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1. Introduction 
In recent years, several techniques to on-board vision pose estimation have been proposed 
(Zhu et al., 1998; Labayrade & Aubert, 2003;  Liu & Fujimura, 2004; Stein et al., 2000; Suzuki & 
Kanade, 1999). Vision system pose estimation is required for any advanced driver assistance 
application. The real-time estimation of on-board vision system pose-position and orientation- 
is a challenging task since i) the sensor undergoes motions due to the vehicle dynamics and the 
road imperfections, and ii) the viewed scene is unknown and continuously changing. 
Of particular interest is the estimation of on-board camera's position and orientation related 
to the 3D road plane. Note that since the 3D plane parameters are expressed in the camera 
coordinate system, the camera's position and orientation are equivalent to the 3D plane 
parameters. Algorithms for fast road plane estimation are very useful for driver assistance 
applications as well as for augmented reality applications. The ability to use continuously 
updated plane parameters (camera pose) will considerably make the tasks of obstacle 
detection more efficient (Viola et al., 2005; Sun et al., 2006; Toulminet et al., 2006). However, 
dealing with an urban scenario is more diffcult than dealing with highways scenario since 
the prior knowledge as well as visual features are not always available in these scenes 
(Franke et al., 1999). 
In general, monocular vision systems avoid problems related to 3D Euclidean geometry by 
using the prior knowledge of the environment as an extra source of information. Although 
prior knowledge has been extensively used to tackle the driver assistance problem, it may 
lead to wrong results. Hence, considering a constant camera's position and orientation is not 
a valid assumption to be used in urban scenarios, since both of them are easily affected by 
road imperfections or artifacts (e.g., rough road, speed bumpers), car's accelerations, 
uphill/downhill driving, among others. 
The use of prior knowledge has also been considered by some stereo vision based 
techniques to simplify the problem and to speed up the whole processing by reducing the 
amount of information to be handled (Bertozzi & Broggi, 1998; Bertozzi et al.  2003; 
Nedevschi et al., 2006 ). In the literature, many application-oriented stereo systems have 
been proposed. For instance, the edge based v-disparity approach proposed in (Labayrade et 
al., 2002), for an automatic estimation of horizon lines and later on used for applications 
such as obstacle or pedestrian detection (e.g., (Bertozzi et al., 2005; Labayrade & Aubert, 
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2003)), only computes 3D information over local maxima of the image gradient. A sparse 
disparity map is computed in order to obtain a real time performance. Recently, this v-
disparity approach has been extended to a u-v-disparity concept in (Hu & Uchimura, 2005). 
In this work, dense disparity maps are used instead of only relying on edge based disparity 
maps. Working in the disparity space is an interesting idea that is gaining popularity in on-
board stereo vision applications, since planes in the original Euclidean space become 
straight lines in the disparity space. 
In (Sappa et al., 2006), we have proposed an approach for on-line stereo camera pose 
estimation. Although the proposed technique does not require the extraction of visual 
features in the images, it is based on dense depth maps and on the extraction of a dominant 
3D plane that is assumed to be the road plane. This technique has been tested on different 
urban environments. The proposed algorithm took, on average, 350 ms per frame. 
As can be seen, existing works adopt the following main stream. First, features are extracted 
either in the image space (optical flow, edges, ridges, interest points) or in the 3D Euclidean 
space (assuming the 3D data are built online). Second, an estimation technique is then 
invoked in order to recover the unknown parameters. 
In this chapter, we propose a novel paradigm for on-board camera pose tracking trough the 
use of image registration (Romero & Calderon, 2007). Since we do not rely on features, the 
image registration should be featureless. We solve the featureless registration by using two 
optimization techniques: the Differential Evolution algorithm (a stochastic search) and the 
Levenberg-Marquardt algorithm (a directed search). Moreover, we propose two tracking 
schemes based on these optimizations. The advantage of our proposed paradigm is twofold. 
First, it can run in real-time. Second, it provides good results even when the road surface 
does not have reliable features. We stress the fact that our proposed methods are not 
restricted to the estimation of on-board camera pose/roads. Indeed, the proposed methods 
can be used for extracting any planar structures using stereo pairs. 
The rest of the chapter is organized as follows. Section 2 describes the problem we are 
focusing on as well as some backgrounds. Section 3 presents the proposed approach in 
details. Section 4 gives some experimental results and method comparisons. Section 5 
concludes the chapter. 

2 Problem formulation and background 
2.1 Experimental setup 
A commercial stereo vision system (Bumblebee from Point Grey1) was used. It consists of 
two Sony ICX084 color CCDs with 6mm focal length lenses. Bumblebee is a pre-calibrated 
system that does not require in-field calibration. The baseline of the stereo head is 12cm and 
it is connected to the computer by an IEEE-1394 connector. Right and left color images can 
be captured at a resolution of 640×480 pixels and a frame rate near to 30 fps. This vision 
system includes a software able to provide the 3D data. Figure 1(a) shows an illustration of 
the on-board stereo vision system as well as its mounting device. 
The problem we are focusing on can be stated as follows. Given a stream of stereo pairs 
provided by the on-board stereo head we like to recover the parameters of the road plane 
for every captured stereo pair. Since we do not use any feature that is associated with road 
structure, the computed plane parameters will completely define the pose of the on-board 
vision sensor. This pose is represented by the 3D plane parameters, that is, the height d and 

                                                 
1 [www.ptgrey.com] 
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the plane normal u = (ux, uy, uz)T from which two independent angles can be inferred (see 
Figure 1(b)). In the sequel, the pitch angle will refer to the angle between the camera's 
optical axis and the road plane; and the roll angle will refer to the angle between the camera 
horizontal axis and the road plane (see Figure 1(b)). Due to the reasons mentioned above, 
these parameters are not constant and should be estimated online for every time instant. 
Note that the three angles (pitch, yaw, and roll) associated with the stereo head orientation 
can vary. However, only the pitch and roll angles can be estimated from the 3D plane 
parameters. 
 

  
                                   (a)                                                                           (b) 

Fig. 1. (a) On-board stereo vision sensor. (b) The time-varying road plane parameters d and 
u. θ denotes the pitch angle and ρ the roll angle. 

2.2 Image transfer function 
Before going into the details of the proposed approach, this section will describe the 
geometric relation between road pixels belonging to the same stereo pair⎯the left and right 
images. It is well-known (Faugeras & Luong, 2001) that the image coordinates of the 
projections of 3D points belonging to the same plane onto two different images are related 
by a 2D projective transform having 8 independent parameters-homography. In our setup, the 
right and left images are horizontally rectified2. Let pr(xr, yr) and pl(xl, yl) be the right and left 
projection of an arbitrary 3D point P belonging to the plane (d, ux, uy, uz). In the case of a 
rectified stereo pair where the left and right cameras have the same intrinsic parameters, the 
right and left coordinates of corresponding pixels belonging to the road plane are related by 
the following linear transform (the homography reduces to a linear mapping): 

 (1)

 (2)

where h1, h2, and h3 are function of the intrinsic and extrinsic parameters of the stereo head 
and of the plane parameters. For our setup (rectified images with the same intrinsic 
parameters), those coefficients are given by: 

                                                 
2 The use of non-rectified images will not have any theoretical impact on our developed 
method. However, the image transfer function will be given by a general homography. 
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(3)

 
(4)

 
(5)

 

where b is the baseline of the stereo head,  is the focal length in pixels, and (u0, v0) is the 
image center (principal point). Let w be the 3-vector encapsulating the 3D plane parameters, 
that is,   

 
(6)

Note that the vector w fully describes the current road plane parameters. The problem can 
be stated as follows. Given the current stereo pair estimate the corresponding 3D road plane 
parameters d and u or equivalently the vector w. 

3. Approach 
Since the goal is to estimate the road plane parameters w for every stereo pair (equivalently 
the 3D pose of the stereo head), the whole process is invoked for every stereo pair. Figure 2 
illustrates the tracking of the stereo head pose over time. The inputs to the algorithm are the 
current stereo pair as well as the estimated road plane parameters associated with the 
previous frame. The algorithm is split into two consecutive stages. First, a rough road region 
segmentation is preformed for the right image. Let R denotes this region⎯a set of pixels. 
Second, recovering the plane parameters from the rawbrightness of a given stereo pair will 
rely on the following fact: if the parameter vector w corresponds to the actual plane 
parameters⎯the distance d and the normal u⎯then the registration error between corresponding 
road pixels in the right and left images over the region R should correspond to a minimum. In our 
work, the registration error is set to the Sum of Squared Differences (SSD) between the right 
image and the corresponding left image computed over the road region R. The registration 
error is given by: 

 
(7)

The corresponding left pixels are computed according to the linear transform given by (1) 
and (2). The computed xl = h1 xr + h2 yr + h3 is a non-integer value. Therefore, the grey-level, 
Il(xl, yl), is set to a linear interpolation of the grey-level of two neighboring pixels⎯the ones 
whose horizontal coordinates bracket the value xl. 
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Fig. 2. The proposed approach consists of two stages: A rough road segmentation followed 
by image registration. 

3.1 Road segmentation 
In this section, we briefly describe how the road region R is detected in the right images. 
Road segmentation is the focus of many research works (Lombardi et al., 2005; Jansen et al., 
2005; Guzman & Parra, 2007; Alvarez et al., 2008). In our study, the sought segmentation 
should meet two requirements: (i) it should be as fast as possible, and (ii) it should be as 
generic as possible (both urban roads and highways). Thus our segmentation scheme will be 
a color-based approach which works on the hue and saturation components. The 
segmentation stage is split into two phases. The first phase is only invoked every T frames 
for updating the color model and for obtaining a real-time performance. The second phase 
exploits the road color consistency over short time. The first phase consists of a classical K-
means algorithm that is applied on the hue and saturation values of the pixels belonging to 
a predefined region of interest (ROI) that is centered at the bottom of the image. The number 
of classes can be between 3 and 5. The cluster having the largest number of pixels will be 
assumed to belong to the road. Once the cluster is identified, the mean and the covariance of 
its color (hue and saturation components) can be easily computed. In the second phase 
(invoked for every frame), by assuming that the color distribution of the detected cluster is 
Gaussian, we can quantify the likelihood of an arbitrary pixel to be a road pixel. Thus, the 
pixels within the ROI are labelled as road pixels if their Mahalanobis distance to the mean is 
below a certain threshold. Figure 3 shows the segmentation results obtained with the 
proposed scheme. Detected road pixels are shown in white within the ROI of two different 
frames. As can be seen, all detected pixels belong to the road plane. 

3.2 Image registration 
The optimal current road parameters are given by: 
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(8)

where e(w) is a non-linear function of the parameters w = (wx,wy,wz)T. In the sequel, we 
describe two minimization techniques: i) the Differential Evolution minimization, and ii) the 
Levenberg-Marquardt minimization. The first one is a stochastic search method and the 
second one is a directed search method. Moreover, we present two tracking schemes. 
 

 
Fig. 3. Rapid road segmentation associated with two frames. 

3.2.1 Differential evolution minimization 
The Differential Evolution algorithm (DE) is a practical approach to global numerical 
optimization that is easy to implement, reliable and fast (Price et al., 2005). We use the DE 
algorithm (Das et al. 2005; Storn & Price, 1997) in order to minimize the error (8). This is 
carried out using generations of solutions-population. The population of the first generation 
is randomly chosen around a rough solution. We point out that even the exact solution for 
the first frame is not known, the search range for the camera height as well as for the plane 
normal can be easily known. For example, in our experiments, the camera height and the 
normal vector are assumed to be around 1m and (0, 1, 0)T , respectively. 
The optimization adopted by the DE algorithm is based on a population of N solution 
candidates wn,i (n = 1, …, N) at iteration (generation) i where each candidate has three 
components. Initially, the solution candidates are randomly generated within the provided 
intervals of the search space. The population improves by generating new solutions 
iteratively for each candidate. 
Calibration. Since the stereo camera is rigidly attached to the car, the differential evolution 
algorithm can also be used as a calibration tool by which the camera pose can be estimated 
off-line. To this end, the car should be at rest and should face a flat road. Whenever the car 
moves, the off-line calibration results can be used as a starting solution for the whole 
tracking process. Note that the calibration process does not need to run in real-time. 

3.2.2 Levenberg-Marquardt minimization 
Minimizing the cost function (8) can also be carried out using the Levenberg-Marquardt 
technique (Fletcher, 1990; Press et al., 1992) ⎯a well-known non-linear minimization 
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technique. One can notice that the Jacobian matrix only depends on the horizontal image 
gradient since the right and left images are rectified. 

3.3 Tracking schemes 
 
 

 
(a) 

 
(b) 

Fig. 4. Parameter tracking using two strategies. (a) The tracking is only based on the 
Differential Evolution search. (b) The tracking is based on the Differential Evolution search 
and on the Levenberg-Marquardt search. 

The unknown parameters (road parameters/camera pose) should be estimated for every 
stereo pair. Thus, we will adopt a tracking strategy in which the estimated parameters  
associated with the previous frame will be handed over to the current frame. 
Since the unknown parameters (road parameters/camera pose) are estimated by two 
optimization techniques, we propose two tracking schemes which are illustrated in Figure 4. 
The first scheme (Figure 4(a)) is only based on the Differential Evolution minimization. In 
other words, the solution for every stereo frame is computed by invoking the whole 
algorithm where the first generation is generated by diffusing the previous solution using a 
normal distribution. A uniform distribution is used for the first stereo frame. 
The second scheme (Figure 4(b)) uses the Differential Evolution minimization for the first 
stereo frame only. It utilizes the Levenberg-Marquardt for the rest of the frames where the 
initial solution for a given frame is provided by the solution  associated with the 
previous frame. 
Although the first scheme might have better convergence properties than the second 
scheme, the latter one is better suited for real-time performance since the Levenberg-
Marquardt algorithm is faster than the Differential Evolution search (the corresponding 
CPU times are illustrated in Section 4.2). In both tracking schemes, the pose parameters 
associated with the first stereo pair are estimated by the DE search. The Differential 
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Evolution algorithm performs a global search whereas the Levenberg-Marquardt performs a 
directed and local search. 

4. Experimental results 
The proposed technique has been tested on different urban environments since they 
correspond to the most challenging scenarios. In this section, we provide results obtained 
with two different videos associated with different urban road structures. Moreover, we 
provide a performance study using synthetic videos with ground-truth data. 

4.1 Tracked road parameters 
The first experiment has been conducted on a sequence corresponding to an uphill driving. 
The stereo pairs are of resolution 320 × 240. Figure 5(a) depicts the estimated camera's height 
as a function of the sequence frames. Figures 5(b) and 5(c) depict the estimated pitch and 
roll angles as a function of the sequence frames, respectively. The dotted curves correspond 
to the first scheme that is based on the Differential Evolution minimization. The solid curves 
correspond to the second scheme which is based on both the Differential Evolution 
algorithm and the Levenberg-Marquardt algorithm. As can be seen, the estimated 
parameters are almost the same for the two proposed schemes. However, as we will show, 
the second scheme is much faster than the first scheme (the stochastic search). 
Differential Evolution convergence. Figure 6 illustrates the behavior of the Differential 
Evolution algorithm associated with the first stereo pair of the above stereo sequence. This 
plot depicts the best registration error (SSD per pixel) obtained by every generation. The 
three curves correspond to three different population sizes. The first generation (iteration 0) 
has been built using a uniform sampling around the solution d = 1m and u = (ux, uy, uz)T = (0, 
1, 0)T. The algorithm converged in five iterations (generations) when the population size was 
30 and in two iterations when the population size was 120. At convergence the solution was 
d = 1.25m and u = (ux, uy, uz)T = (-0.03, 0.99,-0.02)T . Note that even the manually provided 
initial camera's height has 25cm discrepancy from the current solution, the DE algorithm has 
rapidly converged to the actual solution. Also, we have run the Levenberg-Marquardt 
algorithm with the same starting solution but we get at convergence d = 1.09m and u = (ux, 
uy, uz)T = (0.01, 0.99,-0.02)T . 
Horizon line. In the literature, the pose parameters⎯plane parameters⎯can be used to 
compute the horizon line. In our case, since the roll angle is very small, the horizon line can 
be represented by an horizontal line in the image. Once the 3D plane parameters d and u = 
(ux, uy, uz)T are computed, the vertical position of the horizon line will be given by: 

 
(9)

The above formula is derived by projecting a 3D point (0, Yp, Z∞) belonging to the road 
plane and then taking the vertical coordinate  Z∞ is a large depth value. The 
right-hand expression is obtained by using the fact that uy is close to one and Z∞ is very 
large. Figure 7 illustrates the computed horizon line for frames 10 and 199. The whole video 
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illustrating the computed horizon line can be found at www.cvc.uab.es/~asappa/ 
HorizonLine.avi. 
Approach behavior in the presence of road segmentation error. In order to study the 
algorithm behavior in the presence of significant segmentation errors or non-road objects, 
we conducted the following experiment. We used a video sequence corresponding to a flat 
road (see Figure 3). We run the proposed technique described in Section 3 twice. We used 
the second tracking scheme (DE-LM). The first run was a straightforward run. In the second 
run, the right images were corrupted to simulate a significant registration error (road 
segmentation error). To this end we set the vertical half of a set of 20 right images to a fixed 
color. The left images were not modified. 
Figure 8 compares the pose parameters obtained in the two runs. The solid curves were 
obtained with the non corrupted images. The dotted curves were obtained when the right 
images of the same sequence are artificially corrupted. The simulated corruption starts at 
frame 40 and ends at frame 60. The upper part of the Figure illustrates the stereo pair 40. As 
can be seen, the only significant discrepancy has affected the camera height. Moreover, one 
can see that the correct parameters have been recovered once the perturbing factor has 
disappeared. Figure 9 shows the registration error obtained at convergence as a function of 
the sequence frames. As can be seen, the obtained registration error has suddenly increased, 
which can be used for validating the estimated parameters. 
Figure 10(a) illustrates the registration error (8) as a function of the camera's height while the 
orientation is kept fixed. Figure 10(b) illustrates the registration error as a function of the 
camera's pitch angle for four different camera's height. In both figures, the depicted error is 
the SSD per pixel. From the slop of the error function we can see that the camera height will 
not be recovered with the same accuracy as the plane orientation. This will be confirmed in 
the accuracy evaluation section (see Section 4.3). 

4.2 Method comparison 
The second experiment has been conducted on a short sequence of stereo pairs 
corresponding to a typical urban environment (see Figure 3). The stereo pairs are of 
resolution 320 × 240. Here the road is almost flat and the changes in the pose parameters are 
mainly due to the car's accelerations and decelerations. Figures 11(a) and 11(b) depict the 
estimated camera's height and orientation as a function of the sequence frames using two 
different methods. The solid curves correspond to the developed direct approach (DE-LM) 
and the dashed curves correspond to a 3D data based approach (Sappa et al., 2006). This 
approach uses a dense 3D reconstruction followed by a RANSAC-based estimation of the 
dominant 3D plane⎯the road plane. One can see that despite some discrepancies the 
proposed direct method is providing the same behavior of changes. 
On a 3.2 GHz PC, the proposed approach processes one stereo pair in about 20 ms assuming 
that the ROI size is 190 × 90 pixels and the number of the detected road pixels is 11000 pixels 
(3 ms for the fast color-based segmentation and about 17 ms for the Levenberg-Marquardt 
minimization). One can notice that this is much faster than the 3D data based approach, 
which needs 350 ms. Moreover, the Levenberg-Marquardt algorithm is faster than the DE 
algorithm which needs 120 ms assuming that the number of iterations is 5 and the 
population number is 30 (the number of pixels is 11000). Obviously, devoting a very small 
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CPU time for estimating the road parameters/camera pose is advantageous for real-time 
systems since the CPU power can be used for extra tasks such as pedestrian or obstacle 
detection. 

4.3 Accuracy evaluation 
The evaluation of the proposed approach has been carried out on real video sequences, 
including a comparison with a 3D data based approach (Section 4.2). However, it is very 
challenging to get ground-truth data for the on-board camera pose. In this section, we 
propose a simple scheme giving the ground-truth data for the road parameters through the 
use of synthetic stereo sequences. To this end, we use a 1000-frame real video captured by 
the on-board stereo camera. For each stereo pair, we set the distance (camera height) and the 
plane normal⎯the ground-truth 3D plane road parameters. Those ones can be constant for 
the whole sequence or can vary according to a predefined trajectory. In our case, we keep 
them constant for the whole synthesized sequence. Each left image in the original sequence 
is then replaced with a synthesized one by warping the corresponding right image using the 
image transfer function encapsulating the road parameters. The obtained stereo pairs are 
then perturbed by adding Gaussian noise to their grey levels. 
Figure 12 depicts a perturbed stereo pair. The Gaussian noise standard deviation is set to 20. 
Here the grey-level of the images has 256 values. The noise-free left image is synthesized 
using the ground-truth road parameters. The proposed approach is then invoked to estimate 
the road parameters from the noisy stereo pair. The performance can be directly evaluated 
by comparing the estimated parameters with the ground-truth parameters. The camera 
height error is simply the absolute value of the relative error. The orientation error is 
defined by the angle between the direction of the ground-truth normal and the direction of 
the estimated one. 
Figure 13 summarizes the obtained errors associated with the synthetic stereo pairs. Figure 
13(a) depicts the distance error and Figure 13(b) the orientation error. Here one percent error 
corresponds to 1.2cm. Each point of the curves⎯each noise level⎯corresponds to 10000 
stereo pairs corresponding to 10 realizations, each of which is a sequence of 1000 perturbed 
stereo pairs. The solid curves correspond to the global average of errors over the 10000 
stereo pairs and the dashed curves correspond to the maximum error. As can be seen, the 
performance of the method downgrades gracefully with the image noise. Moreover, one can 
appreciate the orientation accuracy. 

4.4 Convergence study 
In order to study the convergence behavior of the two optimization techniques we run the 
following experiment. We used the same synthetic stereo sequence containing 1000 stereo 
frames. The standard deviation of the added image noise is kept fixed to 4. For every stereo 
frame in the sequence the starting solution was shifted from the ground-truth solution by 20 
cm for the camera height and by 10 degrees for the plane normal. This shifted solution is 
used as the starting solution for the Levenberg-Marquardt technique and as the center of the 
first generation for the Differential Evolution technique. Table 1 depicts the average height 
and orientation errors obtained with the LM and DE minimizations. As can be seen, the DE 
minimization has better convergence properties than the LM minimization which essentially 
looks for a local minimum. 
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5. Conclusion 
A featureless technique for real time estimation of on-board stereo head pose has been 
presented. The method adopts a registration scheme that uses images' brightness. The 
advantages of the proposed technique are as follows. First, the technique does need any 
specific visual feature extraction neither in the image domain nor in 3D space. Second, the 
technique is very fast compared to almost all proposed stereo-based techniques. The 
proposed featureless registration is carried out using two optimization techniques: the 
Differential Evolution algorithm (a stochastic search) and the Levenberg-Marquardt 
algorithm (a directed search). 
A good performance has been shown in several scenarios⎯uphill, downhill and flat 
roads. Although it has been tested on urban environments, it could be also useful on 
highways scenarios. Experiments on real and synthetic stereo sequences have shown 
that the accuracy of the orientation is better than the height accuracy, which is 
consistent with all 3D pose algorithms. The provided experiments tend to confirm that 
(i) the Differential Evolution search was crucial for obtaining an accurate parameter 
estimation, and (ii) the Levenberg-Marquardt technique was crucial for obtaining a real-
time tracking. As a consequence, the DE optimization can be used as a complementary 
tool to the LM optimization in the sense that it provides the initialization as well as the 
recovery solution from a tracking discontinuity adopting the Levenberg-Marquardt 
algorithm. 
We stress the fact that our proposed framework is not restricted to the estimation of on-
board camera pose/roads. Indeed, the proposed methods can be used for extracting any 
planar structures using stereo pairs. 
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Table 1. Average camera pose errors. The first column corresponds to the Levenberg-
Marquardt minimization and the second column to the Differential Evolution minimization. 
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(a) 

 
(b) 

 
(c) 

Fig. 5. Camera's height and orientation computed by the proposed tracking schemes. 



Real Time Stereo Image Registration for Planar Structure and 3D Sensor Pose Estimation 

 

311 

 
 

 
 

 

Fig. 6. The evolution of the best registration error obtained by the Differential Evolution 
algorithm associated with the first stereo pair. The algorithm has converged in 5 iterations 
(generations) when the population size was 30 and in two iterations when the population 
size was 120. 

 

 

 
 

 

Fig. 7. The estimated horizon line associated with frames 10 and 199. The sequence 
corresponds to an uphill driving. 
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Fig. 8. The camera pose parameters in the presence of a significant corruption (road 
segmentation errors). The solid curves are obtained with the non corrupted images. The 
dotted curves are obtained when 20 frames of right images of the same sequence are 
artificially corrupted. The corruption is simulated by setting the vertical half of the right 
images to a fixed color. This corruption starts at frame 40 and ends at frame 60. 
 

 
Fig. 9. The registration error obtained at convergence as a function of the sequence frame. 
The second tracking scheme is used. 
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                                         (a)                                                                           (b) 

Fig. 10. The registration error as a function of the camera pose parameters. (a) Depicts the 
error as a function of the camera height with a fixed orientation. (b) Depicts the error as a 
function of the camera's pitch angle associated with four different camera heights. 

 
                                       (a)                                                                                (b) 
Fig. 11. Camera's height and orientation using two different methods. 

 
Fig. 12. A stereo pair from a perturbed 1000-frame video. The standard deviation of the added 
Gaussian noise is 20. The left images are synthesized using the ground-truth road parameters. 
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(a)                                                                               (b) 
 

Fig. 13. The errors associated with the plane parameters as a function of the noise standard 
deviation using synthesized video sequences. (a) Depicts the height errors. (b) Depicts the 
plane orientation errors. Each point of the curves⎯each noise level⎯corresponds to 10000 
stereo pairs corresponding to 10 realizations, each of which is a sequence of 1000 perturbed 
stereo pairs. 
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