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Stability of the color-opponent signals under
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Illumination varies greatly both across parts of a natural scene and as a function of time, whereas the spectral
reflectance function of surfaces remains more stable and is of much greater relevance when searching for spe-
cific targets. This study investigates the functional properties of postreceptoral opponent-channel responses, in
particular regarding their stability against spatial and temporal variation in illumination. We studied images
of natural scenes obtained in UK and Uganda with digital cameras calibrated to produce estimated L-, M-, and
S-cone responses of trichromatic primates (human) and birds (starling). For both primates and birds we cal-
culated luminance and red–green opponent (RG) responses. We also calculated a primate blue–yellow-
opponent (BY) response. The BY response varies with changes in illumination, both across time and across the
image, rendering this factor less invariant. The RG response is much more stable than the BY response across
such changes in illumination for primates, less so for birds. These differences between species are due to the
greater separation of bird L and M cones in wavelength and the narrower bandwidth of the cone action spectra.
This greater separation also produces a larger chromatic signal for a given change in spectral reflectance. Thus
bird vision seems to suffer a greater degree of spatiotemporal “clutter” than primate vision, but also enhances
differences between targets and background. Therefore, there may be a trade-off between the degree of chro-
matic clutter in a visual system versus the degree of chromatic difference between a target and its background.
Primate and bird visual systems have found different solutions to this trade-off. © 2005 Optical Society of
America

OCIS codes: 330.1720, 330.4060.
t
(
a
R
H
f
R
t
i
i
w
p
p
r
p
m

. INTRODUCTION
he spectrum of light reaching an observer’s eye from an
bject is determined not just by the reflectance function of
he object’s material but also by the spectral properties of
he illuminant. The illuminant typically varies markedly
n intensity over time and space and this is especially true
f objects of high three-dimensional spatial complexity,
uch as the foliage of a tree. An important task of vision is
herefore to be able to detect the invariant material prop-
rties of the surface (e.g., the reflectance function) while
eing invariant to the highly variable illumination. It has
een suggested that opponent-color vision might fulfill
his task.1,2

The work of DeValois and his colleagues3–5 has pro-
ided ample evidence that the postreceptoral channels in
onkeys consist of three opponent channels, which can be
1084-7529/05/102060-12/$15.00 © 2
hought of as encoding the red–green (RG), blue–yellow
BY), and light–dark (Lum) aspects of a scene. There is
lso ample evidence that human perception of color uses
G and BY opponent channels, as originally proposed by
ering.6 The BY (or blue–green) opponent system is

ound in many mammalian orders,7 but the paradoxical
G system has much more limited mammalian distribu-

ion, mostly in old-world monkeys and apes. The paradox
s that the amount of RG outflow from the monkey retina
s immensely greater than the BY,8,9 and yet RG changes
ithin the natural world are relatively rare.10 In the
resent paper, we explore the manner in which such op-
onent channels might sample natural images containing
eal noise such as shadows and specularities. We also ex-
lore how the opponent channels respond in an environ-
ent in which light changes naturally in intensity and
005 Optical Society of America
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color” over time as a result of changes in solar position
nd atmospheric properties.
Color vision is proposed as a means of removing the

amouflaging effects of shadows in the belief that directly
lluminated and shadowed parts of an object will differ
nly in the intensity of illuminant.11 However, shadowed
reas do not differ solely in the intensity of illumination.
he “color” of the natural illuminant is not constant. It
aries over the time course of a day, primarily in the BY
irection of color space,12 although the light filtering
hough a tree canopy also varies in its greenness.13 The
ight from a cloudy sky is bluer than direct sunlight. This

eans that on a sunny day, any shadowed area receives
cattered light from the blue sky, which has a higher pro-
ortion of short wavelengths than direct sunlight. Shad-
ws are therefore blue in comparison with areas of the
ame material lit by direct sunshine. Even on a cloudy
ay, it has been shown that the area of sky corresponding
o the position of the sun is more yellow than sky more
istant from the sun’s location,14 so similar, though
maller, effects may be expected on cloudy days as well.
urthermore, the shadowed areas may receive illumina-
ion locally reflected from other objects and, in natural
cenes, those other objects are likely to be green foliage.
he BY system may therefore not be invariant across
hadow boundaries.15,16 If the visual system is attempting
o extract reflectance, and therefore changes due to illu-
ination are viewed as noise, the YB opponent system
ill show substantial illumination noise both as a func-

ion of space and time.
The purpose of this paper is to explore these issues
ore formally. Specifically, does the RG opponent system

rovide a means of encoding the spectral properties of ob-
ects such as edible fruit in an invariant manner, over the
ourse of a day, during which time illumination will
hange markedly? And how badly affected is the BY op-
onent system by shadows and daily changes in the illu-
inant? This proposal for a RG system as adapted to
inimize illumination noise complements proposals that

he primate RG opponent system is optimized for detect-
ng and differentiating potentially edible objects.17–21

We will also consider how some of the scenes in this pa-
er will be encoded by birds—specifically by starlings,
turnus vulgaris, whose receptor sensitivity is described
y Hart et al.22 We do this because birds have a different
et of spectral sensitivities for their L and M cones com-
ared with primates, and are thought to have a RG
pponent-color mechanism.23 A comparison of the neural
ncoding of trichromatic primates and birds is expected to
ive an interesting insight into the design of both sys-
ems.

Part of this work has been described briefly
lsewhere.24–26

. METHODS
. Cameras and Calibration
e took photographs of natural scenes with Nikon digital

ameras and used their uncompressed outputs to calcu-
ate how human long-, medium-, and short-wavelength
L, M, S) cones and how starling L and M cones would
ave responded at every point in a scene. This required
horough characterization of each camera’s nonlinear
amma function and the spectral activation functions of
ts three (R,G,B) sensors.

The cameras used in this work were a Nikon Coolpix
50 (camera 1) and a Nikon Coolpix 5700 (camera 2). All
utomatic settings were turned off; these included image
harpening, selection of white balance, selection of expo-
ure aperture, and integration time. White balance was
et to “cloudy,” as was the case during the calibration pro-
ess, and central-spot metering was used. The lens aper-
ure value was manually fixed to allow the maximum
vailable depth of focus (f11.4 in camera 1 and f7.4 in
amera 2) and the cameras’ built-in software was free to
nd the optimal integration time (shutter speed); the
ash was disabled. The picture outputs were uncom-
ressed .tif images. Image sizes were 1600�1200 pixels
or camera 1 and 2560�1920 pixels for camera 2. How-
ver, photographs taken with camera 2 were subsampled
y averaging odd and even rows and columns in order to
educe computer-processing time; this gave an effective
esolution of 1280�960 pixels. The cameras were
ounted on tripods, and a remote shutter release was
sed to avoid small camera movements and registration
roblems between successive pictures in time-lapse se-
uences, in which the cameras were programmed to take
ictures at intervals of 4 min of the same scene. Figure 1
hows a montage of some of the colored photographs that
e use as the basis for analysis in this paper.
To obtain the LMS cone activations for every point of

he visual scene from the RGB pixel values in the .tif files,
e characterized the cameras, using the methodology de-

cribed below, in terms of the LMS cone representations
f humans27,28 (see Fig. 2(A)) and starlings (see Fig.
(B)).22 It will be noted that, by comparison with the hu-
an, the starling (like many birds) has four cones whose

ction spectra are narrower than in the human and are
ore evenly spaced across the visible spectrum. One
ight surmise that birds would have “better” color vision

han a human. In any case, the L and M cone character-
stics are markedly different and a comparison with hu-

an vision should be revealing. We concentrate upon
hose cones of the starling that correspond best to the
MS sensitivities of primates, and so we have excluded

hose cones sensitive to UV and double cones. We verified
he extent of the error in our polynomial RGB-to-LMS
apping as follows:
Characterization of a camera in terms of LMS re-

ponses would yield exact results only if the spectral sen-
itivities of the imaging system are exact transformations
f the LMS cone representations (e.g., one could trans-
orm exactly from camera RGB space to LMS space using
3�3 transformation matrix). However, this condition is
ot normally satisfied by commercial camera manufactur-
rs, and therefore our color space transformations will be
pproximations and subject to error. There is also the is-
ue of device metamerism, where theoretically, two differ-
nt surfaces under the same illumination may produce
he same camera response and be modeled with the same
MS values. To overcome these limitations of the imaging
evice, we took advantage of the fact that the spectral re-
ectance of most natural surfaces (as well as natural illu-
ination) are relatively smooth functions of
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avelength29–32 and can be represented by a small num-
er of basis functions33 (this issue has been a subject of
iscussion in the literature).34,35

The cameras’ RGB pixel values were characterized in
wo stages. First, the cameras were pointed at a Macbeth
olorChecker card illuminated by a tungsten-halogen

ight source (Osram HLX 64657FGX, 250 W). The light
ource was supplied with constant current from a stabi-
ized DC power supply (custom-made accurate to 30 parts
er million in current). We illuminated a white card with
his lamp and measured the CIE-Y value with a spectro-
adiometer (TopCon, Model SR1, calibrated by the Na-
ional Physical Laboratory, UK). Once both pieces of
quipment were warm, the CIE-Y value varied with a SD

ig. 1. (Color online) This montage shows examples of the dig
eatures ripe and unripe tomatoes; the opponent responses to tom
nd z are illuminated by direct sunlight. Photographs B and C a
ataset. Photograph D is one of a time-lapse sequence taken at
hich was used to take radiometric measurements of the illumin
een linearized or gamma corrected for display. In D, thin blue
urrounding area defined by the thin red lines.
f less than 0.25% of the mean. Several pictures (at dif-
erent exposure durations) were taken of the card’s lower
ow of gray squares, and their RGB values were computed
y averaging the central part (underexposed and overex-
osed values were discarded) and scaled by dividing by
he corresponding integration time. The spectral radiance
f the same regions was measured in the range
80–760 nm in 10 nm steps using the TopCon radiom-
ter, allowing us to relate each sensor’s gray-level output
o a physical measure of the total spectral energy stimu-
ating them. The linearity of the camera’s responses as a
unction of integration time was corroborated by a set of
hree neutral density filters (0.5, 1.0, and 2.0 log units)
hat forced the camera to adopt different shutter speeds

color photographs that we analyze in this paper. Photograph A
x, y, and z are examined later. Note that x is shadowed while y
ples of the 113 photographs of ripe fruit taken from the Kibale

intervals from dawn till dusk; note the gray card in upper left,
ese images are the regular output of the cameras; they have not
utline one or more fruits whose pixels were compared with the
itized
atoes

re exam
4 min
ant. Th
lines o
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hen photographing the white target. The data allowed
s to characterize the nonlinear relation between scene
adiance and the magnitude of the pixel values inherent
n the camera (we did this for the “cloudy” setting) and to
roduce inverting functions for each of the RGB sensors
hat would linearize the camera output.

The second stage consisted of measuring the camera
ensor’s spectral sensitivities by pointing the cameras at

white target (Kodak-Eastman “standard white” cy-
noacrylate powder of approximately 99% reflectance,
onstant through the visible spectrum) illuminated by the
ame light source. Images of the target were taken
hrough a set of 31 narrowband color filters (10 nm band-
idth, Ealing Electronics, Watford, UK) spanning the

ange 400–700 nm. Spectral radiance was measured
hrough the same filters by the TopCon radiometer, mak-
ng it possible to determine the camera’s RGB sensor’s
pectral sensitivities. We used a second-order polynomial
odel to map linearized RGB value triplets into LMS

riplets.36–41 This characterization technique differs from
thers in that it allows us to find the optimal colorimetric
apping for a given set of reflectances and illuminations.
or example, given a typical set of Northern European
egetation and soil reflectances42 and natural
llumination,43 it is possible to estimate both the camera
esponse values and the LMS values for the natural
cenes that we investigate. For the Kibale forest photo-
raphs we used another database of illuminants and
eflectance.44

We computed the LMS output by calculating the prod-
ct of the cone sensitivities with half of the samples in our
raining database using

L = �
�

l���*Q���*I���, M = �
�

m���*Q���*I���,

S = �
�

s���*Q���*I���, �1-3�

here l ,m ,s are the Smith and Pokorny27,28 (or starling)
one sensitivities, � is the wavelength, Q is the spectral
eflectance of the samples, and I is the spectral radiance
f the illuminant.

At the same time we calculated the camera’s response
o the same reflectances and illuminations using

ig. 2. (A) Cone sensitivities for humans, scaled to unity. (B) C
ones are much closer to one another for humans than they are
iffer; they are narrower for the starling.
R = �
�

r���*Q���*I���, G = �
�

g���*Q���*I���,

B = �
�

b���*Q���*I���, �4-6�

here r ,g ,b are the camera’s spectral sensitivities.
The predicted camera RGB responses where then
apped to LMS activities using our polynomial trans-

orm, created using the other half of the training data-
ase.
The relative error of the polynomial transformation

as calculated for each of the samples of the test dataset
ccording to

Err =
��L − L̂�2 + �M − M̂�2 + �S − Ŝ�2

min��L2 + M2 + S2,�L̂2 + M̂2 + Ŝ2�
, �7�

here L̂ ,M̂ , Ŝ represent the mapped cone activities. The
ean error (Err) was 0.034 �SD=0.034,n=1095� for the
orthern European dataset and 0.016 �SD=0.0159, n
783� for the Ugandan dataset for human (unity) cones.
or starlings the mean errors were 0.056 �SD=0.05, n
783� and 0.01 �SD=0.01,n=1095� for the Northern Eu-
ope and Ugandan datasets, respectively.

. Datasets
e use two main datasets in our analyses, one of which

onsists of 113 images of fruit taken in Kibale Forest,
ganda (Fig. 1(B) and1(C)). This area features in some

mportant studies of optimization of primate vision to fru-
ivory and folivory18,19 because of its large population of
oraging primates. The images within this dataset were
aken with camera 1. Figure 1(A), taken with the same
amera, is part of the British garden dataset used
reviously.21

The second main dataset is a time-lapse sequence (
min intervals) taken from dawn till dusk in a British

arden, in the village of Garndiffaith (South Wales), of a
cene in which edible fruits have been situated amongst
oliage. These were taken with camera 2. Photographs
ear the beginning or end of the sequence were excluded
here the exposure duration exceeded 2 s since the con-
itions were then too dark for the camera to provide a
oise-free image. At the same time, the TopCon radiom-

sitivities for the selected starling cones. Note that the L and M
case of the starling. The bandwidths of the L and M cones also
one sen
in the
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ter was used to make measurements (1–2 min intervals)
f the total radiance and of the spectrum (380–720 nm,
0 nm intervals) of a 2° patch gray card at the top left of
he composition (Fig. 1(D)). A time-lapse animation of
he opponent responses and spectral measurements
an be downloaded from the following website along
ith the raw images: http://psy223.psy.bris.ac.uk/george/

imelapse/.

. Modeling and Calculation of Opponent Signals
ollowing calculation of the LMS activation at each pixel,
e established the opponent activity using the
acLeod–Boynton45 formulas. Equations (8)–(10) define

he calculations for the Lum, RG, and BY, opponent chan-
els, respectively, as

Lum = L + M, �7��

RG = L/Lum, �8�

BY = S/Lum. �9�

t will be noted that our present formulation of the RG
ignal [Eq. (9)] is directly proportional to the one we have
sed before46,47:

RG = �L − M�/Lum. �8a�

oise within the L, M, and S cones was simulated48 fol-
owing estimates derived from reported thresholds43:

n = s* exp�y�, �10�

here s is the L, M, or S signal estimated from our cali-
rated cameras; n is the noisy signal; and y is a random
ariable with a standard deviation matching the Weber
ractions for the S, M, and L channels (8.7%, 1.9%, and
.8%, respectively, based on a 1° (visual angle) stimulus
nd 0.2 s presentation time at the level of 10� absolute
hreshold).

. Distinguishing Fruit from Leaves
o illustrate how well an opponent signal might help
eparate a fruit from surrounding leaves, we calculate d�
alues [Eq. (11)], where the x and y values represent the
ctivation levels for the signal (fruit) and noise (leafy sur-
ound), respectively, in a particular opponent channel.
he metric is intended to show how much the signals

rom fruit and background overlap rather than to suggest
hether one could tell that a fruit was different from
ackground, given enough measurements

d� =
�2��x� − �y��

� 2 2
. �11�
� �x� + � �y�
. RESULTS
. Examining Opponent Channel Activation for Directly

lluminated and Shadowed Fruit
he potential role for RG opponency in helping primates

o find ripe fruit is shown in Fig. 3. Figure 1(A) shows a
hotograph of tomatoes (some ripe, some not) against a
ackground of leaves; the scene was illuminated by direct
unlight, so it contains many shadows [one of the ripe to-
atoes (x) is shadowed]. Figures 3(A) and 3(B) show gray-

evel representations of the signals generated in the oppo-
ent channels. In both the RG and BY channels, the

ndividual tomatoes are obvious as separate entities, but
he ripe tomatoes are distinguished only from all else in
he RG channel. All ripe tomatoes (whether in shadow or
ot) have the same RG signal magnitude (solid black
urves Fig. 3(C)). For the BY signals the shadowed tomato
as a signature different from those under direct illumi-
ation (Fig. 3(D), solid black curves). The plots in Figs.
(E) and 3(F) show the d� value for the ripe fruit regions
x, y, and z) compared to their immediate surround (ex-
luding other ripe fruit). Clearly, the d� values are greater
or the RG channel than they are for the BY channel, il-
ustrating the benefit of the RG channel for frugivory. But
hy has the RG channel performed so well? Clearly the
rimary reason for the success of the RG channel is that
he system contrasts red and green activity. Another rea-
on for the strong performance of the RG system is the
roximity of the L and M cones; by having these cones
lose to one another the RG opponent channel becomes in-
ensitive to variations in illumination, both over time and
cross space. This issue is explored in Subsection 3.B.
The relatively poor performance of the BY channel

ompared with the RG channel is perhaps unsurprising.
he color of the illuminant is not constant, either during

he day (see below) or even within a scene.14,15 The light
hat falls directly on an object in bright sunlight will be
white” or yellow, but the light falling on shadowed ob-
ects will have come from the blue part of the sky or will
e reflected from local objects (probably green ones). Con-
equently the BY system will respond very differently to
he shadowed fruit compared with the directly illumi-
ated fruit. Conversely, the �max values for the L and M
ones are so close that their responses to a varying illu-
inant will correlate to a very high degree.

. Changes in the Illuminant During a Day
ubsection 3.A has shown that at an instant in time, the
Y opponent system seems disrupted by spatial disconti-
uities in illumination. In this section we look at tempo-
al changes in the illuminant and how the BY and RG
ystems are affected. Figure 4 shows the results of an ex-
eriment where we measured the radiance spectrum (see
ection 2) of a gray card placed in an open garden; mea-
urements were made every 1–2 min from dawn to dusk
n an autumn day when the weather was mostly cloudy.

Figure 4(A) shows examples of normalized spectra, i.e.,
he radiance in each wavelength is divided by the total ra-
iance at all wavelengths in a particular recording. T1
epresents the spectrum at dawn; here the illuminant has

reddish tint. T2 shows how the illuminant becomes
luer as clouds became thicker. Over the course of the day
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he spectrum of the illuminant has changed substantially,
epending on weather conditions and the elevation of the
un in the sky. Figure 4(B) shows calculations of how the
rimate RG chromatic opponent signal from the gray card
solid curve) and the BY opponent signal (dotted curve)
ould have changed. Despite the spectral changes in illu-
ination, the RG signal is fairly stable, as we would hope

rom an opponent chromatic mechanism. However, the

ig. 3. Top row, gray-level representations of the activation in
mage of tomatoes in Fig. 1(A). Middle row, histograms of pixel a
ruit; note the largely separate distributions for fruit (black curv
Y channel the distribution for the shadowed fruit (x) is similar to

egion compared with its surrounding (nonripe fruit and leaves)
Y signal is affected more substantially, which is bound
o reduce the likelihood of the BY system producing in-
ariant responses from differently colored objects at dif-
erent times of day. In contrast to the primate RG signal
he equivalent activation for the bird (dotted-dashed
urve) varies to a greater extent because of the greater
eparation of the bird L and M cones (standard deviations
or these RG signals were 0.004 for primate and 0.009 for

imate (A) RG- and (B) BY opponent channels calculated for the
levels for the ripe fruit (x, y, z) and the area surrounding each
the surround (gray curves) in the RG channel [plot (C)]. In the

f its surround [plot (D)]. Bottom row, d� values for each ripe-fruit
the RG channel [(plot E)] and the BY channel [(plot F)].
the pr
ctivity

es) and
that o



b
t

C
T
A
m
t
m
o
t
t
e
w
w
r
s
F
t
t
i
r

(
s

T
1
f
s
l
u
f
(
a
p
d
m
i
5
f
d
p
g
I
s
s
c

a
e

F
w
n
o

2066 J. Opt. Soc. Am. A/Vol. 22, No. 10 /October 2005 Lovell et al.
ird, while the primate BY signal had a standard devia-
ion of 0.034.

. Opponent Encoding of Fruit and Foliage at Different
imes of Day
t the same time these radiance measurements were
ade, we took time-lapse photographs with camera 2 of

he scene depicted in Fig. 1(D). The illuminant measure-
ents of Fig. 4 are thus a description of the illuminant at

ne location within this scene. From the sequence of pho-
ographs, we determined how the luminance signal and
he primate RG and BY chromatic opponent signals gen-
rated by each of the fruits would change during the day;
e also examined how the bird RG signal from each fruit
ould change. We also examined the light reflected from a

egion of interest around each fruit—this was a region the
ame shape as the fruit but with five times the area (see
ig. 1(D)). The fruit itself was obviously excluded from
he surround region of interest, and, where there were
wo fruits close together (regions 3 and 6), the neighbor-
ng fruit was also excluded from the analysis of the sur-
ounding area.

Figure 5(A) shows how the d� scores for the primate
black curves) and starling (gray curves) RG-opponent
ignals vary as the illuminant changes during the day.

ig. 4. Summary of spectral radiance measures of sunlight durin
as 07:50 GMT. (A) Plots of the normalized spectra at T1 and T2
ormalized spectra is also shown. (B), The primate RG (solid cur
f the light reflected from the gray card are plotted against time
he d� scores are shown only for two of the fruit in Fig.
(D); the results for the others were similar. The d� score
or the primate is consistently higher than it is for the
tarling. However, note that plums actually reflect UV
ight so that a starling (with UV-sensitive cones) may well
se this as an added aid to detection. As one would expect
rom the stability of the illuminant in RG opponent space
Fig. 4), the d� values for both fruit remain fairly constant
ll day. By contrast, the d� scores for the tomato in the
rimate BY-opponent system change markedly during the
ay, as one might expect given the instability of the illu-
inant in BY opponent space (Fig. 4). It is at first surpris-

ng that the d� scores for the plum are so constant. Figure
(C) shows how this can be; it plots the actual BY signals
rom plum, tomato, and their leafy surrounds during the
ay. All signals, especially from the plum, do vary as ex-
ected. However, the plum signal and the leafy back-
round signal covary so that d� remains roughly constant.
n this case, the BY opponent system might allow a con-
tant level of detection for the plum, but the changing BY
ignal would mean that its “color” and identity might be
onfused as the illuminant changes during the day.

Figure 6 presents the mean d� score for each fruit
gainst its surround over the course of the day. A high av-
rage d score could be considered evidence that the op-

day November 23, 2004, in a British garden (Fig. 1(D)); time zero
e times are indicated as vertical lines on (B). The average of the

By (dotted curve) chromatic opponent signals [Eqs. (8) and (9)]
tarling RG signal is also plotted (dotted–dashed) curve.
g the
; thes

ve) and
. The s
�
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onent channel was successful at contrasting the fruit
rom the surround areas under many variations of the il-
umination. The primate RG signals provide the best dis-
rimination, consistently surpassing the starling RG sig-
als. The primate BY signals vary more during the day as
consequence of the varying illuminant (see Fig. 3) and

s fruits become illuminated directly or have shadows
ast on them. The variation during the day is shown in
ig. 6 by the sizes of the standard deviation bars which,

n most cases are 2–3 times larger for the (smaller) BY d�
alues than for the (larger) RG d� values.

. Opponent Encoding of Fruit and Foliage
hotographed in Kibale Forest
e performed similar analyses on each of 113 photo-

raphs of fruit taken in Kibale Forest in Uganda.25 Two of
hese photographs are shown as Figs. 1(D) and 1(E). In
ach image we traced a region of interest (ROI) around a
ingle isolated fruit or cluster of fruit; isolated fruits were
hosen so comparisons between fruit and the surround
rea would not be confounded by the presence of fruit
ithin the surround. All pixels within the ROI constituted

ig. 5. Plots (A) and (B) show the d� values for the RG and BY
ignals, respectively, for a tomato in Fig. 1(D) and for a plum as a
unction of the time of day. The d� values for both fruit are very
table in the RG opponent system despite the changes in illumi-
ant (see Fig. 4) during the day. The d� values for the plum in the
Y system are also surprisingly stable. Plot C shows the actual
Y signals generated from the plum, the tomato, and their leafy
urrounds during the day. The BY signals do vary considerably
consistent with Fig. 4), but the signals from plum and leafy sur-
ound co-vary, so that the d value stays fairly constant.
�
the fruit.” To give the surround pixels, the fruit ROI was
teratively rescaled and recentered until the number of
ixels in the surround region was five times greater than
hat of the fruit region—this operation excluded those
ixels that constituted the fruit. The distribution of signal
alues (Lum, RG, or BY) within the fruit region was com-
ared with the distribution of corresponding signal values
rom the surrounding background area (generally of
reen leaves).

For each of the 113 photographs, we calculated d�
cores for the primate Lum, RG, and BY channels and
um and RG for the starling. Figure 7 summarizes these
nalyses. Clearly the values given by the RG system (Fig.
(B)) are much higher than those given by either the Lum
Fig. 7(A)) or the BY (Fig. 7(C)) systems, implying that
he RG system would be substantially better at allowing
dentification of food than the other two systems. The
hite blocks in Figs. 7(A) and 7(B) show that putative

tarling Lum and RG systems would behave similarly to
uman ones. So regardless of species, the RG channel is
ost successful at achieving a strong separation between

ruit and leafy background. The d� scores for the RG
hannel are once again slightly better for primate than for
tarling and have a magnitude similar to that reported in
ubsection 3.D.

. What Factors Led to the Discrepancy in the d� Scores
or the Primate and Starling RG Channel?
n all three datasets reported above, the d� scores for the
uman RG channel were consistently greater than they

ig. 6. (A) Averaged d� scores for each fruit versus the sur-
ounding area in the Lum channel. (B) shows the mean d� scores
or each fruit and surround region, i.e., the leftmost black bar
hows the average of the topmost trace in Fig. 5. (C) d� scores for
he primate BY channel. Note the y scale for the Lum channel is
n order of magnitude smaller than for the RG and BY channels.
he error bars represent the standard deviations of the d� scores.
olid bars are for primate channels; open bars for starling
hannels.
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ere for the starling RG channel. The starling and pri-
ate L and M cones differ in two respects (see Fig. 2):
irst the primate cones are more closely spaced, second
he bandwidths of the action spectra of the cones also dif-
er (for the human cones the bandwidth is approximately

ig. 7. 113 photographs of fruits in the Kibale Forest (Uganda)
ere analyzed as in Fig. 3. The values of the three opponent

hannels for both human and starling were measured for all the
ixels within a ROI comprising the outline of a ripe fruit, and
ere compared with the values in a region of the leafy back-
round surrounding the fruit. The bar charts show the mean d�
cores for (A) the luminance signal, (B) the RG opponent signal,
nd (C) the BY opponent signal. Solid bars are for primate oppo-
ent systems; open bars in A and B are for putative starling sys-
ems. Note that the y scale for the Lum channel bars is an order
f magnitude smaller than for the BY and RG bars.

ig. 8. Time-lapse photographs were reanalyzed as in Fig. 3 whi
ones. The d� scores represent the mean d� score for all fruit an
ifference in d� scores reported for starlings and primates is du
pectra.
0 nm while for the starling this is 20 nm). In order to un-
erstand the significance of these differences, we have
alculated the RG d� scores for all fruit versus surround
egions in the time-lapse photographs while varying the
haracteristics of simulated L and M cones whose band-
idth and separation could be changed. Action spectra of

he L and M cones were modeled with normal probability-
ensity functions using a least-squares fit. The �max of the

cone was fixed at 543 nm while the �max of the L cone
as varied from 553–633 nm in steps of 10 nm. The
andwidths of the action spectra of the L and M cones
ere varied together from 10–80 nm in steps of 10 nm. d�

cores were computed for each combination of L cone po-
ition and cone bandwidth.

The d� scores are presented in Fig. 8, along with sym-
ols indicating the actual cone action spectra of humans
nd starlings. The Fig. 8 surface plot reveals that the
elative improvement in d� scores for the human RG
hannel over the starling RG channel is due to both the
roximity of the L and M cones and to the increased band-
idth of the human cones. This simulation was repeated

or the Kibale photo dataset reported in Subsection 3.D
nd the results correlated closely. We estimated the de-
ree of error likely in the polynomial transformation of
amera RGB values to the L value of our moving red cone.
his error was never greater than 12% for the red cone in

he positions tested [see Eqs. (1–7) for details of the error
alculation].

. DISCUSSION
he basic question underlying this paper concerns the

unctional roles of the opponent-color systems, both in pri-
ates and in a bird species (starling) that has rather dif-

ing the position of the L cone and the bandwidth of the L and M
on pairings over all time intervals. The symbols show how the
e distance between the cones and the bandwidth of their action
le vary
d regi

e to th
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erent color vision. When De Valois and his co-workers3,4

btained evidence for the existence of postreceptoral op-
onent channels, little was known about the relationship
etween these and the structure of the visual environ-
ent and the visual tasks that need to be performed on it.
The results presented here suggest a major role for

olor channels in informing the system about material
reflectance) properties of objects. This in itself is not a
ew story; many others have discussed color vision along
hese lines.11,16,17 Our results are in keeping with a low-
evel “cleaning up” of the information incident in the reti-
al image: removing shadows, compensating for changes

n illumination, and thus allowing a cleaner object-based
egmentation to be carried out.16 It is worth comparing
his with the shadow problem in lightness perception
monochrome vision). Here the work of Gilchrist and
thers49,50 suggests that a strategy for removing illumina-
ion changes needs to be high level, since it needs to know
bout scene 3D geometry: the “coplanar ratio principle” of
ilchrist makes this explicit. On the other hand, color vi-

ion can remove shadows much more simply; see for ex-
mple the work of Olmos and Kingdom.16 This in itself
uggests a major role for color information in early vision.

But how is this role distributed between the two color-
pponent systems (RG and BY) in primate vision, and
ow does this vary compared with a different species? The
rst point of note here is that the BY system does a sur-
risingly imperfect job of removing shadows, since these
ften have a blue tint due to the inhomogeneity of solar/
ky illumination. The BY system is best thought of as car-
ying out an approximate segmentation of the scene into
reas of different spectral reflectance, but this segmenta-
ion is confounded with shadow/illumination effects. It
herefore follows that a dichromatic mammal (as most or-
ers of mammal are likely to be) will be able to function
ell in situations in which light is relatively “flat” and/or

he chromatic target is large/strongly colored. Foraging
ill work well in simple viewing conditions, but a visual

earch will become less efficient as shadows increase, or
arget salience decreases. Also since the output of the BY
ystem is larger than that of the RG, it will operate better
hen the individual receptors are operating at lower

ignal-to-noise ratios (say at lower luminance levels). This
bility to work at lower light levels would present advan-
ages to an animal foraging primarily at dawn and dusk.

The RG system in primates seems to be much less con-
ounded by capricious changes in illumination and will re-
ain efficient at such search tasks for much longer, since

in primates at least) it has two important properties that
he BY system does not have. First, it is optimally set up
o distinguish edible fruit/leaves from inedible leaves.
econd, it ignores shadows and changes in illumination
xcept just after dawn and just before sunset. It is this
ombination of properties that gives trichromatic mam-
als a foraging advantage. The work presented here pre-

icts that differences in foraging success in primate
ichromats and trichromats should depend on the type of
llumination prevailing at the time. Indeed, a recent ex-
erimental study has shown that trichromatic primates
re more efficient at selecting ripe fruit than
ichromats.51

However, we know that primates are not the only crea-
ures with a RG-opponent system. Birds, which have cone
pectral sensitivities that are different from primate L
nd M cones, also have RG opponency.23 Indeed, we might
nfer that birds would have better color vision than we
ave, since they have four cone types with narrower acti-
ation spectra that are more evenly spaced across the
pectrum. However, our conclusions are somewhat sur-
rising: In some sense, the even spacing of the cone peaks
s not always an advantage, nor is the narrower band-
idth of the starling cones.
How does a bird RG system compare with the primate

ne? Our results suggest that a bird’s RG-opponent sig-
als from a single surface would be more confounded by
hadows and changes in natural lighting conditions than
ould a primate’s. The bird RG is confounded by such

hanges almost as much as the primate’s BY system. This
ifference arises because primate L and M cones have
eak absorptions at very close wavelengths, so that
radual changes over the width of the spectrum will have
ess differential effect on the cones. The greater spectral
eparation of L and M cones in the starling retina (like
he large spacing of the S cones from the L or M cones in
he primate) has the consequence that invariance to shad-
ws and changes in illumination is compromised. Areas of
he image such as dappled foliage, which appear uniform
o a primate RG system, may appear less uniform to a
tarling RG system. However, we predict that, if one were
o equate the cone capture ratios of a target against a sur-
ound for humans and starlings, then humans would be
ess impaired by the incursion of shadows into the sur-
ound in a search task.

Many questions remain to be settled. Are there tasks
or which the BY system is particularly good and the RG
ystem pretty useless? Some data, not presented here,
uggest that the discrimination of Rayleigh-scattered
ight from direct sunlight (i.e., sky versus solar disk) is
ell detected by mammalian BY vision. Thus, the detec-

ion of distance over hundreds of meters or more might be
ell encoded by BY opponent channels. Such work awaits
xperimental verification.

In general, we have provided more questions than an-
wers. It is relatively easy to run mathematical models of
etection across images of foliage and fruit; much harder
o gather relevant behavioral data. However, we suggest
hat the results of this paper provide some indications
bout the functional role of the peculiar color vision sys-
ems in primates and one other species.
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