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Abstract. The estimation of the illuminant of a scene from a digital
image has been the goal of a large amount of research in computer
vision. Color constancy algorithms have dealt with this problem by
defining different heuristics to select a unique solution from within
the feasible set. The performance of these algorithms has shown
that there is still a long way to go to globally solve this problem as a
preliminary step in computer vision. In general, performance evalu-
ation has been done by comparing the angular error between the
estimated chromaticity and the chromaticity of a canonical il-
luminant, which is highly dependent on the image dataset. Recently,
some workers have used high-level constraints to estimate il-
luminants; in this case selection is based on increasing the perfor-
mance on the subsequent steps of the systems. In this paper the
authors propose a new performance measure, the perceptual angu-
lar error. It evaluates the performance of a color constancy algorithm
according to the perceptual preferences of humans, or naturalness
(instead of the actual optimal solution) and is independent of the
visual task. We show the results of a new psychophysical experi-
ment comparing solutions from three different color constancy algo-
rithms. Our results show that in more than half of the judgments the
preferred solution is not the one closest to the optimal solution. Our
experiments were performed on a new dataset of images acquired
with a calibrated camera with an attached neutral gray sphere,
which better copes with the illuminant variations of the scene.
© 2009 Society for Imaging Science and Technology.
�DOI: XXXX�

INTRODUCTION
Color constancy is the ability of the human visual system to
perceive a stable representation of color despite illumination
changes. Like other perceptual constancy capabilities of the
visual system, color constancy is crucial for succeeding in
many ecologically relevant visual tasks such as food collec-
tion, detection of predators, etc. The importance of color
constancy in biological vision is mirrored in computer vision
applications, where success in a wide range of visual tasks
relies on achieving a high degree of illuminant invariance. In
the last 20 years, research in computational color constancy
has tried to recover the illuminant of a scene from an ac-
quired image.

This has been shown to be a mathematically ill-posed
problem, which therefore does not have a unique solution. A

common computational approach to illuminant recovery
(and color constancy in general) is to produce a list of pos-
sible illuminants (feasible solutions) and then use some as-
sumptions, based on the interactions of scene surfaces and
illuminants to select the most appropriate solution among
all possible illuminants. A recent extended review of compu-
tational color constancy methods was provided by Hordley.1

In this review, computational algorithms were classified in
five different groups according to how they approach the
problem. These were (a) simple statistical methods,2 (b)
neural networks,3 (c) gamut mapping,4,5 (d) probabilistic
methods,6 and (e) physics-based methods.7 Comparison
studies8,9 have ranked the performance of these algorithms,
which usually depend on the properties of the image dataset
and the statistical measures used for the evaluation. It is
generally agreed that, although some algorithms may per-
form well on average, they may also perform poorly for spe-
cific images. This is the reason why some authors10 have
proposed a one-to-one evaluation of the algorithms on in-
dividual images. In this way, comparisons become more in-
dependent of the chosen image dataset. However, the general
conclusion is that more research should be directed toward a
combination of different methods, since the performance of
a method usually depends on the type of scene with which it
deals.11 Recently, some interesting studies have pointed to-
ward this direction,12 i.e., trying to find which statistical
properties of the scenes determine the best color constancy
method to use. In all these approaches, the evaluation of the
performance of the algorithms has been based on comput-
ing the angular error between the selected solution and the
actual solution that is provided by the acquisition method.

Other recent proposals13,14 turn away from the usual
approach and deal instead with multiple solutions delegating
the selection of a unique solution to a subsequent step that
depends on high-level, task-related interpretations, such as
the ability to annotate the image content. In this example,
the best solution would be the one giving the best semantic
annotation of the image content. It is in this kind of ap-
proach where the need for a different evaluation emerges,
since the performance depends on the visual task and this
can lead to an inability to compare different methods.
Hence, to be able to evaluate this performance and to com-
pare it with other high-level methods, we propose to explore
a new evaluation procedure.
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In summary, the goal of this paper is to show the results
of a new psychophysical experiment following the lines of
that presented by Vazquez et al.15 The previous results were
confirmed, that is, humans do not choose the minimum
angular error solution as the more natural one. Further-
more, in this paper we propose a new measure to reduce the
gap between the error measure and the human preference.
Our new experiment represents an improvement over the
old one in that it considers the uncertainty level of the ob-
server responses and it uses a new, improved image dataset.
This new dataset has been built by using a neutral gray
sphere attached to the calibrated camera to better estimate
the illuminant of the scene. We have worked with the
Shades-of-Gray16 algorithm instead of CRule.17 This deci-
sion was made on the basis that CRule is calibrated whereas
the other algorithms are not.

EXPERIMENTAL SETUP
Subjects were presented with a pair of images (each one a
different color constancy solution) on a CRT monitor and
asked to select the image that seems “most natural.” The

term “natural” was chosen not because it refers to natural
objects but because it refers to natural viewing conditions,
implying the least amount of digital manipulation or global
perception of an illuminant. Figure 1 shows some exemplary
pictures from the database. The pictures on the left are ex-
amples of images selected as natural most of the time, while
those on the right are examples of images hardly ever se-
lected as natural.

The global schematics of the experiment are shown in
Figure 2. We used a set of 83 images from a new image
dataset that was built for this experiment (the image gather-
ing details are explained below). The camera calibration al-
lows us to obtain the Commission Internationale de
l’Eclairage (CIE) 1931 XYZ values for each pixel and conse-
quently, we converted 83 images from CIE XYZ space to CIE
standard red, green blue (sRGB). Following this, we replaced
the original illuminant by D65 using the chromaticity values
of the gray sphere that was present in all image scenes.

From the original images, five new pictures were created
by reilluminating the scene with five different illuminants.
To this end we have used the chromatic values of each il-
luminant (three Plankians: 4000, 7000, and 10,000 K, and
two arbitrary illuminants: greenish (x=0.3026, y=0.3547)
and purplish (x=0.2724, y=0.2458), totaling 415 images.
Afterward, the three color constancy algorithms
(Gray-World,2 Shades-of-Gray,16 and MaxName15) explained
below were applied to the newly created images. Conse-
quently, we obtain one solution per test image per algorithm,
totaling 1245 different solutions. These solutions were con-
verted back to CIE XYZ to be displayed on a calibrated CRT
monitor (Viewsonic P227f, which was tested to confirm its
uniformity across the screen surface) using a visual stimulus
generator (Cambridge Research Systems ViSaGe). The
monitor’s white point chromaticity was (x=0.315,
y=0.341), and its maximum luminance was 123.78 Cd/m2.
The experiment was conducted in a dark room in which the
only light present in the room came from the monitor itself.

Figure 1. Images regularly selected in the experiment as natural �left� vs
images hardly ever selected �right�.

Figure 2. Experiment schedule.
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The experiment was conducted on ten naive observers
recruited among university students and staff (none of the
observers had previously seen the picture database). All ob-
servers were tested for normal color vision using the Ishihara
and the Farnsworth dichotomous tests (D-15). Pairs of pic-
tures, each obtained using one of two different color con-
stancy algorithms, were presented one on top of the other on
a gray background �31 Cd/m2�. The order and position of
the picture pairs were random. Each picture subtended
10.5° �5.5° to the observer and was viewed from a distance
of 146 cm. This brings us to 1245 pairs of observations per
observer. No influence on picture (top or bottom) position
in the observers’ decision was found.

For each presentation, observers were asked to select the
picture that seemed most natural and to rate their selection
by pressing a button on an IR button box. The setup (six
buttons) allowed observers to register how convinced they
were of their choice (e.g., strongly convinced, convinced, and
marginally convinced). For example, observers who were
strongly convinced that the top image was more natural than
the bottom one would press button 3 (see Fig. 2), if they
were marginally convinced that the bottom picture was the
most natural they would press button 4 and so on. There
was no time limit, but observers took an average of 2.5 s to
respond to each choice. The total experiment lasted approxi-
mately 90 min (divided in three sessions of 30 min each).

A New Image Dataset
To test the models we need a large image dataset of good
quality natural scenes. From a colorimetric point of view, the
obvious choice is to produce hyperspectral imagery in order
to reduce metameric effects. However, hyperspectral outdoor
natural scenes are difficult to acquire since the exposure
times needed are long, and their capture implies control over
small movements or changes in the scene, (not to mention
the financial cost of the equipment). There are currently
good quality image databases available (such as the
hyperspectral dataset built by Foster et al.18 and Brelstaff et
al.19), but they either contain specialized (i.e., nongeneral)
imagery, or the number of scenes is not large enough for our
purposes. For this reason, and because metamerism is rela-
tively rare in natural scenes,20,21 we decided to acquire our
own dataset of 83 images (see Figure 3) using a trichromatic
digital color camera (Sigma Foveon D10) calibrated to pro-
duce CIE XYZ pixel representations.

The camera was calibrated at Bristol University (UK)
Experimental Psychology laboratary by measuring its color
sensors’ spectral sensitivities using a set of 31 narrow band

interference filters, a constant-current incandescent light
source, and a TopCon SR1 telespectroradiometer (a process
similar to that used by others22,23). The calibrated camera
allows us to obtain a measure of the CIE XYZ values for
every pixel in the image. Images were acquired around the
city of Barcelona at different times of the day and on three
different days in July 2008. The weather was mostly sunny
with a few clouds. We mounted a gray ball in front of the
camera (see Figure 4) following the ideas of Ciurea and
Funt.24 The ball was uniformly painted using several thin
layers of spray paint (Revell RAL7012-Matt, whose reflec-
tance was approximately constant across the camera’s re-
sponse spectrum, and its reflective properties were nearly
Lambertian—see Figure 5). The presence of the gray ball
(originally located at the bottom-left corner of every picture
and subsequently cropped out) allows us to measure and
manipulate the color of the illuminant. Images whose chro-
maticity distribution was not spatially uniform (as measured
on the gray ball) were discarded.

Selected Color Constancy Algorithms
In this section we briefly summarize the three methods we
have selected for our analysis. We have chosen two well-
known methods, Gray-World2 and Shades-of-Gray,16 and a

Figure 5. Reflectance of the paint used on the ball.

Figure 3. Image dataset under D65 illuminant.

Figure 4. Camera and gray sphere setup.
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more recent method, the MaxName algorithm.15 The Gray-
World algorithm (an uncalibrated method based on a strong
assumption about the scene) was selected because of its
popularity in literature. The Shades-of-Gray algorithm (an-
other uncalibrated algorithm) was selected because it con-
siderably improves performance with respect to Gray-World
(another uncalibrated algorithm such as Gray-Edge25 could
also have been used). Finally, MaxName15 was selected be-
cause it uses high-level knowledge to correct the illuminant.
We give a brief outline of these methods below.

(1) Gray-World. It was proposed by Buchsbaum,2 and
it is based on the hypothesis that mean chromatic-
ity of the scene corresponds to gray. Given an im-
age f= �R ,G ,B�T as a function of RGB values, and
adopting the diagonal model of illuminant
change,26 then an illuminant �� ,� ,�� accomplishes
the Gray-World hypothesis if

�f�x

��x
= k · ��,�,�� , �1�

where k is a constant.
(2) Shades-of-Gray. It was proposed by Finlayson and

Trezzi.16 This algorithm is a statistical extension of
the Gray-World and MaxRGB27 algorithms. It is
based on the Minkowski norm of images. An il-
luminant �� ,� ,�� is considered as the scene il-
luminant if it accomplishes

��f p�x

��x
�1/p

= k · ��,�,�� , �2�

where k is a constant. Actually, this is a family of
methods where p=1 is the Gray-World method
and p=� is the MaxRGB algorithm. In this case we
have used p=12, since it is the best solution for our
dataset.

(3) MaxName. This algorithm is a particular case of
the one presented by Vazquez et al.15 It is based on
giving more weight to those illuminants that maxi-
mize the number of color names in the scene. That
is, MaxName builds a weighted feasible set by con-
sidering nameable colors; this is prior knowledge
given by

�k = �
�

S���E���Rk�����, k = R,G,B , �3�

where, S��� are the surface reflectances having
maximum probability of being labeled with a basic
color term, also called focal reflectances from the
work of Benavente et al.28 In addition to the basic
color terms, we added a set of skin colored
reflectances. In Eq. (3), E��� is the power distribu-
tion of a D65 illuminant, and Rk��� are the CIE
RGB 1955 color matching functions.

We define � as the set of all k-dimensional nameable
colors obtained from Eq. (3). The number of elements of �
depends on the number of reflectances used. Following this,
we compute the semantic matrix, denoted as (SM), which is
a binary representation of the color space as a matrix, where
a point is set to 1 if it represents a nameable color, that is, it
belongs to � and 0 otherwise. Then, for a given input image,
I, we compute all possible illuminant changes I�,�,�. For each
one, we calculate its nameability value. This is done by
counting how many points of the mapped image are name-
able colors in SM and can be computed by a correlation in
log space:

Nval�,�,� = log�Hbin�I�� � log�SM� . �4�

In the previous equation, Hbin is the binarized histo-
gram of the image, Nval at the position �� ,� ,�� is the num-
ber of coincidences between the SM and I�,�,�. Nval is a
three-dimensional matrix, depending on all the feasible
maps, �� ,� ,��. From this matrix, we select the most feasible
illuminant as the one that accomplishes

��,�,�� = arg max
��,�,��

Nval, �5�

that is, the one giving the maximum number of nameable
colors.

RESULTS
The results of the experiment validate those presented by
Vazquez et al.15 with a different image dataset and a different
set of algorithms. The main finding is that preferred solu-
tions, namely, the more natural in the psychophysical experi-
ment, do not always coincide with solutions of minimum
angular error. In fact, this agreement only happened in 43%
of the observations, independently of the degree of certainty
of the observers when making the decision.

Since the experimental procedure allows us to define a
partition in the interval [0,1] to encode the subject selection
and each observation represents a decision between two im-
ages, then for each observation we label one image as the
result from Method A and the other as the result from
Method B (Methods A and B are labeled as 1 and 0, respec-
tively). The confidence of the decision is considered at three
different levels (the three buttons that the subject was al-
lowed to press yield an ordinal paired comparison29). For
example, suppose that a scene processed by Method A is
presented on top of the screen and a second scene processed
by Method B is presented at the bottom (the physical posi-
tion of the scenes was randomized in each trial, but let us
consider an exemplary layout). If subjects think that the top
picture is more natural they will press one of the top buttons
in Fig. 2, according to how strongly they are convinced. Sup-
pose the subject presses button 3 (top-right: definitely more
natural), then the response is coded as 1. If the choice is
button 2 (top-center: sufficiently more natural) the response
is coded as 0.8, etc. (see Table I). If, on the contrary subjects
think the bottom picture (Method B) is more natural, then
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they will press a button from the lower row (Fig. 2). If they
are marginally convinced, they will pick button 4 (bottom-
left), and the response will be coded as 0.4 according to
Table I. Similarly if they are strongly convinced, they will
press button 6 (bottom-right), and the response will be
coded as 0. In this way we collect not only the direction of
the response but its certainty. Observers’ certainty was found
to be correlated (corr. coef. 0.726) to a simple measure of
image difference (the angular error between each image
pair). This technique is similar to that used by other
researchers.30–33

We have computed two different measures of observer
variability. The first measure is the correlation coefficient
between individual subjects and the average (in black in Fig-

ure 6). Table II shows this measure. The idea behind this
analysis is to detect outliers (subjects with a distribution of
results significantly different from the rest of the observers,
i.e., low correlation). Our second measure is the coefficient
of variation (CV),34,35 which computes the difference be-
tween two statistical samples (see Table II). Both measures
were calculated for the whole 1245 observations (three com-
binations of color constancy solutions � 415 observations
per combination). From the table, and from the distribution
of the plots in Fig. 6, we decided to omit data from observer
6 (very low correlation coefficient and highest coefficient of
variation) in all subsequent analyses.

As a first approach to analyze our results we computed
the mean of the observers’ responses for each pairwise com-

Table II. Correlation between each observer and mean observer.

Observer 1 2 3 4 5 6 7 8 9 10

Correlation 0.54 0.57 0.59 0.55 0.52 0.23 0.48 0.63 0.61 0.55

CV 52,49% 57,96% 37,65% 52,28% 52,69% 59,85% 47,12% 51,13% 25,36% 42,81%

Figure 6. Comparison to the mean observer �black line�.

Table I. Button codification.

Image at the bottom is more natural than
image at the top

Image at the top is more natural than image
at the bottom

Button 6 Button 5 Button 4 Button 1 Button 2 Button 3

Definitely
more natural

Sufficiently
more natural

Marginally
more natural

Marginally
more natural

Sufficiently
more natural

Definitely
more natural

0 0.2 0.4 0.6 0.8 1
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parison. We considered that a method was selected if the
mean of the encoded decisions, computed for all nine ob-
servers, is greater than 0.5 (when the method was encoded as
1) or lower than 0.5 (when the method was encoded as 0).
The performance does not vary significantly if we do not
consider the cases where the average value is too close to the
chance rate (e.g., averages between 0.45 and 0.55). The re-
sults of these pairwise comparisons are given in Table III.
For each pair of methods, we show the percentage of cases
where it has been selected against the others. Thus, results in
Table III can be interpreted as follows: each method (in
rows) is preferred to a certain percentage of trials over the
method in the columns. For example, Shades-of-Gray is pre-
ferred in 68.1% of the trials against Gray-World.

The percentages in Table III show that the images pro-
duced by Shades-of-Gray and MaxName are preferred to
those produced by Gray-World (68.1% and 62.4%). How-
ever, there is no clear preference when compared against
each other (50.6% Shades-of-Gray preference versus
MaxName).

In Table IV we show a global comparison of all algo-
rithms (the percentages are computed for all 415 images). A
method was considered a “winner” for a given image if it
was selected in two of the three comparisons. Methods were
evaluated in the same way as we did for results in Table III
(that is, a greater than 0.5 mean value from all observers is
encoded as 1). Evaluating this way, there are some cases
where the three methods are equally selected (this happens
in 8.92% of the images). This analysis was formulated in
order to remove nontransitive comparisons (e.g., Method A
beats Method B, Method B beats Method C, and Method C
beats Method A). Hence, we can conclude from these
straightforward analyses that solutions from MaxName are
preferred in general but are closely followed by Shades-of-
Gray (39.28% and 35.18%, respectively). We can also state
that Gray-World solutions are the least preferred in general
(with a low percentage of 16.63%). Moreover, the best an-
gular error solution is selected in 42.96% of the cases.

We have also calculated Thurstone’s law of comparative
judgment36 coefficients from our data (Table V), obtained
from the ordinal pairwise comparisons. Using this measure,
results are not very different (Shades-of-Gray and MaxName
are clearly better than Gray-World although the ranking
changes), and images with minimal angular error are only
selected in 45% of the cases.

Finally, we have computed two overall analyses (consid-
ering all scenes as one) in order to extract a global ranking
for our color constancy methods: Thurstone’s law of com-
parative judgment36 and the Bradley–Terry37 analysis. Table
VI shows the results of Bradley and Terry’s cumulative logit
model for pairwise evaluations extended to ordinal
comparisons.29 These results are shown in the “estimate”
column where the estimate reference has been set to 0 for
the smallest value (Gray-World model). The standard error
of this ranking measure shows that the two best models
(Shades-of-Gray and MaxName) are better than Gray-World
and arguably close to each other. Table VII shows a similar
analysis using Thurstone’s law of comparative judgment36

and considering all scenes as one.

Table IV. Experiment results in a general comparison.

Method
Wins
�%�

Shades-of-Gray 35.18

Gray-World 16.63

MaxName 39.28

Three-equally selected 8.92

Table V. Results using Thurstone’s law of comparative judgment.

Method
Wins
�%�

Shades-of-Gray 42.65

MaxName 36.39

Gray-World 20.96

Table III. Results of the experiment in the one-to-one comparison.

Selected method vs method
Shades-of-Gray

�%�
Gray-World

�%�
MaxName

�%�

Shades-of-Gray — 68.1 50.6

Gray-World 31.9 — 37.6

MaxName 49.4 62.4 —

Table VI. Results using Bradley–Terry ordinal pairwise comparison analysis.

Parameter DF Estimate
Standard
error

Wald 95%
confidence limits Chi-square Pr	Chisq

Shades-of-Gray 1 1.609 1.2231 −0.7882 4.0063 1.73 0.1883

MaxName 1 1.0256 0.8435 −0.6278 2.6789 1.48 0.2241

Gray-World 0 0 0 0 0
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As we mentioned above, our experiment shows that im-
ages having minimum angular error with respect to the ca-
nonical solution are selected in less than half the observa-
tions (when we ask people for the most natural image, the
response does not always correspond to the optimal physical
solution). Moreover, this result is maintained even if we dis-
card responses with low levels of certainty. In order to quan-
tify this fact, in the next section we will introduce a new
measure to complement the current performance evaluation
of color constancy algorithms.

PERCEPTUAL PERFORMANCE EVALUATION
Assuming the ill-posed nature of the problem, the difficulty
of finding an optimal solution and the results of the present
experiment, we propose an approach to color constancy al-
gorithms that involves human color constancy by trying to
match computational solutions to perceived solutions.
Hence, we propose a new evaluation measurement, the per-
ceptual angular error, which is based on perceptual judg-
ments of adequacy of a solution instead of the physical so-
lution. The approach that we propose in this work does not
try to give a line of research alternative to the current trends,
which focus on classifying scene contents to efficiently com-
bine different methods. Here we try to complement these
efforts from a different point of view that we could consider
as more “top-down,” instead of the “bottom-up” nature of
the usual research.

As mentioned above, the most common performance
evaluation for color constancy algorithms consists of mea-
suring how close their proposed solution is to the physical
solution, independently of the other concerns. This has been
computed as

eang = a cos� 
w
̂w

�
w��
̂w�
� , �6�

which represents the angle between the actual white point of
the scene illuminant, 
w, and the estimation of this point
given by the color constancy method, 
̂w, which can be un-
derstood as a chromaticity distance between the physical so-
lution and the estimate. The current consensus is that none
of the current algorithms present a good performance on all
the images,38 and a combination of different algorithms of-
fers a promising option for further research. Our proposal
here is to introduce a new measure, the perceptual angular
error, eang

p , that would be computed in a similar way:

eang
p = a cos� 
w

p
̂w

�
w
p��
̂w�

� , �7�

where 
w
p is the perceived white point of the scene (which

should be measured psychophysically) and 
̂w is an estima-
tion of this point, that is the result of any color constancy
method, as in Eq. (6). The difficulty of this new measure-
ment arises from the complexity of building a large image
dataset, where 
w

p , the perceived white point of the images
has been measured.

In this work we propose a simple estimation of this
perceived white point by considering the images preferred in
the previous experiment. Hence, the perceived white point is
given by the images coming from the color constancy solu-
tions that have been preferred by the observers. The pre-
ferred solutions, that is, the most natural solutions, can give
us an approximation to the perceived image white point.

Making the above consideration, in Figure 7 we can see
how the estimation of the perceptual angular error works for
the three tested algorithms. In the abscissa we plot a ranking
of the observations in order to get the perceptual errors in
descending order. In the ordinate we show the estimated
perceptual angular error for each created image (that is, 415
different inputs to the algorithms). A numerical estimation
of the perceptual angular error could be the area under the
curves plotted in Fig. 7. In the figure we can see that both
Shades-of-Gray and MaxName work quite similarly, while
Gray-World presents the highest perceptual error. This new
measurement agrees with the conclusion we summarized in
the previous section and provides a complementary measure

Table VII. Results using Thurston’s law of comparative judgment binary pairwise comparison analysis.

Parameter DF Estimate
Standard
error

Wald 95%
confidence limits Chi-square Pr	Chisq

Shades-of-Gray 1 0.196 0.0031 0.19 0.2021 4040.2 �0.0001

MaxName 1 0.1283 0.0031 0.1223 0.1343 1743.22 �0.0001

Gray-World 0 0 0 0 0

Figure 7. Estimated perceptual angular error �between method estima-
tions and preferred illuminants�.
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to evaluate color constancy algorithms. In Figure 8 we show
a similar plot for the usual angular error.

In Tables VIII and IX we show the different statistics on
the computed angular errors. In Table VIII, the angular error
between the estimated illuminant and the canonical il-
luminant are shown. In this case, MaxName and Shades-of-
Gray present better results than Gray-World. In Table IX
equal statistics are computed for the estimated perceptual
angular error. The results in this table confirm the conclu-
sions we obtained from Fig. 7.

CONCLUSIONS
This paper explores a new research line, the psychophysical
evaluation of color constancy algorithms. Previous research
points to the need to further explore the behavior of high-
level constraints needed for the selection of a feasible solu-
tion (to avoid the dependency of current evaluations on the
statistics of the image dataset). With this aim in mind, we
have performed a psychophysical experiment in order to
compare three computational color constancy algorithms:
Shades-of-Gray, Gray-World, and MaxName. The results of
the experiment show Shades-of-Gray and MaxName meth-
ods have quite similar results, which are better than those
obtained by the Gray-World method and that in almost half
the judgments, subjects have preferred solutions that are not
the closest ones to the optimal solutions.

Considering that subjects do not prefer the optimal so-
lutions in a large percentage of judgments, we have intro-
duced a new measure based on the perceptual solutions to
complement current evaluations: the perceptual angular er-

ror. It tries to measure the proximity of the computational
solutions versus the human color constancy solutions. The
current experiment allows computing an estimation of the
perceptual angular error for the three explored algorithms.
However, our main conclusion is that further work should
be done in the line of building a large dataset of images
linked to the perceptually preferred judgments.

To this end a new, more complex experiment, perhaps
related to the one proposed in Ref. 39, must be done in
order to obtain the perceptual solution of the images inde-
pendently of the algorithms being judged.
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