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Colour Constancy Beyond the Classical
Receptive Field
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Abstract—The problem of removing illuminant variations to preserve the colours of objects (colour constancy ) has already been
solved by the human brain using mechanisms that rely largely on centre-surround computations of local contrast. In this paper we
adopt some of these biological solutions described by long known physiological findings into a simple, fully automatic, functional model
(termed Adaptive Surround Modulation or ASM). In ASM, the size of a visual neuron’s receptive field (RF) as well as the relationship
with its surround varies according to the local contrast within the stimulus, which in turn determines the nature of the centre-surround
normalisation of cortical neurons higher up in the processing chain. We modelled colour constancy by means of two overlapping
asymmetric Gaussian kernels whose sizes are adapted based on the contrast of the surround pixels, resembling the change of RF
size. We simulated the contrast-dependent surround modulation by weighting the contribution of each Gaussian according to the
centre-surround contrast. In the end, we obtained an estimation of the illuminant from the set of the most activated RFs’ outputs. Our
results on three single-illuminant and one multi-illuminant benchmark datasets show that ASM is highly competitive against the
state-of-the-art and it even outperforms learning-based algorithms in one case. Moreover, the robustness of our model is more tangible
if we consider that our results were obtained using the same parameters for all datasets, that is, mimicking how the human visual
system operates. These results might provide an insight on how dynamical adaptation mechanisms contribute to make object’s colours
appear constant to us.

Index Terms—colour constancy, illuminant estimation, classical receptive field, surround modulation, centre-surround contrast.

F

1 INTRODUCTION

COLOUR is an essential property of our visual world.
Apart from its aesthetic and emotional value, it pro-

vides valuable information about the environment by break-
ing the luminance pattern of cast shadows, facilitating the
segmentation of objects from each other and the back-
ground [1]. To our brain the colour of an object appears
largely the same throughout the day, despite dramatic
changes in the spectral composition of the light reflected
from a scene (e.g. the gamut of physical colours at sunset
almost doubles in comparison to the “flattish” midday illu-
mination [2]). This ability (termed colour constancy), is more
impressive if we consider that mathematically, the problem
of separating illumination form reflectance is ill-posed, i.e.
there are infinite possible solutions.

Although there is no agreement on the precise mecha-
nisms and brain areas responsible for colour constancy, most
researchers group them according to the neural level where
they likely operate [3]:

1) Sensory level: modelled by simple linear transforma-
tions of the photoreceptor responses, e.g. scaling re-
sponses by their mean activities over the image [4],
[5].

2) Perceptual level: modelled considering various per-
ceptual “cues” such as specular highlights [6], mu-
tual reflections [7], achromaticity of edges [8], etc.
segmenting the image into distinct components (re-
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flections, edges and surfaces) to estimate the illumi-
nant.

3) Cognitive level: modelled considering colour mem-
ory and/or the identification of objects to be able
to compensate for the effects introduced by familiar
objects [9].

The relative contributions of each of these processing
levels is still a matter for debate. However, most researchers
acknowledge that cognitive contributions are likely to be
small since the phenomenon can be largely explained by
low level mechanisms present in the retina and areas V1
and V4 of the visual cortex [10]. The significance of colour
constancy to both human vision and computer vision com-
munities is manifested by the many studies in object detec-
tion, tracking, feature extraction, etc. [11], [12], [13] which
approach the subject from visual perception and computer
vision perspectives, which have historically had different
objectives. Most visual perception and neuroscience stud-
ies [10], [14], [15] aim at understanding the phenomenon
while most computer vision studies [16], [17], [18] aim
at predicting the effects of colour constancy. Despite this
apparent divergence, one can assume that there might be
computational advantages in incorporating the knowledge
acquired by the brain’s neural machinery after millions
of years of evolution. To this end, this finely-tuned com-
bination of low-level (mostly hard-wired) and high-level
(learnt) mechanisms might be understood in terms of the
bias/variance trade-off common in machine learning [19]. The
choice of the best bias will depend on the nature of the
training data (e.g. how much is known in advance about
the problem) and the system’s noise. Biological systems
face similar choices. A simple organism living in a fix
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environment does not need a strong bias and all individuals
can safely share the same neural configuration. Complex
organisms such as primates face variable environments and
need to dedicate part of their brains to learning during
their lifetime while leaving large scale neural structures
like the sensory cortex genetically specified. This particular
combination of bias/variance in complex organisms allows
them to adapt to different environments while still keeping
crucial survival skills. In the case of colour constancy, most
of the brain computations are arguably done at the sensory
level [10] indicating that “bias” may perhaps plays a larger
role than “variance” (i.e. more of a normalisation problem
than a learning problem). This is perhaps the reason why
current learning-based solutions have trouble to replicate
their results in new (non-learned) datasets [10], [20], using
dataset-dependent parameters. Additionally, the majority of
methods are constrained to consider only one source of
illumination, which in effect hinders their applicability in
real scenes [18].

1.1 Computational Solutions
From a mathematical point of view, retrieving the colour of
a surface illuminated by light of unknown spectral distri-
bution is underdetermined, and to computationally rectify
biased images (in the same way colour constancy does) it is
common to impose several assumptions regarding the scene
illuminant, the statistical distribution of colours or edges,
etc. [18]. In general, these algorithms can be divided into
two categories: (i) learning-based approaches and (ii) low-
level features-driven methods.

Learning-based approaches, e.g. [21], [22], [23], [24], train
machine learning techniques on some relevant image fea-
tures. One group of learning-based algorithms is “gamut
mapping”, which originated from the influential work of
Forsyth [16], and was extended by others [25], [26], [27],
[28], [29], following the assumption that only a finite set of
colours is observable in real world images. Another large
group of algorithms considers reflectance as the random
variable of a normal distribution under a Bayesian frame-
work [30], [31], [32]. Although learning-based approaches
can obtain accurate results, they rely heavily on their train-
ing (i.e. their overall performance depends on the quality of
their training data), which is likely to be cumbersome and
slow [18].

The majority of low-level features-driven methods can
be summarised by the Minkowski framework [8], [33]

Lc(p) =

(∫
fpc (x)dx

) 1
p

= kec, (1)

where f(x) is the image value at the spatial coordinate x; c
is one of the three {R,G,B} channels; p is the Minkowski
norm; and k is a multiplicative constant chosen such that
the illuminant colour, e, is a unit vector.

Substituting p = 1 in Eq. 1 reproduces the well known
Grey-World assumption, in which the illuminant is esti-
mated by presuming that all colours in the scene average
to grey [34]. Setting p → ∞ replicates the White-Patch
algorithm, which assumes that the brightest patch in the
image corresponds to a specular reflection containing all
necessary information about the illuminant [14]. In general,

it is challenging to automatically tune p for every image and
at the same time inaccurate p values may corrupt the results
noticeably [18].

Incorporating high-order image statistics into the
Minkowski framework was proposed by van de Weijer et
al. [8], under the assumption that the edges carry important
information about the source of light, thus their algorithm
is called “Grey-Edge”. The Minkowski framework can be
generalised further by replacing the f(x) in Eq. 1 with its
derivative ∣∣∣∣ϑnfσ(x)

ϑxn

∣∣∣∣, (2)

where |.| is the Frobenius norm; n is the order of the
derivative; and σ is the scale of the Gaussian derivative
filters convolved with the original image [35].

It has been noted [36], [37], [38], [39] that high-order
derivatives have correspondences with the centre-surround
mechanism as modelled in visual perception research. This
mechanism is activated when localised sensory regions of
the retina are stimulated by light. These sensory regions
(also called “receptive fields” or RF) are characterised in
terms of their contribution to cortical neurons’ stimulation
as “centre” and “surround” [40]. The interplay between
centre and surround in receptive fields is typically modelled
by a Difference-of-Gaussians (DoG) [41], [42], [43], [44], [45].
Since the second order image derivative can be approx-
imated by DoG, they can be a good tool for modelling
the cortical and sub-cortical mechanisms involved in colour
constancy. This simple model of the low-level properties of
the mammalian visual system has a long history starting
with Enroth-Cugell and Robson in 1966 [46], continuing
with Marr in 1980 [47] and more recently applied to colour
constancy by Gao et al. [44]. However, the efficiency of DoG
in estimating the illuminant depends on finding an adequate
width for the Gaussian kernel, σ, and the optimal weight of
the broader Gaussian function, which are difficult to tune
automatically. A solution to this problem has already been
found by the human visual system (HVS) in the form of
dynamic, contrast-based, centre-surround cortical interac-
tions [48], [49] (see below), which are not present in the clas-
sical formulations. Although the ultimate purpose of these
non-linear interactions is not known, we speculate here that
they might play a role in colour constancy and accordingly,
we propose a colour constancy model that overcomes the
need for ad-hoc or dataset-dependent parameters (and in
this sense it is fully automatic). In our model we incorporate
three well known properties of cortical (area V1) neurons:

1) The size of the minimum RF varies according to
the local contrast of the stimuli, i.e. enlarged when
exposed to low-contrast [48];

2) The influence of the surround on the centre varies
depending on the local contrast of both centre and
surround, with greater inhibition for higher contrast
stimuli [49];

3) Cortical RFs increase their diameters systematically
by approximately a factor of three from lower to
higher areas [50], as they pool signals over a large
neighbourhood from the levels below.

The above formulation presents major differences with
current DoG-based models like that of Gao et al. [44], where
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Fig. 1. The flowchart of our model. The input image is convolved by a centre-surround contrast-dependent asymmetric difference-of-Gaussian
envelope (inspired by V1 neurons whose receptive fields are large at low contrast and suppressed by high contrast surround). The output of V1 is
pooled by V4 neurons according to the sparse-coding principle considering global contrast of image.

the centre size is always constant and the contributions of
both centre and surround to the receptive field responses are
fixed. Also, the final estimation of luminance was previously
based on a simple operation (e.g. selecting the maximum
value), whereas we model hypothetical neurons from a
higher area (area V4) whose receptive fields are substantially
larger than those of V1 neurons, pooling signals from area
V1 according to the contrast of the corresponding stimulus.
In other words, previous models adopt the classical receptive
field approach while we go beyond, including the latest
physiological findings.

Fig. 1 shows a flowchart of our model. Although a step
forward in terms of plausibility, our functional approach
still entails an oversimplification of the much more complex
(and less well known) interactions between the different
neural layers and cortical feedback from higher regions.
Following the Occam’s razor principle we aimed for the
most parsimonious solution that can produce competitive
results. We would also like to highlight that we are not
strictly interested in out-competing learning-based solutions
in each of the testing datasets. Instead we want to produce
an algorithm that works like the HVS does, i.e. produces
the best possible results in all of the datasets at the same
time and with the same set of parameters. Equally, we want
our solution to be computationally efficient, that is, to in-
corporate the evolutionary knowledge accumulated by the
primate brain in an algorithm potentially implemented in
small portable devices. A broader objective of this work is to
further understand the role of dynamically-sensitive visual
cortical neurons.

In summary, the main contributions of this paper are: (i)
the modelling of colour constancy based on physiological
findings, i.e. two overlapping asymmetric Gaussian func-
tions whose kernels and weights adapt according to centre-
surround contrast, (ii) the estimation of the chromaticity of
the light source by modelling higher visual cortical areas

(i.e. neurons with large RFs pooling signals from lower
areas) according to their local contrast, and (iii) the dynamic
generalisation of the colour constancy problem by using
the same parameters to predict results in different datasets
with no need to “recalibrate”, mimicking what the HVS
does. Throughout this article we will refer to our model as
Adaptive Surround Modulation (ASM)

2 BEYOND THE CLASSICAL RECEPTIVE FIELD

In this section we review important physiological findings
regarding surround modulation in the visual cortex and
describe how we modelled these properties.

2.1 Surround modulation in area V1

The concept of non-classical receptive field (RF) became
established by the work of Allman et al. [51] and today
numerous studies show that most V1 cells in cat and
macaque are suppressed by stimuli extending beyond a
critical distance (for a full review refer to [49]).

Quantitative results suggest that RFs in cortical area
V1 of macaque change their responses when measured
at low contrast [48]. Fig. 2 illustrates the responses of a
typical macaque neuron when its RFs are stimulated by
a vertically-oriented sinusoidal grating of constant spatial
frequency and varying size [49]. The dashed line at the
bottom shows the mean spontaneous firing rate of the
neuron (no stimulation). The black curve represents the neu-
ron’s excitation when stimulated by a high (70%) contrast
grating of increasing size (increasing grating radius). As the
grating’s size increases, more of the neuron’s receptive field
becomes stimulated producing an increase in the neuron’s
output, a process known as “facilitation”. Its maximum
output happens when the grating reaches a radius equal to
sRFhigh. After that, increasing the size of the grating only
decreases the neuron’s output, i.e. neighbouring neurons
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Fig. 2. Size tuning curve of a cell in macaque V1, adapted from [49].
Black and grey curves show responses to a grating of high and low
contrast, respectively. The dual-role area is suppressive for high contrast
stimuli, whereas it acts as a facilitator in the case of low contrast. The
schematic on the right represents the RFs of a V1 neuron. Arrow heads
point to radii that determine sRFhigh(0.26◦) and sRFlow (0.54◦).

start to “suppress” the neuron’s activity until it becomes
close to zero. Correspondingly, the grey curve in Fig. 2
represents the same neuron’s activity as a function of grating
size when stimulated by a low (12%) contrast grating. The
peak of the grey curve (maximum stimulation radius or
sRFlow) has now shifted to the right of the plot. The area
between the two peaks (shaded in the plot) defines a “dual-
role” region, i.e. gratings of radii between these two values
can either suppress or stimulate the neuron according to its
contrast. The existence of this region implies a fundamental
change in the way these visual cortex neurons operate, and
we have incorporated it at the core of our model. Now
the receptive field of the neuron can be separated in three
regions, a “centre” with radius up to sRFhigh, a “surround”
with radius larger than sRFlow and a dual-role area in
between which operates like the surround (i.e. suppression)
when contrast is high and like the centre (i.e. facilitation)
when the contrast is low (see right insert in Fig. 2).

Physiological recordings [48] have shown that the radius
of the surround in V1 can be about five to six times larger
than the value of sRFhigh and its effects on the centre
are significantly more complex than those described above.
Fig. 3 illustrates changes in a typical V1 neuron’s activity
when the stimulation of the centre is fixed and the surround
is stimulated by an annuli that becomes increasingly thinner.
The plot shows results for three different cases (a) high-
contrast is applied to both the centre and the surround;
(b) low-contrast is applied to the centre and high-contrast
to the surround and (c) low contrast is applied to both the
centre and the surround. In all cases, centre-only stimulation
(right side of the plot) produces higher neural activity than
when both centre and surround are stimulated (left side of
the plot). However, suppression is larger for high contrast
stimuli (black curve reaches zero when the whole of the
surround is stimulated) and is minimal when both centre
and surround are stimulated by low contrast gratings (solid
grey curve) [52]. In all cases, suppression is strongest when
the orientation of centre stimuli is parallel to that of the
surround, an effect known as iso-orientation suppression.
Although we have only discussed the isotropic (circular RF)
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Fig. 3. The influence of surround on the centre, adapted from [49].
Response of a V1 cell in an anaesthetised macaque as a function of the
inner radius of the surround annular grating. The triangles are responses
to centre-only stimulation. The square indicates response to a surround
stimulus of the smallest inner radius presented alone.

case, cortical RFs have preferences for particular spatial ori-
entations. If this is the case, the suppression effect can turn
into facilitation as the orientations of the stimuli applied to
centre and surround move towards perpendicular directions
and the contrast is low. In general, facilitation happens
when centre and surround have different characteristics
(e.g. different spatial frequency, phase or orientation) and
increases when these differences increase.

Cortical RFs systematically increase their diameters by
a factor of three along the ventral stream, i.e. the visual
pathway specialised in object identification [50]. This is due
to the pooling mechanism, which combines signals from
the central region as well as neighbouring spatial locations
from preceding areas. The whole structure suggests that
local visual stimuli is processed by the lower cortical areas
and the scope becomes increasingly global as the signal
progresses throughout the visual pathway.

2.2 A model of contrast-dependent colour constancy

Surround modulation has been incorporated to biologically-
inspired computer vision models with encouraging results,
e.g. visual attention [53], saliency [54], tone mapping [55],
and boundary detection [56]. However, in the field of com-
putational colour constancy this important physiological
finding seems to have been largely overlooked. In this sec-
tion we investigate the implications of contrast-dependent
centre-surround modulation on illuminant estimation by
incorporating them into a simple deterministic model.

We recreated a typical RF and its surround using two
overlapping asymmetric Gaussian functions which have
been reported to adequately fit neuronal responses, e.g. [39],
[42], [57]. These functions, referred in our modelling context
as the spatially “narrower” and “broader” Gaussians, repre-
sent the centre and surround respectively. The width of the
narrower Gaussian varies between [σ, 2σ] and is inversely
proportional to the centre contrast. This mimics the changes
in size that occur when the centre is exposed to high or low
contrast and is similar to incorporating the dual-role region
of Fig. 2. Therefore, prior to convolving an image I with a
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Gaussian kernel, we compute local contrast C at every pixel
through the local standard deviation of I as

Cc,d(x, y;σ) =

√
(Ic(x, y)− Ic(x, y) ∗ µd(σ))

2 ∗ µd(σ),
(3)

where c indexes each colour channel {R,G,B}; d is the spa-
tial orientation {h, v, i} (horizontal, vertical, and isotropic)
over which contrast is measured; (x, y) are the spatial
coordinates of a pixel; µ is the average kernel with size σ
in the direction d and ∗ is the convolution operator. In the
case of horizontal contrast, µ is a column vector; in the case
of vertical contrast, µ is a row vector; and in the case of
isotropic contrast, µ is a square matrix.

It is worth noting that colour processing by post-
receptoral visual mechanisms is mostly done in a colour-
opponent space [40]. Throughout this work we model
{R,G,B} colour channels for convenience, since most digi-
tal image datasets are in this colour space and we cannot
accurately transform to a colour-opponent space without
knowing about each manufacturer’s camera sensors.

The receptive field’s centre response CR is computed by
convolution of the original image I at every channel c with
the narrower Gaussian as follows:

CRc(x, y) = Ic(x, y) ∗ gc(x, y; sc,h(x, y), sc,v(x, y)). (4)

In Eq. 4, g is the two-dimensional Gaussian kernel:

g(x, y;σh, σv) =
1

2πσhσv
exp

(
−0.5

(
x2

σ2
h

+
y2

σ2
v

))
, (5)

where σd is the size of the Gaussian kernel in the direction d.
The values of sc,h(x, y) and sc,v(x, y) in Eq. 4 represent the
vertical and horizontal dimensions of the Gaussian kernel
respectively. Since in our formulation the size of the RF’s
centre is inversely proportional to its local contrast (see
Fig. 2), we compute it from the values obtained in Eq. 3:

sc,d(x, y) ∝ C−1c,d (x, y;σ), (6)

inversely linking the size of the RF’s central kernel to its
contrast. In theory, sc,d can be calculated for each individual
pixel, however, in practice convolving an image with a
unique Gaussian kernel at every pixel is extremely expen-
sive from a computational point of view. For this reason,
we approximated sc,d through its uniform quantisation to l
different levels, effectively limiting the number of convolu-
tions to l. We computed this uniform quantisation by finding
the range of local contrasts through the difference between
the two extrema of sc,d and dividing it into an arbitrary
number of contrast levels. For example, let’s assume that
local contrasts are in the range [0, 1] and the arbitrary
number of contrast levels is 4: pixels with local contrast
between [0.00, 0.25] are convolved with a Gaussian of 2σ;
pixels in the range (0.25, 0.50] with a Gaussian of 1.66σ;
pixels in the range (0.50, 0.75] with a Gaussian of 1.33σ;
and pixels in the range (0.75, 1.00] with a Gaussian of σ.

To summarise, we calculated the centre response CR by
convolving low contrast image pixels with large Gaussians
and high contrast image pixels with small Gaussians. It is
worth noting that σh and σv in Eq. 5 are not identical (a
common assumption in computer vision) due to the fact
that the local interactions in V1 are not always organised in
a symmetric fashion [58].

The surround response, SR, was computed by convolu-
tion of the original image in every {R,G,B} channel with
the broader symmetric Gaussian kernel

SRc(x, y) = Ic(x, y) ∗ gc(x, y; 5σ, 5σ), (7)

where kernel size is constant in both directions regardless
of local contrast. The decision to keep the size of the SR
kernel fixed was made after considering the much smaller
variations that occur in the surround RFs of neurons under
different contrast levels [48].

The final RF response RR, was computed by combining
centre and surround modulations as follows:

RRc(x, y) = λc(x, y)CRc(x, y) + κc(x, y)SRc(x, y), (8)

where λ and κ are the weights of centre and surround in
each spatial location. These parameters model the fact that
the strength of centre response and surround suppression
depend of the contrast and relative orientations of the centre
and surround stimuli (see Fig. 3 and the work of Shushruth
et al. [48]). We modelled λ and κ as inversely proportional
to the oriented contrast of centre and surround respectively,
which was computed as

λc(x, y) ∝ C−1c,i (x, y;σ);

κc(x, y) ∝ C−1c,i (x, y; 5σ),
(9)

where i denotes the spatial direction. We modelled the fact
that suppression can turn into facilitation when the centre
is exposed to low contrast or when centre and surround
stimuli are orthogonal from each other [49]. This can be
done by allowing the sign of κ to change from minus
(suppressive surround) to the occasional plus (facilitatory
surround) transforming our model from a DoG to Sum-of-
Gaussians (SoG). Although the model allows the possibility
of a positive κ, we should note that the boundary between
suppression and facilitation is cell specific and there is no
universal contrast level or surround stimulus size that trig-
gers facilitation across the entire cell population [49]. Due
to this, and the fact that numerical surround suppression
figures in macaque V1 neurons were reported to be all
negative [48], the results we present in this paper were all
obtained with a negative κ value.

Up to this point we implemented a model of RR based
on well known properties of V1 neurons. In the next pro-
cessing stage, the visual signal is pooled and sent to higher
cortical areas whose exact location is unknown. Many au-
thors [38], [59] have proposed area V4 as the most likely
candidate for a colour constancy site. We hypothesised the
existence of V4 neurons that perform operations on the
outputs of those in V1. From the physiology, we know that
cortical RFs increase their diameter systematically by ap-
proximately a factor of three from lower to higher areas [50].
This means that V4 RFs are about nine times larger than
those in V1 (which is 0.26◦, see Fig. 2) thus, the centre and
surround of a typical V4 RF subtend about 2.3◦ and 11.7◦ of
visual angle respectively, which are equivalent to 117 and
585 pixels on a standard monitor viewed from a 100cm
distance.

The exact pooling mechanism applied to these V1 sig-
nals is unknown, however “winner-takes-all” and “sparse
coding” kurtotical behaviour are common to large groups
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of neurons all over the visual cortex [60], [61] and it is not
infeasible to assume that a small group of neurons with
the largest activation dominate most of the process. We
approximated this hypothetical behaviour of V4 neurons
by selecting a small percentage of “winner neurons” whose
RFs are highly activated. To simulate contrast adaptation
behaviour in our hypothetical V4 neurons similar to those
in V1, we inversely linked the percentage of pooled signals
to the variability of the signal collected by their receptive
field. In other words, when the “contrast” applied to V4 RF
is high, a smaller percentage of signals from V1 is pooled
and vice versa. As before, contrast was calculated as the
local standard deviation of the input. Fig. 1 summarises the
whole feedforward process in a flowchart. The first stage of
the model simulates the operation of the typical V1 neuron
with contrast-dependent RFs and the second stage simulates
the V4 sparse-coding pooling of a small percentage of highly
activated V1 neurons.

In practice RR (V1 output) is an image composed
by three chromatic channels RRc. We implemented the
“winner-takes-all” behaviour via a histogram-based clip-
ping mechanism [17], [62] as follows. Let Hc be the his-
togram of RRc values obtained by applying Eq. 8 to colour
channel c of the input image. In this histogram, the neural
response of the cells contained in an individual bin b is
represented by RRc(bc). We estimate the scene illuminant
by computing

Lc = RRc(bc), (10)

with bc chosen so that only the most activated (“winner”)
units contribute to the pooling (sum). To calculate bc we start
by estimating the average local contrast of all inputs to V4
in a given colour channel c using

pc =
1

n

∑
x,y

Fc(x, y), (11)

where F is the standard deviation of the pixels of RRc
computed using the average V4 neuron receptive field (nine
times larger than that of a V1 neuron), i.e. Fc(x, y) ≈
Cc,i(x, y; 9σ). Bear in mind that “contras” is just a fraction
in the range [0, 1]. Instead of choosing a fix percentage of
neurons with the largest activation for each colour channel
(as in [62]), we chose an adaptive activation level such that
all neurons with activations higher than the one chosen
account for fraction pc of the total number of pixels. In other
words, we computed bc as the threshold activation level that
defines a number of highly activated neurons equal to the
contrast value calculated in Eq. 11 as follows:

pcn ≤
nb∑
k=bc

Hc(k) and pcn ≥
nb∑

k=bc+1

Hc(k), (12)

where n is the total number of RRc response units and nb is
the total number of bins in histogram Hc. This effectively
links the number of highly activated neurons we use to
compute the scene illuminant to the average contrast of the
input to area V4.

We illustrated this mechanism of V4 pooling in Fig. 4,
where RRc is represented by the red, green and blue signals
corresponding to each chromatic channel. Dashed vertical
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Fig. 4. V4 “winner-takes-all” mechanism. Each colour depicts its chro-
matic channel. Straight lines show which portion of V1 signals is pooled
into V4. The ordinates are shown as log-axes due to the large variations
in the counts of the different bins.

lines show bc, i.e. cells (bins) on the right side of these lines
are pooled by V4 and their sum for each colour channel is
the estimated illuminant. In this example contrast is higher
for the red signal and therefore a smaller percentage of cells
are pooled in the red channel.

Mathematically, there is a direct relation between the
fraction of “winner” pixels, p in Eq. 11, and value of the
Minkowski norm in Eq. 1. When the fraction of “winner”
pixels is equal to unity (i.e. 100% pooling) computations of
Eq. 10 includes the responses of all V1 neurons, resembling
the Grey-World assumption in which the exponential term
of the Minkowski sum in Eq. 1 is equal to unity. Correspond-
ingly, when the percentage of “winner” pixels tends to zero,
only the most activated V1 response is pooled, resembling
the White-Patch algorithm.

3 EXPERIMENTS AND RESULTS

The issue of observer’s performance evaluation in colour
constancy tasks using naturalistic stimuli is still an open
problem [10], [73]. In the case of algorithms, popular mea-
sures consist of some kind of angular distance in chromatic
space between the estimated illuminant and that of the
ground truth. Although intuitively simple, psychophysical
experiments have shown that these error measures do not
always correspond to observer preferences [74]. Despite this,
angular errors are still the most convenient way to compare
algorithms and their use in the literature is widespread,
being perhaps the most common the recovery angular error
defined as

ε◦recovery (ee, et) = cos−1
(

ee.et
‖ee‖.‖et‖

)
, (13)

where ee.et is the dot product of the estimated illuminant
ee and the ground truth et, and ‖.‖ represents the Euclidean
norm of a vector. This simple measure has recently been
the subject of criticism from Finlayson et al. [75] since it
arguably produces different recovery errors for identical
scenes viewed under two different coloured illuminants.
For this reason, they proposed an improved version (termed
reproduction angular error):

ε◦reproduction (ee, et) = cos−1
(

(et/ee)

‖et/ee‖
.w

)
, (14)

where w = et/et√
3

is the true colour of the white reference.
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To compare our results with those of state-of-the-art al-
gorithms, we present the mean, median and trimean of both
recovery and reproduction angular errors. The later two
measures are considered to be more appropriate to assess
the performance of colour constancy algorithms, because of
their robustness to outliers [76], [77].

We evaluated our method on four benchmark datasets1

without adjusting free parameters since ASM is automatic
(i.e. dataset-independent) in contrast to most other algo-
rithms whose results were acquired after adjusting their
parameters to the optimum value for each dataset. Addi-
tionally, in order to better understand the contribution of
the different components of our model, we conducted three
extra experiments, which are explained later in this section.

3.1 Single-illuminant scenes
We tested our model on three single-illuminant benchmark
datasets, (i) SFU Lab [63], (ii) Colour Checker [78], and (iii)
Grey Ball [79]. Our results for single-illuminant scenes were
obtained under four contrast levels, l = 4, with σ = 1.5. This
σ is equivalent to 13 pixels or 0.26◦ of visual angle when
viewed from 100cm in a standard monitor, which is also the
size of sRFhigh (see Fig. 2). We set the range of surround
suppression to κ = −[0.67, 0.77], considering the surround
suppression index of macaque V1 neurons reported at [48].
The centre weight was retrieved directly from the contrast
of pixels, λc(x, y) = 1 + C−1c,i (x, y;σ).

3.1.1 SFU Lab
The SFU Lab dataset [63] consists of 321 images of size
637×468 captured in a controlled environment under eleven
different sources of light. The scenes are partitioned into
four categories: (a) minimal specularities, (b) non-negligible

1. All source code and experimental materials are available under
this link https://goo.gl/nQUenN.

dielectric specularities, (c) metallic specularities, and (d) at
least one fluorescent surface. We report the results of our
method and several others on this dataset in Table 1. Our
model’s results show a clear improvement in the median
and trimean angular errors (both reproduction and recov-
ery) compared to state-of-the-art for the SFU Lab dataset.

3.1.2 Colour Checker
The Colour Checker dataset [32], [78] consists of 568 indoor
and outdoor images of size 2041×1359. Each image contains
a MacBeth colour-checker as a reference to retrieve the
chromaticity of the actual source of light. We followed the
best practices and guidelines of this dataset by masking
out all colour-checker boards prior to processing an image
with our model. The original images are non-linear due
to gamma and tone curve correction. Shi and Funt [78]
reprocessed the raw data and generated 12-bit images. Our
results (see Table 2) show that our model is in par with the
state-of-the-art for this dataset.

3.1.3 Grey Ball
The Grey Ball dataset [79] consists of 11346 non-linear
images of size 360 × 240 extracted from two hours of
video recorded under a large variety of conditions in both
indoor and outdoor environments. In every image there is
a grey sphere at the bottom right corner from which the
ambient illuminant can be estimated. We also masked out
all grey spheres prior to processing these images with our
model. Our results (see Table 3) suggest that our model
is in par with the learning-based state-of-the-art for this
dataset, while it outperforms all other low-level features-
driven methods.

3.2 Testing the role of each model component
We studied the contribution of each component (i.e., adap-
tive centre, dynamic surround and p estimation) by con-

TABLE 1
Angular error of several methods on SFU Lab [63] benchmark dataset. Lower figures indicate better performance.

Recovery Error Reproduction Error
Method Mean Median Trimean Mean Median Trimean
Do Nothing 17.3 15.6 16.9 17.3 15.6 16.9

Lo
w

-l
ev

el
fe

at
ur

es

Inverse-Intensity Chromaticity Space [64] 15.5 8.2 10.7 15.1 9.3 11.5
Grey-World [34] 9.8 7.0 7.6 10.1 7.5 8.3
White-Patch [14] 9.1 6.5 7.5 9.7 7.4 8.2
Shades of Grey [33] 6.4 3.7 4.6 6.9 3.9 4.8
General Grey-World [33] 5.4 3.3 3.8 6.0 3.9 4.3
First-order Grey-Edge [8] 5.6 3.2 3.7 6.3 3.6 4.2
Second-order Grey-Edge [8] 5.2 2.7 3.3 5.8 3.0 3.8
Local Surface Reflectance Statistics [65] 5.7 2.4 - - - -
Random Sample Consensus [66] - - - - - -
Edge-based Grey Pixel [67] 5.3 2.3 - - - -
Double-Opponency [44] 4.8 2.4 3.5 - - -

Le
ar

ni
ng

-b
as

ed

Pixel-based Gamut Mapping [16] 3.7 2.3 2.5 4.2 2.8 3.0
Edge-based Gamut Mapping [29] 3.9 2.3 2.7 4.5 2.7 3.2
Spectral Statistics [68] 5.6 3.5 4.3 - - -
Weighted Grey-Edge [69] 5.6 2.4 2.9 6.1 3.6 4.3
Regression [22] - 2.2 - - - -
Thin-plate Spline Interpolation [24] - 2.4 - - - -
Bayesian [32] - - - - - -
Natural Image Statistics [18] - - - - - -
Exemplar-based method [70] - - - - - -
CNN Fine Tuned [71] - - - - - -
Deep Learning Colour Constancy [72] - - - - - -
ASM 4.7 1.8 2.3 5.2 2.3 2.7
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TABLE 2
Angular error of several methods on Colour Checker [78] benchmark dataset. Lower figures indicate better performance.

Recovery Error Reproduction Error
Method Mean Median Trimean Mean Median Trimean
Do Nothing 13.7 13.6 13.5 13.7 13.6 13.5

Lo
w

-l
ev

el
fe

at
ur

es

Inverse-Intensity Chromaticity Space [64] 13.6 13.6 13.5 14.3 13.6 13.6
Grey-World [34] 6.4 6.3 6.3 7.0 6.8 6.9
White-Patch [14] 7.5 5.7 6.4 8.1 6.5 7.1
Shades of Grey [33] 4.9 4.0 4.2 5.8 4.4 4.9
General Grey-World [33] 4.7 3.5 3.8 5.3 4.0 4.4
First-order Grey-Edge [8] 5.3 4.5 4.7 6.4 4.9 5.3
Second-order Grey-Edge [8] 5.1 4.4 4.6 6.0 4.8 5.2
Local Surface Reflectance Statistics [65] 3.4 2.6 - - - -
Random Sample Consensus [66] 3.2 2.3 - - - -
Edge-based Grey Pixel [67] 4.6 3.1 - - - -
Double-Opponency [44] 4.0 2.6 - - - -

Le
ar

ni
ng

-b
as

ed

Pixel-based Gamut Mapping [16] 4.2 2.3 2.9 4.8 2.7 3.4
Edge-based Gamut Mapping [29] 6.5 5.0 5.4 8.0 5.9 6.6
Spectral Statistics [68] 3.7 3.0 3.1 - - -
Weighted Grey-Edge [69] - - - - - -
Regression [22] 8.1 6.7 7.2 8.8 7.4 7.9
Thin-plate Spline Interpolation [24] - 2.8 - - - -
Bayesian [32] 4.8 3.5 3.9 5.6 3.9 4.4
Natural Image Statistics [18] 4.2 3.1 3.5 4.8 3.5 3.9
Exemplar-based method [70] 2.9 2.3 2.4 3.4 2.6 2.9
CNN Fine Tuned [71] 2.6 2.0 - - - -
Deep Learning Colour Constancy [72] 3.1 2.3 - - - -
ASM 3.8 2.4 2.7 4.9 3.0 3.4

TABLE 3
Angular error of several methods on Grey Ball [79] benchmark dataset. Lower figures indicate better performance.

Recovery Error Reproduction Error
Method Mean Median Trimean Mean Median Trimean
Do Nothing 8.3 6.7 7.2 8.3 6.7 7.2

Lo
w

-l
ev

el
fe

at
ur

es

Inverse-Intensity Chromaticity Space [64] 6.6 5.6 5.8 7.0 6.0 6.2
Grey-World [34] 7.9 7.0 7.1 8.7 7.6 7.9
White-Patch [14] 6.8 5.3 5.8 7.1 5.5 6.0
Shades of Grey [33] 6.1 5.3 5.5 6.5 5.6 5.8
General Grey-World [33] 6.1 5.3 5.5 7.1 6.2 6.4
First-order Grey-Edge [8] 5.9 4.7 5.1 6.3 4.8 5.4
Second-order Grey-Edge [8] 6.1 4.8 5.3 6.5 5.0 5.6
Local Surface Reflectance Statistics [65] 6.0 5.1 - - - -
Random Sample Consensus [66] - - - - - -
Edge-based Grey Pixel [67] 6.1 4.6 - - - -
Double-Opponency [44] - - - - - -

Le
ar

ni
ng

-b
as

ed

Pixel-based Gamut Mapping [16] 7.1 5.8 6.1 7.5 5.9 6.3
Edge-based Gamut Mapping [29] 6.8 5.8 6.0 7.3 5.8 6.3
Spectral Statistics [68] 10.3 8.9 9.1 - - -
Weighted Grey-Edge [69] - - - - - -
Regression [22] - - - - - -
Thin-plate Spline Interpolation [24] - - - - - -
Bayesian [32] - - - - - -
Natural Image Statistics [18] 5.2 3.9 4.3 5.5 4.3 4.7
Exemplar-based method [70] 4.4 3.4 3.7 4.8 3.7 4.0
CNN Fine Tuned [71] - - - - - -
Deep Learning Colour Constancy [72] 4.8 3.7 - - - -
ASM 4.7 3.8 4.0 5.0 4.1 4.3

ducting three experiments and analysing their results in
terms of median and trimean angular errors, which were
proposed by [76] and [77] as robust measures to evaluate
colour constancy algorithms.

3.2.1 Experiment 1 – constant vs. adaptive centre size

In order to measure the contribution of the adaptive size of
the narrower Gaussian, we kept all other parameters fixed
(i.e. the centre-surround influence, λ = 1.00;κ = −0.77,
and the percentage of pooled signal, p = ∞). We tested
two scenarios: (a) all pixels were convolved with a constant

Gaussian of width σ (essentially the Double-Opponency
algorithm [44]) whereas, in (b) this width was varied within
the range [σ, 2σ] and computed for each pixel. These two
conditions were called “Constant Gaussian Width” (CGW)
and “Adaptive Gaussian Width” (AGW). Additionally, since
the Grey-Edge hypothesis captures high-order image fea-
tures similar to the DoG, we tested whether this centre
adaptation can improve the first and second order Grey-
Edge algorithm with a Minkowski norm p =∞.

The results of experiment 1 (see Fig. 5) show that both
measures of median and trimean errors are always smaller
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Fig. 5. Influence of contrast-dependent RF size on illuminant estimation.

in the adaptive case (AGW) than in the constant case (CGW).
This is true for both recovery and reproduction angular
errors. The largest and smallest improvements are achieved
in the SFU Lab (about 19% on average) and Grey Ball (about
6% in average) datasets, respectively.

3.2.2 Experiment 2 – constant vs. adaptive surround
In order to measure contribution of the adaptive surround
modulation, we kept all other parameters fixed (i.e. the cen-
tre adaptation, l = 1, and the percentage of pooled signal,
p =∞). We tested three scenarios, the first and second were
computed under a constant surround influence, κ = −0.67
and κ = −0.77, respectively (both extrema of our adaptive
κ), as well as constant centre weight, λ = 1.00. In the
third scenario, the centre-surround influence was adaptive,

λ = 1 + C−1c,i (x, y;σ) and κ = −[0.67, 0.77], under four
contrast levels l = 4.

Fig. 6 shows the results for Experiment 2, where the
median and trimean errors (both recovery and repro-
duction) obtained with a dynamic surround suppression,
κ = −[0.67, 0.77], are always lower in comparison to the
constant κ. The gain across datasets appear to be similar
(around 3% for both error measures).

3.2.3 Experiment 3 – constant vs. adaptive p estimation

In order to measure the contribution of the adaptive clip-
ping, we examined five different scenarios. In the first four,
histograms (see Eq. 12) were clipped with constant percent-
ages, p = {5, 1, 0.5, 0.1}%, i.e. a fixed set of V1 cells were
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Fig. 6. Influence of contrast-dependent surround suppression on illuminant estimation.
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Fig. 7. Influence of “winners” percentage p on illuminant estimation.

pooled into V4. In the fifth case, value of p was adaptive
and computed as the average contrast of RR (see Eq. 11).

Fig. 7 shows results of this experiment suggesting that
using a contrast-dependent pooling mechanism reduces the
recovery/reproduction angular errors in all cases consid-
ered in the SFU Lab dataset (blue bar with p = c̄ is
smaller than all the others). In the Colour Checker and Grey
Ball datasets (red and green bars respectively), estimating
p adaptively yields angular errors very close to the best
constant p values. Among the constant clipping percentages
p = 0.5% performs best: moving towards a Grey-World
pooling deteriorates the results (p = 5% obtain the highest
angular errors) and moving towards a White-Patch solution
also worsens angular errors (p = 0.5% always performs
better than p = 0.1%). This suggests that the optimal
pooling mechanism is close to our proposal of pooling a
set of highly activated cells. A comparison between the
best fixed p (= 0.5%) and adaptive p (= c̄) shows a 4%
improvement of median and trimean errors (average of all
three datasets) in the case of adaptive p.

3.3 Multi-illuminant scenes

We tested our model on a multi-illuminant benchmark
dataset [80] consisting of 78 images, where each image
was captured under the illumination of two different light
sources. The dataset contains two sets of images: (a) labora-
tory (58 images of size 452× 260) and (b) real-world images
(20 images of size 452× 302).

The extension of our model to multi-illuminant scenes is
done straightforward by modelling each region/pixel with
a similar contrast-dependent pooling mechanism (Eq. 10,
11, 12 will be region/pixel dependent). This solution is
biologically-plausible as different V4 neurons pool signals
from different V1 neurons. For this multi-illuminant dataset
we used the exact same parameters as single-illuminant
datasets (refer to Section 3.1). Here we defined four simple
image regions (by halving the image in both horizontal and

vertical directions) and computed the source of light in each
region accordingly. These results are reported alongside
several others in Table 4. Since other methods have not
reported their respective trimean and reproduction angular
errors in this dataset, we only report the mean and median
recovery angular error. Our results are competitive with the
state-of-the-art.

TABLE 4
Recovery angular error of several methods on Multi-illuminant [80]

benchmark dataset. Lower figures indicate better performance.

Laboratory Real-world
Method Mean Median Mean Median
Do Nothing 10.6 10.5 8.9 8.8
Grey-World [34] 3.2 2.9 5.2 4.2
White-Patch [14] 7.8 7.6 6.8 5.6
First-order Grey-Edge [8] 3.1 2.8 5.3 3.9
Second-order Grey-Edge [8] 3.2 2.9 6.0 4.7
Gijsenij et al. [81] 4.8 4.2 4.2 3.8
Double-Opponency [44] 4.6 4.4 7.8 4.9
STD-based Grey Pixel [67] 2.9 2.2 5.7 3.5
MI Random Field [80] 2.6 2.6 4.1 3.3
ASM 2.7 2.5 5.1 3.5

4 DISCUSSION

Fig. 8 illustrates the results of our Adaptive Surround Mod-
ulation (ASM) model alongside three other algorithms on
four exemplary images that were captured under different
illuminations: “synthetic indoor”, “natural daylight”, “dim
evening”, and “multi-illuminant” (one from each of the
benchmark datasets). This qualitative analysis show that
ASM can efficiently estimate the source of light present
in synthetic and natural images, bright and dark environ-
ments, and in both single- and multi-illuminant scenes. This
agrees with the quantitative results presented in Section 3.
ASM surpasses all other state-of-the-art algorithms in the
SFU Lab dataset (Table 1). In the Grey Ball dataset ASM
performs the best amid methods driven by low-level fea-
tures and obtains comparable results to the learning-based
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1.60◦ 2.67◦ 0.52◦ 0.11◦

8.20◦ 5.03◦ 9.59◦ 0.98◦

0.75◦ 1.45◦ 6.48◦ 0.08◦

4.47◦ 6.31◦ 4.39◦ 1.69◦

Original Ground Truth DO GE2 GMP ASM

Fig. 8. Colour constancy results of several methods. The recovery angular error is indicated on the right bottom corner. The first row shows results
for a picture from the SFU Lab dataset, the second row from the Grey Ball dataset, the third row from the Colour Checker dataset, and the last row
from the Multi-illuminant dataset.

techniques (Table 3). Similarly, in the Colour Checker and
Multi-illuminant datasets the angular errors obtained by our
model are highly competitive with the best of the state-of-
the-art (Tables 2 and 4, respectively). This is despite using a
fix set of parameters for all four datasets, unlike the other
methods.

A comparison among Tables 1–3 and Fig. 5 suggests that
methods driven by higher-order image statistics (e.g. Grey-
Edge and Double-Opponency) are highly sensitive to their
choice of parameters. For example, in the SFU Lab dataset,
the median recovery angular error of the second order Grey-
Edge (GE2) escalates from 2.7◦ (Table 1) to 7.8◦ (Fig. 5)
under the optimum (p = 7, σ = 4) and non-optimum pa-
rameters (p = 1, σ = 1), respectively. This could be because
the role of contrast is not taken fully into consideration by
those algorithms. Indeed a number of physiological and
psychophysical studies have shown that the processing of
contrast and colour are thoroughly intertwined [3], [10],
[59]. In particular, it has been shown that colour constancy
is significantly influenced by the variance of surrounding
regions [82], a concept solidly incorporated into ASM where
the model’s output is dependent on both, the variance and
the average colour of the surround. This insight is also
supported by results of our experiments.

The results of experiment 1 (see Fig. 5) show that the per-
formance of colour constancy methods driven by high-order
image statistics (e.g. Grey-Edge and Double-Opponency)
can be improved, as much as 21%, by adapting their Gaus-
sian width σ based on local contrast at pixel level. This im-
provement, which comes from the Adaptive Gaussian Width
(AGW), appears to be larger for the Grey-Edge (about 13%
in average) than for the Double-Opponency (about 7% in
average). In the Grey-Edge, the centre-surround mechanism
is modelled in one operation, therefore the AGW implicitly
influences both centre and surround. However, in the AGW

version of Double-Opponency neither the surround size
nor its contribution to the centre changes according to the
contrast level.

Experiment 2 (see Fig. 6) shows that contrast-dependent
surround modulation can improve the angular errors up to
15%, however the average improvement is a more modest
figure of about 3%. This is explained by the fact that
surround modulation depends on a number of other pa-
rameters in addition to the local contrast of stimuli, such as
spatial frequency and orientation. In this work, we restricted
our studies to the role of contrast on surround modulation
and therefore the range of surround suppression we could
explore was rather limited to κ = −[0.67, 0.77]. However,
we believe that our results can be improved even fur-
ther by taking into account the orientation selectivity of
surround suppression and consequently allowing a larger
range of κ values. In this way ASM can oscillate between
DoG and SoG to account for both surround inhibition and
facilitation. This can be achieved for example by wavelet
decomposition, which we propose as future work. Such
pyramids of wavelets have been successfully used to model
the operation of neurons in the visual cortex in the case of
contrast induction [83] and saliency [54].

The results of experiment 3 (see Fig. 7) indicate that our
“winner-takes-all” hypothesis appears to be correct as well.
The lowest angular errors are obtained when only a small
percentage of V1 signals are pooled into V4 and when this
percentage is high (5%) the results deteriorate significantly.
However, there is no unique p to minimise the angular
errors across different datasets for both measures of median
and trimean. Determining the “winners” according to the
average contrast of V1 RFs (p = c̄) produces the lowest
angular errors across datasets. This is in line with findings
of [84] that reported an inverse relationship between the
contrast of stimulus and the percentage of the pooled signal
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in cat visual cortex. Conceptually, in a low contrast image
a few bright pixels can hint of the source of light, whereas
in a high contrast image (i.e. with high variation of pixel
values) more samples are required to determine the scene
illuminant. This is in line with the results of Joze et al. [85],
which indicate that bright pixels play a vital role in illumi-
nant estimation. A better estimation of p might be obtained
by a more thorough modelling of V4 neurons (for example
by calculating p in different image regions, rather than the
entire population of V1 neuron).

4.1 Why does ASM works?

The previous results show that ASM works because of a
combination of all its parts: in some cases the contrast-
dependent centre-surround mechanism provides most of
the improvement, in others the contrast-dependent pooling
and in most cases both. In general, implementing a contrast-
dependent RF always reduces angular errors, even if this
reduction is minimal. Conceptually, our operator is intu-
itive: on homogeneous regions a larger window is applied
to represent surround variation, whereas on heterogeneous
regions a small neighbourhood suffices. A second stage
collects the brightest pixels also in a dynamical, contrast-
dependent manner and use them to calculate the chromatic-
ity of the illuminant. This is particularly advantageous since
the most important cues about the illuminant are given by
(spectrally flat) bright objects and specular highlights.

The operation of the model can be fully appreciated by
examining its flowchart in Fig. 1, where the inset image
labelled “V1 Output” shows the results of processing a
typical scene with our contrast-dependent kernel. There, the
coloured surfaces of the Macbeth chart have been smoothed,
except near the edges, where they have been enhanced (a
similar effect can be observed in Mondrians of the “Adap-
tive V1” image in Fig. 9). The contrast-dependent pooling
stage of the model collects the largest pixel values (e.g.
those near the edges of the white patch) and estimate the
illuminant from them. Another source of illuminant infor-
mation is the strong specular highlight situated below the
Macbeth chart in Fig. 1. Pixels within this (high contrast)
highlight are convolved with a small operator that enhances
them while diminishing the effect of clipped values at the
same time. This dual effect (smoothing over potentially
uninformative and noisy areas while enhancing informative
ones) is achieved by linking the size of the operator to local
contrast.

Similar types of contrast-dependent surround modula-
tion have been shown to boost edges while suppressing
undesired textural information [56]. Theoretically, our vari-
ations of the Gaussian kernel width, σ, are resemblant of
processing an image through a Gaussian pyramid (although
not of fixed one-octave log increments in size like those
found in the cortex). Correspondingly, the overall effect of
our variation in the surround weight in the DoG operator,
κ, resembles a Laplacian pyramid. Finally, our variation in
the percentage of pooled signal, p, correlate with finding an
optimum Minkowski norm for each image.

To mitigate the influence of higher-level visual cues, we
tested our algorithm with the exact same parameters on
1000 randomly generated Mondrian images under random

illuminants. Median reproduction angular error of adaptive
surround modulation (our full model) was 2.3; the same
measure for our model in its constant-size kernel form (i.e.
no contrast-dependent V1 and V4 neurons, similar to Gao
et al. [44]) was 3.8. In more than 77% of the images, ASM
obtained better results compared to the constant-surround
variant. We illustrated one example of this experiment in
Fig. 9. If we compare “Constant V1” to “Adaptive V1”,
we can observe that constant-surround modulation indis-
criminately blurs the entire image, whereas the adaptive-
surround formulation allows for sharper edges. Similarly,
in case of “Constant V4” the estimated illuminant is signif-
icantly greener than the actual illuminant and therefore the
corrected image appears reddish.

Biased Constant V1 Adaptive V1

9.80◦ 1.06◦

Ground Truth Constant V4 Adaptive V4

Fig. 9. Constant versus adaptive V1 and V4 modules. Colour patches on
the right bottom corner of images in the first row depict the ground truth
illuminant (in the case of the biased image) and estimated illuminants
(for the constant and adaptive results).

Computationally, ASM is very efficient as no training is
required. The complexity of our algorithm is l (number of
contrast levels, 4 in this article) times more expensive than
a simple DoG. However, each level is 100% independent
and their convolutions can easily run in parallel, as it is
implemented in our source code.

5 CONCLUSION

Local contrast greatly influences the appearance of colours
in a scene [3], [10], [82]. In this paper, we show that adopting
some of the computations that the human visual system
forged after millions of years of evolution into a simple,
functional model allows us to obtain results on par to
much more complex computational learning approaches.
The mechanisms in question are three: (i) adaptation of
receptive field size depending on local contrast, (ii) influence
of surround-on-centre also depending on local contrast, and
(iii) computation of global contrast in higher visual areas
to produce the final illuminant estimation. Their particu-
lar contributions were quantified by performing additional
experiments. We compared our results to current state-of-
the-art algorithms in four benchmark datasets showing a
significant improvement regarding other low-level feature-
driven methods, while still highly competitive with respect
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to the best learning-based methods. The significance of this
performance is emphasised considering that our model is (a)
automatic and parameter-free (i.e. it does not require learning
the properties of each dataset since all its initial variables are
set at the beginning), (b) parsimonious (it follows the Occam’s
razor simplicity principle), and (c) biologically-inspired on
well established findings within the neurophysiology and
visual perception communities. These properties make it an
excellent choice to be implemented in small image-gathering
devices such as webcams and mobile phones. Furthermore,
our Adaptive Surround Modulation model does not only pro-
vides a good solution to the engineering problem of remov-
ing the illuminant in images but, because of its close links
to the properties of cortical neurons allows us to speculate
on the scientific question regarding the evolutionary role of
these properties of the visual system, something that other
algorithms are unable to do.

As a final note, we would like to express our conviction
that complex multidimensional problems such as colour
constancy cannot be solved by one-fits-all solutions. In other
words, the results of fully automatic solutions should not be
interpreted the same as those of learning-based solutions.
Our view is that these belong to different and sometimes
orthogonal directions and should be considered according
to their own particular merits.
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