0.6

C
hr

om
at

ic
ity

100 150 200 250 300
Row #

Area A Area B

(c) (d)

Figure 2: Brightness and color visual illusions with their corre-
sponding image profiles (continuous lines, panels b and d) and
model predictions profiles (broken lines, in panels b and d).

In the first stage of Otazu et al.’s model, an image is
convolved with a bank of filters using a multi-resolution
wavelet transform. The resulting spatial pyramid contains
wavelet planes oriented either horizontally (h), vertically (v)
or diagonally (d). The coefficients of the spatial pyramid
obtained using the wavelet transform can be considered an
estimation of the local oriented contrast. For a given image
I , the wavelet transform is denoted as

WT (Ic) = {ws,o}s=1,2,...,n ; o=h,v,d (1)

where ws,o is the wavelet plane at spatial scale s and orien-
tation o and Ic represents one of the opponent channels O1,
O2 and O3 of image I . Each opponent channel is decom-
posed into a spatial pyramid using the wavelet transform,
WT . This transform contains Gabor-like basis functions
and the number of scales used in the decomposition is given
by n = log2D for an image whose largest dimension is size
D.

In the second stage, the contrast energy ax,y around a
wavelet coefficient ωx,y centered at position x, y is esti-
mated by convolving the local region with a binary filter
h. The shape of the filter varies with the orientation of the
wavelet plane on which it operates, as shown in Figure 5.
For example, for a horizontal wavelet plane, ax,y is com-
puted by

ax,y =
∑

j

ωx−j,y2hj (2)

where hj is the j-th coefficient of the one-dimensional fil-
ter h. The contrast energy is computed for coefficients at all
spatial locations and spatial scales. Filter hj defines a region
around the central wavelet coefficient ωx,y where the activ-
ity ax,y is calculated. The interaction between this central
region and surrounding regions produces a center-surround
effect. In order to model this center-surround effect, the
energies of the central region acen

x,y and the surround region
asur

x,y are compared using

rx,y = (acen
x,y )2/(asur

x,y )2. (3)

The energy of the surrounding regions, asur
x,y , is com-

puted in an analogous manner to acen
x,y , with the only dif-

ference being the definition of the filter h, also shown in
Figure 5. A non-linear scaling of rx,y is performed to pro-
duce the final center-surround energy measure zx,y:

zx,y = r2x,y/(1 + r2x,y) (4)

so that zx,y ∈ [0, 1]. When zx,y → 0, central activity acen
x,y

is much lower than surround activity asur
x,y . Similarly, when

zx,y → 1, central activity is much higher than surround
activity. Therefore, rx,y may be interpreted as as a saturated
approximation to the relative central activity acen

x,y . The size
of central and surround regions are used to define the size
of the corresponding hj filters.

It is well-known that color appearance is dependent on
spatial frequency. Mullen [11] described human sensitivity
to local contrast in color opponent channels with a general-
ized Contrast Sensitivity Function (CSF), which is a func-
tion of spatial frequency. Adopting this idea, Otazu et al.
define an extended contrast sensitivity function (ECSF )
which is parametrized by spatial scale s and center-surround
contrast energy. Spatial scale is inversely proportional to
spatial frequency ν such that s = log2(1/ν) = log2(T ),
where T denotes one frequency cycle measured in pixels.
The function ECSF is defined as

ECSF (z, s) = z · g(s) + k(s) (5)

where the function g(s) is defined as

g(s) =

 βe
− s2

2σ2
1 s ≤ sg

0

βe
− s2

2σ2
2 otherwise

(6)

Here s represents the spatial scale of the wavelet plane be-
ing processed, β is a scaling constant, and σ1 and σ2 define
the spread of the spatial sensitivity of g(s). The sg

0 param-
eter defines the peak spatial scale sensitivity of g(s). In
Equation 5, the center-surround activity z of wavelet co-
efficients are modulated by g(s). An additional function,
k(s), was introduced to ensure a non-zero lower bound on



ECSF (z, s):

k(s) =

{
e
− s2

2σ2
3 s ≤ sk

0

1 otherwise
(7)

Here, σ3 defines the spread of the spatial sensitivity of k(s)
and sk

0 defines the peak spatial scale sensitivity of k(s).
The function ECSF is used to weight the center-

surround contrast energy zx,y at a location, producing the
final response αx,y:

αx,y = ECSF (zx,y, sx,y). (8)

αx,y is the weight that modulates the wavelet coefficient
ωx,y . The perceived image channel Iperceived

c that contains
the color appearance illusions are obtained by performing
an inverse wavelet transform on the wavelet coefficients
ωx,y at each location, scale and orientation, after the co-
efficients have been weighted by the αx,y response at that
location:

Iperceived
c (x, y) =

∑
s

∑
o

αx,y,s,o · ωx,y,s,o + Cr (9)

Here o represents the orientation of the wavelet plane of
ωx,y,s,o andCr represents the residual image plane obtained
from WT .

The model of Otazu et al. was capable of replicating
the psychophysical data obtained from two separate exper-
iments. In the first experiment, by Blakeslee et al. [2], ob-
servers performed asymmetric brightness matching tasks in
order to match the illusions present in regions of the stim-
uli. Some example brightness stimuli are shown in Fig-
ure 3(a). The second experiment was performed by Otazu
et al. [13] in an analogous fashion, but with observers per-
forming asymmetric color matching tasks rather than tasks
involving brightness. Some example color stimuli used in
these experiments are shown in Figure 3(a).

Our saliency estimation model is based on the previous
stages we have just described. However, to obtain parame-
ters for the intensity and color ECSF (z, s) functions, we
used the psychophysical data, which was provided to us by
the authors of [2] and [13], to perform a least squares re-
gression in order to select the parameters of the functions.
Our results are given in table 1. Both fitted ECSF (z, s)
functions maintain a high correlation rate (r = 0.9) with
the color and lightness psychophysical data, as shown in
Figure 3(b). Note that both chromaticity channels share the
same ECSF (z, s) function. The profiles of the resulting
optimized ECSF (x, s) functions for brightness and chro-
maticity channels are shown in Figure 4. The functions
enhance contrast energy responses in a narrow passband
and suppresses contrast energy for low spatial scales (high
spatial frequencies). The magnitude of the enhancement
or suppression increases with the magnitude of the center-
surround contrast energy, z.

(a)

(b)

Figure 3: (a) Examples of images used in psychophysical experi-
ments. (b) Correlation between model prediction and psychophys-
ical data. The solid line represents the model linear regression fit
and the dashed line is the ideal fit. Since measurements involve
dimensionless measures and physical units, they were arbitrarily
normalized to show the correlation.

Param. σ1 σ2 σ3 β sg
0 sk

0

Intensity 1.021 1.048 0.212 4.982 4.000 4.531
Color 1.361 0.796 0.349 3.612 4.724 5.059

Table 1: Parameters for ECSF (z, s) obtained using least square
regression.

3. Building saliency maps
In the previous section we described a low-level visual

representation that predicts color appearance phenomena.
This model concluded with equation 9 which can be re-
written as

Iperceived
c (x, y) = WT−1{αx,y,s,o · ωx,y,s,o} (10)

where Iperceived
c is a new version of the original channel

in which image locations may have been modified by the
α weight, either by a blurring or an enhancing effect. The
colors of modified locations have either been assimilated
(averaged) to be more similar to the surrounding color or
contrasted (sharpened) to be less similar to the surround.
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Figure 5: Schematic of our saliency approach. Red sections of the
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To obtain predictions of saliency using this color repre-
sentation, we hypothesize that image locations that undergo
enhancement are salient, while locations that undergo blur-
ring are non-salient. In this sense we can define the saliency
map of an specific image channel by the inverse wavelet
transform of the α weight. Thus the saliency map, Sc, of
the image channel Ic at the location x, y can be easily esti-
mated as

Sc(x, y) = WT−1{αx,y,s,o}. (11)

By removing the wavelet coefficients ωx,y,s,o and per-
forming the inverse transform solely on the weights com-
puted at each image location we provide an elegant and di-
rect method for estimating image saliency from a general-
ized low level visual representation.

To combine the maps for each channel into the final
saliency map, S, we compute the Euclidean norm S =√
S2

O1 + S2
O2 + S2

O3. The steps of the saliency model are
illustrated in Figure 5.

This process generalizes the color appearance model to
one which estimates saliency. The main advantage of our

method is the integration of multi-scale information by the
inverse wavelet transform, and the use of theECSF , whose
parameters are biologically justifiable. However, there are
still some parameters to be set. The strength of the center-
surround inhibition defined by Equation 4 is highly depen-
dent on the size of the binary hj filters, which define the
extent of the local central and surround regions of a wavelet
coefficient ωx,y . We posit that the central region around a
feature ought to span the responses to that feature in the
wavelet plane. However, the extent of the wavelet response
to a feature differs with each spatial scale. Therefore we de-
signed the size of the central region to be just large enough
to span wavelet responses for a feature at the most salient
spatial scale. The most salient spatial scale was taken to
be the scale to which both ECSF (z, s) functions are most
sensitive, approximately s = 4.

We consider the central region encompassing a feature to
be a Region Of Interest (ROI). Therefore, we estimate the
required size of the central region by determining the typical
size of a ROI for this dataset. To determine this size we first
created a Gaussian Mixture Model (GMM) of the locations
of the eye fixations for a subset of 20 images from the Bruce
& Tsotsos dataset [3], one of the datasets we will use to
evaluate our model. The GMMs contained 5 components,
each of which clusters the locations of a set of eye-fixations
and thus represents an ROI. The standard deviation of each
component is therefore interpreted to be the radius of an
ROI. Across all images, the average radius of a Gaussian
component was 53 pixels. At s = 4, the radius would now
be 2(53/2s−1) = 2(53/8) = 13.25. Therefore we set the
size of the local central region to be twice this radius, or
27 pixels. The size of the surround region was set to be 54
pixels, twice the size of the central region. The sizes of the
central and surround regions were used when performing
the evaluation on both datasets introduced in the upcoming
section describing our experimental results.



An important point to consider is whether the peak spa-
tial scales of the ECSF functions, approximately s = 4,
are consistent with the peak spatial frequencies of the hu-
man CSFs for chromatic and achromatic channels, which
have been estimated to be around 2 and 4 cycles per degree
(cpd) respectively [11]. That is, are the spatial scales be-
ing enhanced by the ECSF functions consistent with the
spatial frequencies to which humans are most attuned? If
we assume that the ROI spans a feature with a spatial fre-
quency between 2 and 4 cpd, 106 pixels contain 2-4 spa-
tial periods. The spatial scale that corresponds to 2 cpd is
s = log2(T ) = log2(106/2) = 5.7, while 4 cpd corre-
sponds to s = 4.7. These spatial scales are indeed consis-
tent with the peak ECSF spatial scales obtained by least
squares regression.

3.1. Experimental results

We evaluated our model’s performance with respect to
predicting human eye fixation data from two image datasets.
To assess the accuracy of our model we used both the
well-known receiver operating characteristic (ROC) and
Kullback-Leibler (KL) divergence as quantitative metrics.
The ROC curve indicates how well the saliency map dis-
criminates between fixated and non-fixated locations for
different binary saliency thresholds while the KL diver-
gence indicates how well the method distinguishes between
the histograms of saliency values at fixated and non-fixated
locations in the image. For both of these metrics, a higher
value indicates better performance.

Zhang et al. noted that several saliency methods have
image border effects which artificially improve the ROC re-
sults [17]. To avoid this issue and ensure a fair compari-
son of saliency methods we adopt the evaluation framework
described by Zhang et al. [17], which involves modified
metrics for both the area under the ROC curve (AROC) and
KL divergence. For each image in the dataset, true posi-
tive fixations are fixations for that image, while false pos-
itive fixations are fixations for a different image from the
dataset, chosen randomly. This avoids the true positive fix-
ations having a center bias with respect to the false positive
fixations. Because the false fixations for an image are ran-
domly chosen, a new calculation of the metrics is likely to
produce a different value. Therefore we computed the met-
rics 100 times in order to compute the standard error. The
saliency maps are shuffled 100 times. On each occasion,
the KL-divergence is computed between the histograms of
saliency values at unshuffled fixation points and shuffled
fixation points. When calculating the area under the ROC
curve, we also used 100 random permutations of the fixation
points.

The first dataset we use was provided by Bruce & Tsot-
sos in [3]. This popular dataset is commonly used as the
benchmark dataset for comparing visual saliency predic-

Model KL (SE) AROC (SE)
Itti et al.[7] 0.1130 (0.0011) 0.6146 (0.0008)
Bruce & Tsotsos[3] 0.2029 (0.0017) 0.6727 (0.0008)
Gao et al.[4] 0.1535 (0.0016) 0.6395 (0.0007)
Zhang et al.[17] 0.2097 (0.0016) 0.6570 (0.0008)
Seo & Milanfar[14] 0.3432 (0.0029) 0.6769 (0.0008)
Our method 0.4265 (0.0030) 0.7013 (0.0008)

Table 2: Performance in predicting human eye fixations from the
Bruce & Tsotsos dataset.
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Figure 6: ROC curves for Bruce & Tsotsos, Seo & Milanfar, and
the proposed method.

tions between methods. The dataset contains 120 color im-
ages of indoor and outdoor scenes, along with eye-fixation
data for 20 different subjects. The mean and the standard
error of each metric are reported in Table 2. We performed
this evaluation on five state-of-the-art methods as well as
our proposed method and as Table 2 shows, our method ex-
ceeds the state-of-the-art performance as measured by both
metrics.

The second dataset we used was introduced by Judd et
al. in [8]. This dataset contains 1,003 images of vary-
ing dimensions, along with eye fixation data for 15 sub-
jects. In order to be able to compare fixations across im-
ages, only those images whose dimensions were 768x1024
pixels were used, reducing the number of images examined
to 463. This dataset is more challenging than the first as its
images contain more semantic objects which are not mod-
eled by bottom-up saliency, such as people, faces and text.
Therefore, as would be expected, the AROC and KL diver-
gence metrics are lower for all bottom-up visual attention
models. The results, obtained using the same evaluation
method described previously, are shown in Table 3 and in-
dicate that once again our method exceeds state-of-the-art
performance.



A B C D

Figure 7: Qualitative analysis of results for Bruce & Tsotsos
dataset: Column A contains original image. Columns B, C, and D
contain thresholded saliency maps obtained from Bruce & Tsot-
sos, Seo & Milanfar and our method, respectively. The saliency
maps have each been thresholded to their top 10% most salient lo-
cations. Yellow markers indicate eye fixations. Our method is seen
to be less sensitive to low-frequency edges such as street curbs and
skylights, which is in line with human eye fixations.

Model KL (SE) AROC (SE)
Bruce & Tsotsos [3] 0.2629 (0.0025) 0.6501 (0.0008)
Seo & Milanfar [14] 0.2700 (0.0025) 0.6462 (0.0007)
Our method 0.2788 (0.0021) 0.6640 (0.0006)

Table 3: Performance in predicting human eye fixations from the
Judd et al. dataset.

3.2. Discussion

Figure 7 illustrates the benefit of our method when com-
pared to Bruce & Tsotsos [3] and Seo & Milanfar [14]. The
saliency maps have each been thresholded to their top 10%
most salient locations and show that the most salient regions
of our saliency map better correspond to the fixations of hu-
man observers. In addition, the ROC curves for the three
methods in Figure 6 show that our method has fewer false
positives at higher thresholds, indicating that the proposed
method is better able to detect the most salient regions of
the image.

Figure 8 shows qualitative results for the second dataset,

A B C D

Figure 8: Qualitative analysis of results for Judd et al. dataset:
Column A contains original image. Columns B, C, and D contain
saliency maps obtained from Bruce & Tsotsos, Seo & Milanfar
and our method, respectively. The saliency maps have each been
thresholded to their top 10% most salient locations.

provided by Judd et al. [8]. Here there is also a higher
correlation between the most salient regions of our saliency
map, and human eye fixations, when compared with Bruce
& Tsotsos and Seo & Milanfar.

We attribute our model’s success to the fact that it is less
sensitive to low-frequency edges in the images, such as sky-
lines and road curbs. In addition, we avoid excessive sensi-
tivity to textured regions by suppressing high-frequency in-
formation using the weighting functions ECSF (z, s). As
Figure 4 shows, the weighting function is more sensitive
to mid-range frequencies. The previous methods included
in Table 2 either select information at one scale or combine
scale information from subband pyramids by an unweighted
linear combination while in our method, ECSF (z, s) acts
as a bandpass filter in the image’s spatial frequency domain,
and provides a biologically plausible mechanism for com-
bining spatial information.

Finally, we also investigated how the performance of our
saliency model changed depending on the peak spatial scale
ofECSF (z, s) for the intensity channel, which is the chan-
nel which contains the majority of the saliency information.
Figure 9 shows that, as expected from psychophysical data,
when low or high frequencies are enhanced and mid-range
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Figure 9: Change in AROC and KL metrics with change in peak
frequency of ECSF (z, s) for intensity: The best s for both these
metrics (s = 4 for AROC and s = 5 for KL) are in line with the
value determined using psychophysical experiments.

frequencies are inhibited the performance of the model suf-
fers. The model performs best when mid-range frequen-
cies are enhanced and low or high frequencies are inhib-
ited. In addition, the best scale range for these metrics, be-
tween 4 and 5, correspond to the value determined using
psychophysical experiments.

4. Conclusions and further work
The proposed saliency model can be summarized by the

following pipeline:

Ic
WT−→ {ωs,o}

CS−→ {zs,o}
ECSF−→ {αs,o}

WT−1

−→ Sc

where CS represents the center-surround mechanism and
ECSF is the extended contrast sensitivity function. The
main advantage of our formulation is the use of a scale-
weighting function that is less sensitive to non-salient edges
and provides a biologically plausible mechanism for inte-
grating scale information contained in the spatial pyramid.
Additionally, we reduced ad-hoc parameters by learning the
appropriate size of local central regions. At the moment, the
size of this region is optimized for the most salient spatial
scale and held constant for other frequencies. Further work
will include modulating the size of this region with respect
to spatial scale, as well as exploring less ad-hoc means of
representing the suppressive surround region.
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