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Abstract. This chapter describes a robust approach for detecting moving objects
from on-board stereo vision systems. It relies on a feature point quaternion-based
registration, which avoids common problems that appear when computationally ex-
pensive iterative-based algorithms are used on dynamic environments. The proposed
approach consists of three main stages. Initially, feature points are extracted and
tracked through consecutive 2D frames. Then, a RANSAC based approach is used
for registering two point sets, with known correspondences in the 3D space. The
computed 3D rigid displacement is used to map two consecutive 3D point clouds
into the same coordinate system by means of the quaternion method. Finally, mov-
ing objects correspond to those areas with large 3D registration errors. Experimental
results show the viability of the proposed approach to detect moving objects like ve-
hicles or pedestrians in different urban scenarios.

1 Introduction

The detection of moving objects in dynamic environments is generally tackled by
first modelling the background. Then, foreground objects are directly obtained by
performing an image subtraction (e.g., [14], [15], [32]). An extensive survey on mo-
tion detection algorithms can be found in [21]. In general, most of the approaches
assume stationary cameras, which means all frames are registered in the same co-
ordinate system. However, when the camera moves, the problem becomes intricate
since it is unfeasible to have a unique background model. In such a case, moving
object detection is generally tackled by compensating the camera motion so that all
frames from a given video sequence, obtained from a moving camera/platform, are
referred to the same reference system (e.g., [7], [27]).

Moving object detection from a moving camera is a challenging problem in com-
puter vision, having a number of applications in different domains: mobile robots
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[26]; aerial surveillance [35] [34]; video segmentation [1]; vehicles and driver assis-
tance [15], [24]; just to mention a few. As mentioned above, the underlying strategy
in the solutions proposed in the literature essentially relies on the compensation of
the camera motion. The difference between them lie on the sensor (i.e., monocu-
lar/stereoscopic) or on the use of prior-knowledge of the scene together with visual
cues. For instance, [26] uses a stereo system and predicts the depth image for the
current time by using ego-motion information and the depth image obtained at the
previous time. Then, moving objects are easily detected by comparing the predicted
depth image with the one obtained at the current time. The prior-knowledge of the
scene is also used in [35] and [34]. In these cases the authors assume that the scene
is far from the camera (monocular) and the depth variation of the objects of interest
is small compared to the distance (e.g., airborne image sequences). In this context
camera motion can be approximately compensated by a 2D parametric transforma-
tion (a 3x3 homography). Hence, motion compensation is achieved by warping a
sequence of frames to a reference frame, where moving objects are easily detected
by image subtraction like in the stationary camera cases.

A more general approach has been proposed in [1] for segmenting videos cap-
tured with a freely moving camera, which is based on recording complex back-
ground and large moving non-rigid foreground objects. The authors propose a
region-based motion compensation. It estimates the motion of the camera by find-
ing the correspondence of a set of salient regions obtained by segmenting successive
frames. In the vehicle on-board vision systems and driver assistance fields, the com-
pensation of camera motion has also attracted researchers’ attention in recent years.
For instance, in [15] the authors present a simple but effective approach based on
the use of GPS information to roughly align frames from video sequences. A lo-
cal appearance comparison between the aligned frames is used to detect objects. In
the driver assistance context, but by using an onboard stereo rig, [24] introduce a
3D data registration based approach to compensate camera motion from two con-
secutive frames. In that work, consecutive stereo frames are aligned into the same
coordinate system; then moving objects are obtained from a 3D frame subtraction,
similar to [26]. The current chapter proposes an extension of [24], by detecting mis-
registration regions according to an adaptive threshold from the depth information.

The remainder of this chapter is organized as follows. Section 2 introduces related
work in the 3D data registration problem. Then, Section 3 presents the proposed ap-
proach for moving object detection. It consists of three stages: i) 2D feature point
detection and tracking; ii) robust 3D data registration; and iii) moving object de-
tection through consecutive stereo frame subtraction. Experimental results in real
environments are presented in Section 4. Finally, conclusions and future works are
given in Section 5.

2 Related Work

A large number of approaches have been proposed in the computer vision commu-
nity for 3D Point registration during the last two decades (e.g., [3], [4], [22]). 3D
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data point registration aims at finding the best transformation that places both the
given data set and corresponding model set into the same reference system. The
different approaches proposed in the literature can be broadly classified into two
categories, depending on whether an initial information is required (fine registra-
tion) or not (coarse registration); a comprehensive survey of registration methods
can be found in [23]. The approach followed in the current work for moving object
detection lies within the fine rigid registration category.

Typically, the fine registration process consists in iterating the following two
stages. Firstly, the correspondence between every point from the current data set
and the model set shall be found. These correspondences are used to define the
residual of the registration. Secondly, the best set of parameters that minimizes the
accumulated residual shall be computed. These two stages are iteratively applied
until convergence is reached. The Iterative Closest Point (ICP)—originally intro-
duced by [3] and [4]—is one of the most widely used registration techniques using
this two-stage scheme. Since then, several variations and improvements have been
proposed in order to increase the efficiency and robustness (e.g., [25], [8], [5]).

In order to avoid the point-wise nature of ICP, which makes the problem discrete
and non-smooth, different techniques have been proposed: i) probabilistic represen-
tations are used to describe both data and model set (e.g. [31], [13]); ii) in [8] the
point-wise problem is avoided by using a distance field of the model set; iii) an im-
plicit polynomial (IP) is used in [36] to fit the distance field, which later defines a
gradient field leading the data points towards that model set; iv) implicit polynomi-
als have been also used in [28] to represent both the data set and model set. In this
case, an accurate pose estimation is computed based on the information from the
polynomial coefficients.

Probabilistic-based approaches avoid the point-wise correspondence problem by
representing each set by a mixture of Gaussians (e.g., [13], [6]); hence, registration
becomes a problem of aligning two mixtures. In [13] a closed-form expression for
the L2 distance between two Gaussian mixtures is proposed. Instead of Gaussian
mixture models, [31] proposes an approach based on multivariate t-distributions,
which is robust to large number of missing values. Both approaches, as all mixture
models, are highly dependent on the number of mixtures used for modelling the sets.
This problem is generally solved by assuming a user defined number of mixtures or
as many as the number of points. The former one needs the points to be clustered,
while the latter one results in a very expensive optimization problem that cannot
handle large data sets or could get trapped in local minimum when complex sets are
considered.

The non-differentiable nature of ICP is overcome by using a derivable distance
transform—Chamfer distance—in [8]. A non-linear minimization (Levenberg -
Marquardt algorithm) of the error function, based on that distance transform, is
used for finding the optimal registration parameters. The main disadvantage of [8] is
the precision dependency on the grid resolution, where the Chamfer distance trans-
form and discrete derivatives are evaluated. Hence, this technique cannot be directly
applied when the point set is sparse or unorganized.
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On the contrary to the previous approaches, [36] proposes a fast registration
method based on solving an energy minimization problem derived from an implicit
polynomial fitted to the given model set [37]. This IP is used to define a gradient flow
that drives the data set to the model set without using point-wise correspondences.
The energy functional is minimized by means of a heuristic two step process. Firstly,
every point in the given data set moves freely along the gradient vectors defined by
the IP. Secondly, the outcome of the first step is used to define a single transfor-
mation that represents this movement in a rigid way. These two steps are repeated
alternately until convergence is reached. The weak point of this approach is the first
step of the minimization that lets the points move independently in the proposed gra-
dient flow. Furthermore, the proposed gradient flow is not smooth, specially close
to the boundaries.

Most of the algorithms presented above have been originally proposed for reg-
istering overlapped sets of points corresponding to the 3D surface of a single rigid
object. Extensions to a more general framework, where the 3D surfaces to be reg-
istered correspond to different views of a given scene, have been presented in the
robotic field (e.g., [30, 18]). Actually, in all these extensions, the registration is used
for the simultaneous localization and mapping (SLAM) of the mobile platform (i.e.,
the robot). Although some approaches differentiate static and dynamic parts of the
environment before registration (e.g., [30], [33]), most of them assume that the en-
vironment is static, containing only rigid, non-moving objects. Therefore, if moving
objects are present in the scene, the least squares formulation of the problem will
provide a rigid transformation biased by the motions in the scene.

Independently to the kind of scenario to be tackled (partial view of a single object
or whole scene), 3D registration algorithms are computationally expensive, which
prevents their use in real time applications. In the current work a robust strategy that
reduces the CPU time by focusing only on feature points is proposed. It is intended to
be used in ADAS (Advanced Driver Assistance Systems) applications, in which an
on-board camera explores the current scene in real time. Usually, an exhaustive win-
dow scanning approach is adopted to extract regions of interests (ROIs), needed in
pedestrian or vehicle detection systems. The concept of consecutive frame registra-
tion for moving object detection has been explored in [11], in which an active frame
subtraction for pedestrian detection from images of moving cameras is proposed. In
that work, consecutive frames were not registered by a vision based approach but
by estimating the relative camera motion using vehicle speed and a gyrosensor. A
similar solution has been proposed in [15], but by using GPS information.

3 Proposed Approach

The proposed approach combines 2D detection of key points with 3D registration.
The first stage consists in extracting a set of 2D feature points at a given frame
and track it through the next frame; 3D coordinates corresponding to each of these
2D feature points are later on used during the registration process, where the rigid
displacement (six degrees of freedom) that maps the 3D scene associated with frame
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(n) into the 3D scene associated with frame (n+1) is computed (see Figure 1). This
rigid transform represents the 3D motion of the camera between frame (n) and frame
(n + 1). Finally, moving objects are detected by computing the difference between
the 3D coordinates of points represented in the same coordinate system. Before
going into details in the stages of the proposed approach a brief description of the
used stereo vision system is given.

3.1 System Setup

A commercial stereo vision system (Bumblebee from Point Grey1) is used to acquire
the 3D information of the scene in front of the host vehicle. It consists of two Sony
ICX084 Bayer pattern CCDs with 6mm focal length lenses. Bumblebee is a pre-
calibrated system that does not require in-field calibration. The baseline of the stereo
head is 12cm and it is connected to the computer by an IEEE-1394 interface. Right
and left color images (Bayer pattern) were captured at a resolution of 640×480
pixels. After capturing each right-left pair of images, a dense cloud of 3D data points
Pn is computed by using a 3D reconstruction software at each frame n. The right
intensity image In is used during the feature point detection and tracking stage.

3.2 Feature Detection and Tracking

As previously mentioned, the proposed approach is intended to be used on on-board
vision systems for driver assistance applications. Hence, due to real time constraint,
it is clear that the whole cloud of points cannot be used to find the rigid transfor-
mation that maps two consecutive frames to the same reference system. In order to
tackle this problem, an efficient approach that relies only on the use of a reduced set
of points from the given image In is proposed. Feature points, f n

i(u,v) ⊂ In, far away
from the camera position (Pn

i(x,y,z) > δ ) are discarded in order to increase registration

accuracy2 (δ = 15 m in the current implementation).
The proposed approach does not depend on the technique used for detecting fea-

ture points; actually, two different approaches have been tested: one based on the
Harris corner points [10] and another on SIFT features [16]. In the first case, once
feature points have been selected a tracking window WT of (9×9) pixels is set. Fea-
ture points are tracked by minimizing the sum of squared differences between two
consecutive frames by using an iterative approach [17]. In the second case SIFT
features [16] are detected in the extreme of difference of Gaussians in a scale-space
representation and described as histograms of gradient orientations. In this case, fol-
lowing [16], a function based on the corresponding histograms distance is used to
match the features in consecutive frames (the public implementation of SIFT in [29]
has been used).

1 www.ptgrey.com
2 Stereo head data uncertainty grows quadratically with depth [19].
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Fig. 1 Feature points detected and tracked through consecutive frames: (top) using Harris
corner detector; (bottom) using SIFT detector and descriptor
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Fig. 2 Illustration of feature points represented in the 3D space, together with three couples
of points used for computing the 3D rigid displacement: [R|t]—RANSAC-like technique



Moving Object Detection from Mobile Platforms Using Stereo Data Registration 31

3.3 Robust Registration

The set of 2D-to-2D point correspondences obtained in the previous stage, is easily
converted to a set of 3D-to-3D points since for every frame we have a quasi dense
3D reconstruction that is rapidly provided by Bumblebee. In the current approach,
contrary to Iterative Closest Point (ICP) based algorithms, the correspondences be-
tween the two point sets are known; hence, the main challenge that should be faced
during this stage is the fact that feature points can belong to static or moving objects
in the scene. Since the camera is moving there are no additional clues to differenti-
ate them easily. Hence, the use of a robust RANSAC-like technique is proposed to
find the best rigid transformation that maps the 3D points of frame (n) into their cor-
responding in frame (n+1). The closed-form solution provided by unit quaternions
[12] is chosen to compute this 3D rigid displacement, with rotation matrix R and
translation vector t between the two sets of vertices. The proposed approach works
as follows:

Random sampling. Repeat the following three steps K times (in our experiments
K was set to 100):

1. Draw a random subsample of 3 different pairs of feature points (Pn
i(x,y,z),P

n+1
i(x,y,z))k,

where Pn
i(x,y,z) ∈ Pn, Pn+1

i(x,y,z) ∈ Pn+1 and i = {1,2,3}.
2. For this subsample, indexed by k (k = 1, ....,K), compute the 3D rigid displace-

ment Dk = [Rk|tk] that minimizes the residual error ∑3
i=1 |Pn+1

i(x,y,z) −RkPn
i(x,y,z) −

tk|2. This minimization is carried out by using the closed-form solution provided
by the unit quaternion method [12].

3. For this solution Dk, compute the number of inliers among the entire set of pairs
of feature points according to a user defined threshold value.

Solution

1. Choose the best solution, i.e., the solution that has the highest number of inliers.
Let Dq be this solution.

2. Refine the 3D rigid displacement [Rq|tq] by using the whole set of couples con-
sidered as inliers, instead of the corresponding 3 pairs of feature points. A sim-
ilar unit quaternion representation [2] is used to minimize: ∑#inliers

i=1 |Pn+1
i(x,y,z) −

RqPn
i(x,y,z)− tq|2.

3.4 Frame Subtraction

The best 3D rigid displacement [Rq|tq] computed above with inliers 3D feature
points is representing the camera motion. Thus, it will be used for detecting moving
regions after motion compensation. First, the whole set of 3D data points at frame
(n) is mapped by:

̂Pn+1
i(x,y,z) = RqPn

i(x,y,z) + tq , (1)
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Fig. 3 Synthesized views representing frames (n) (from Fig. 1(le f t)) in the coordinate sys-
tems of frames (n+1), by using their corresponding rigid displacements: [Rq|tq]

where ̂Pn+1
i(x,y,z) denotes the mapping of a given point from frame n into the next frame.

Note that for static 3D points we ideally have ̂Pn+1
i(x,y,z) = Pn+1

i(x,y,z).
Once the whole set of points Pn has been mapped, we can also synthesize the

corresponding 2D view (̂In+1
(u,v)) as follows:

ûn+1
i = (round)

(

u0 + f
x̂n+1

i

ẑn+1
i

)

, (2)

v̂n+1
i = (round)

(

v0 + f
ŷn+1

i

ẑn+1
i

)

,

where f denotes the focal length in pixels, (u0,v0) represents the coordinates of the
camera principal point, and (x̂n+1

i , ŷn+1
i , ẑn+1

i ) correspond to the 3D coordinates of

Fig. 4 (le f t) D(u,v) map of moving regions, from frames (n) and (n + 1) presented in

Fig. 1(top). (right) Image difference between these consecutive frames: (|I(n) − I(n+1)|) to
illustrate their relative displacement.
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the mapped point (1). Figure 3 shows two synthesized views obtained after mapping
frames (n) (Fig. 1(left)) with their corresponding [Rq|tq].

A moving region map, D(u,v), is then computed using the difference between the
synthesized scene and the actual scene as follows:

D(u,v) =

{

0, if |̂Pn+1
i(x,y,z)−Pn+1

i(x,y,z)| < τi

(̂In+1
(u,v) + In+1

(u,v))/2, otherwise
, (3)

where, τi is a threshold directly related with the depth to the camera (since the
accuracy of the stereo rig decreases with the depth, the value of τ increases to com-
pensate that loss of accuracy). Image differences are used in the above map just to
see the correlation between intensity differences and 3D coordinate differences of
mapped points (i.e., a given point in frame (n) with its corresponding one in frame
(n + 1)). Figure 4(left) presents the map of moving regions, D(u,v), resulting from
the frame (n + 1) (Fig. 1(right)) and the synthesized view corresponding to frame

Frame (n) Frame (n+1)

Fig. 5 Feature points detected and tracked through consecutive frames

Fig. 6 (le f t) Synthesized view of frame (n) (Fig. 5(le f t)). (right) Difference between con-
secutive frames: (|I(n)− I(n+1)|) to illustrate their relative displacement (pay special attention
at the traffic lights and stop signposts)
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(n) (see Figure 3). Additionally, Fig. 4(right) illustrates the raw image difference
between the two consecutive frames (|I(n)− I(n+1)|).

4 Experimental Results

Experimental results in real environments and different vehicle speeds are presented
in this section. In all the cases large error regions correspond to both moving objects
and misregistered areas. Several video sequences were processed on a 3.2 GHz Pen-
tium IV PC. Experimental results presented in this chapter correspond to video se-
quences recorded at 10 fps. In other words the elapsed time between two consecutive
frames is about 100 ms.

The proposed algorithm takes, on average, 31 ms for registering consecutive
frames by using about 300 feature points. Fig. 1(top) shows two frames of a
crowded urban scene. This scene is particularly interesting since a large set of fea-
ture points over surfaces moving at different speed have been extracted. In this case,
the use of classical ICP based approaches (e.g., [18]) would provide a wrong scene
registration since points from static and moving objects are considered together.
The synthesized view obtained from frame (n) is presented in Fig. 3(le f t). The
quality of the registration result can be appreciated in the map of moving regions
presented in Fig. 4(left). Particularly interesting is the lamp post region, where there
is a perfect registration between the 3D coordinates of these pixels. Large errors at
the top of trees or further away regions are mainly due to depth uncertainty, which
as mentioned before grows quadratically with depth [19]. Wrong moving regions
mainly correspond to hidden areas in frame (n) that are unveiled in frame (n + 1).
Figure 4(right) presents the difference between consecutive frames (|I(n)− I(n+1)|)

Horizon Line

Fig. 7 Map of moving regions (D(u,v)) obtained from the synthesized view (̂In+1)
(Fig. 6(le f t)) and the corresponding frame (In+1) (Fig. 5(right))—bounding boxes are only
illustrative and have been placed using the information of horizon line position as in [9]
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to highlight that although these frames (Fig. 1(top)) look quite similar there is a
considerable relative displacement between them.

A different scenario is shown in the two consecutive frames presented in
Fig. 5. In that scene, the car is reducing the speed to stop for a red light, three pedes-
trian are crossing the street. Although the vehicle is reducing the speed there is a
relative displacement between these consecutive frames (see Fig. 6(right)). The
synthesized view of frame (n), using the computed 3D rigid displacement, is pre-
sented in Fig. 6(le f t). Finally, the corresponding moving regions map is depicted in
Fig. 7. Bounding boxes enclosing moving objects can provide a reliable information
to select candidate windows to be used by a classification process (e.g., a pedestrian
classifier). In this case, the number of windows would greatly decrease compared to
other approaches in the literature, such as 108 windows in an exhaustive scan [20]
or 2,000 windows in a road uniform sampling [9].

5 Conclusions

This chapter presents a novel and robust approach for moving object detection by
registering consecutive clouds of 3D points obtained by an on-board stereo camera.
The registration process is only applied over two small sets of 3D points with known
correspondences by using key point features extraction and a RANSAC-like tech-
nique based on the closed-form solution provided by the unit quaternion method.
Then, a synthesized 3D scene is obtained after mapping the whole set of points
from the previous frame to the current one. Finally, a map of moving regions is gen-
erated by considering the difference between current 3D scene and the synthesized
one.

As future work more evolved approaches for combining registered frames will be
studied. For instance, instead of only using consecutive frames, temporal windows
including more frames are likely to help filtering out noisy areas. Furthermore, color
information of each pixel could be used during the estimation of the moving region
map.
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