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Abstract. This paper proposes the use of a CycleGAN architecture for thermal
image super-resolution under a transfer domain strategy, where middle-resolution
images from one camera are transferred to a higher resolution domain of another
camera. The proposed approach is trained with a large dataset acquired using
three thermal cameras at different resolutions. An unsupervised learning process
is followed to train the architecture. Additional loss function is proposed trying to
improve results from the state of the art approaches. Following the first thermal
image super-resolution challenge (PBVS-CVPR2020) evaluations are performed.
A comparison with previous works is presented showing the proposed approach
reaches the best results.
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1 Introduction

Single Image Super-Resolution (SISR) is a challenging ill-posed problem that refers to
the task of restoring high-resolution (HR) images from a low-resolution (LR) image of
the same scene, usually with the use of digital image processing or Machine Learning
(ML) techniques. Super-Resolution is wide used in several applications, such as medical
imaging (e.g., [25]), object detection (e.g., [12]), security (e.g., [31,39]), among others.
In recent years deep learning techniques have been applied to SISR problem achiev-
ing remarkable results with respect to state-of-the-art approaches. Most of these tech-
niques are focused on the visible domain—i.e., RGB images. Long-wavelength infrared
(LWIR) images, also referred to in the literature as thermal images, have become very
important in several challenging fields (e.g., dark environments for military security,
medicine for mama cancer detection [14] or for car driving assistance [8] are just three
examples where these images can be used). Thermal cameras capture the information
of LWIR spectra, which is the radiation emitted by the object’s surface when their tem-
perature is above zero [11].

Unfortunately, most of the thermal cameras in the market have poor resolution, due
to the technology limitation and the high price of that technology. Thermal cameras
c© Springer Nature Switzerland AG 2022

K. Bouatouch et al. (Eds.): VISIGRAPP 2020, CCIS 1474, pp. 495–506, 2022.
https://doi.org/10.1007/978-3-030-94893-1_23



496 R. E. Rivadeneira et al.

with a high-resolution are considerably expensive with respect to low-resolution ones.
Due to this limitation and a large number of applications based on their use, single
thermal image super-resolution (SThISR) has become an attractive research topic in the
computer vision community.

In the visible spectrum exists thousands of images captured with HD cameras,
which are very useful for training networks used in the SISR problem. On the con-
trary to the visible spectrum domain, thermal images tend to have a poor resolution and
there are a few HD datasets. Due to the lack of thermal images, a novel dataset was
recently proposed in [29] containing images with three different resolutions (low, mid,
and high) obtained with three different thermal cameras. This dataset has been used
in the first thermal image super-resolution challenge on PBVS-CVPR2020 conference,
where several teams have participated and a baseline has been obtained. The current
work is focused on two topics; firstly, a novel CycleGAN architecture is proposed,
which makes use of a novel loss function (SOBEL cycle loss) to achieve better results
than the ones obtained in PBVS-CVPR2020 challenge [28]; secondly, the dataset pre-
sented in PBVS-CVPR2020 is enlarged with new images that help to generalize the
training phase to ensure that the architecture is enough to SR any thermal image char-
acteristics.

The manuscript is organized as follows. Section 2 presents works related to the top-
ics tackled in the current work. The used datasets and the proposed architecture are
detailed in Sect. 3. Results are provided in Sect. 4. Finally, conclusions are given in
Sect. 5.

2 Related Work

Single Image Super-Resolution (SISR) is a classic problem in the computer vision com-
munity, most often for images from the visible spectrum. In this section, common ther-
mal image datasets used as benchmarks by the community, together with the state of
the art SISR approaches in the thermal image domain, are reviewed.

2.1 Benchmark Datasets

Visible spectrum HD images, for training SR networks and evaluating their perfor-
mance, is not a problem due it large variety of datasets available in the literature (e.g.,
[1,2,15,22,23,34,37], among others). These HR images have been acquired in differ-
ent scenarios covering a large set of objects’ category (e.g., building, people, food, cars,
among others) at different resolutions. On the contrary to the visible spectrum, in the
thermal image domain, there are just a few datasets available in the literature, most of
them in low resolution (e.g., [7,16,26], among others); actually, thermal image datasets
available in the literature have been designed for other specific applications (e.g., bio-
metric domain, medical, security) but used to tackle the thermal image super-resolution
problem. Up to our knowledge, [36] is the largest HR thermal image dataset available
in the literature; this dataset consists of full-resolution 1024 × 1024 images, collected
with a FLIR SC8000, containing 63782 frames; the main drawback of this dataset is
that all the images come from the same scenario.
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Trying to overcome the lack of datasets intended for thermal images SR task, in
[30] a novel dataset is presented. It consists of 101 images acquired with a HR TAU2
FLIR camera, with a native resolution of 640 × 512 pixels of different scenarios (e.g.
indoor, outdoor, day, night). A very large dataset (FLIR-ADAS) has been released by
FLIR1, it provides an annotated thermal images set for training and validation object
detection neural networks. This dataset was acquired also with a TAU2 thermal camera
but mounted on a vehicle. Provided images are with a resolution of 640 × 512. It con-
tains a total of 14452 thermal images sampled from short videos taken on streets and
highways. This dataset was intended for driving assistance applications, although can
be used for the super-resolution problem.

Most of these datasets are not large enough to reach good results when heavy SR
learning-based approaches are considered; furthermore, the datasets mentioned above
contain images obtained from just one thermal camera. Having in mind all these lim-
itations, recently [29] presents a novel dataset that consists of a set of 1021 thermal
images acquired with three different thermal cameras, which acquire images at differ-
ent resolutions. The dataset contains images of outdoor scenarios with different daylight
conditions (e.g., morning, afternoon, and night) and objects (e.g., buildings, cars, vege-
tation), mounting the cameras in a rig trying to minimize the baseline distance between
the optical axis to get an almost registered image. This dataset has been used as a bench-
mark in the first thermal image super-resolution challenge organized on the workshop
Perception Beyond the Visible Spectrum of CVPR2020 conference [28].

2.2 Super-Resolution

The image SR is a classical issue, and still a challenging problem in the computer vision
community and can be categorized as single-image SR (SISR) and multi-image SR
(MISR), where SISR task is more challenging than MISR due to the lack of features that
can be obtained in just one image rather than multiple images of the same scene. SISR
has been studied in the literature for years and can be roughly classified as interpolation-
based SR (conventional and traditional methods) and deep learning-based SR.

SRCNN [9] for the first time introduced deep learning in the SR field, showing the
capability to improve the quality of SR results in comparison to traditional methods.
Inspired in SRCNN, [18] proposes a VDSR network showing significant improvement.
The authors propose to use more convolutional layers, increasing the depth of the net-
work from 3 to 20 layers, and adopt global residual learning to predict the difference
between generated image from the ground-truth (GT) image instead pixel-wise. FSR-
CNN [10] gets better computational performance by extracting the feature maps on a
low-resolution image and just in the last layer up-sampled it reducing the computational
cost. Inspired by these works, different approaches to the image SR problem have been
published using deeper networks using more convolutional layers with residual learn-
ing (e.g., [18,38]). Recently, several SR approaches using CNN (e.g., SRFeat-M [27],
EDSR [20], RCAN [40]) have been proposed obtaining state-of-the-art performance for
visible LR images. The CNNs mentioned above aim to minimize the difference between

1 FREE FLIR Thermal Dataset for Algorithm Training https://www.flir.in/oem/adas/adas-
dataset-form/.
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SR and GT images by using a supervised training process with a pair of images hav-
ing a pixel-wise registration. In general, the strategy followed by these approaches is to
down-sample the given HR image, add random noise or blur it, and then use it as the
input LR image.

To overcome the limitation of having a pixel-wise registration between SR and GT
images, unsupervised approaches have been proposed. For instance, [32] proposes a
single image super-resolution approach, referred to as SRGAN, which achieves impres-
sive state-of-the-art performance. This approach is inspired by the seminal Generative
Adversarial Network (GAN) presented in [13]. In recent literature, different unsuper-
vised training processes have been presented for applications such as transferring style
[3], image colorization [24], image enhancement [4], feature estimation [33], among
others. All these approaches are based on two-way GANs (CycleGAN) networks that
can learn from unpaired data sets [41]. CycleGAN can be used to learn how to map
images from one domain (source domain) into another domain (target domain). This
functionality makes CycleGAN models appropriate for image SR estimation when there
is not a pixel-wise registration.

Most of the SR approaches mentioned above are focused on images from the visible
spectrum. Based on SRCNN, [5] propose the first approach named Thermal Enhance-
ment Network (TEN). Due to the lack of thermal image dataset, TEN uses RGB images
for training. In [30], a dataset of 101 HR thermal images have been considered and,
in conclusion, the authors state that better results are obtained if the network is trained
using images from the same spectral band. Recently, [21] uses a concept of multi-image
SR (MISR) for thermal imaging SR. As mentioned above, in [29] a novel dataset using
three different camera resolutions has been proposed; this dataset is used to train a
CycleGAN architecture that makes a transfer domain from a LR image (from one cam-
era) to a HR image (of another camera), without pairing the images. Using this dataset
as a reference, in [28] two kinds of evaluations are proposed, the first evaluation con-
sists of down-sampling a HR thermal images by ×2, ×3 and ×4 and comparing their
SR results with the corresponding GT images. The second evaluation consists in obtain-
ing the ×2 SR from a given MR thermal image and comparing it with its corresponding
semi registered HR image. Results from this work are considered as baseline measures
for future works in the thermal images super-resolution—MLVC-Lab [6] and Couger
AI [17] corresponds to the approaches with the best results according to the mentioned
evaluations.

3 Proposed Approach

In Sect. 3.1, details of the proposed architecture are given together with information
about the proposed loss function. Additionally, in Sect. 3.2, the datasets used for training
and validation are described. Finally, the process followed to evaluate the performance
of the proposed approach is introduced.

3.1 Architecture

The proposed approach is based on the usage of Cycle Generative Adversarial Net-
work (CycleGAN) [41], widely used for map feature maps from one domain to another
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domain. In the current work, this framework is used to tackle the SR problem by map-
ping information from the mid-resolution (MR) to the high-resolution (HR) domain. As
shown in Fig. 1, the proposed approach consists of two generators (MR to HR and HR
to MR), with their corresponding discriminators (DISC MR and DISC HR) that vali-
date the generated images. As generators, a ResNet with 6 residual blocks (ResNet-6)
is considered. It uses optimization to avoid degradation in the training phase. The resid-
ual blocks have convolutional layers, with instant normalization and ReLu, and skip
connections. As discriminators a patchGAN architecture is considered; the generated
image and a non paired GT image are used to validate if the output is real or not.

Fig. 1. CycleGAN architecture with 6 blocks ResNet for MR to HR generator and for HR to MR;
with cycled + Sobel Loss and Identity + SSIM loss, and it respective discriminators.

Following the architecture presented in [29], a combination of different loss func-
tions is used: i) adversarial loss LAdversarial, ii) cycle loss LCycle, iii) identity loss
LIdentity , and iv) structural similarity loss LSSIM ; additionally, another loss term,
Sobel loss LSobel, is proposed. Sobel loss consist in apply Sobel filter edge detector
[19] to the input image and the cycled generated image, and get the mean square dif-
ference between both images, helping to evaluate the contour consistency between the
two images. Details on each of these loss terms are given below—Fig. 1 illustrates these
terms.

The adversarial loss is designed to minimize the cross-entropy to improve the tex-
ture loss:

LAdversarial = −
∑

i

logD(GM2H(IM ), IH), (1)

where D is the discriminator, GM2H(IM ) is the generated image, IM and IH are the
low and high-resolution images respectively.
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The cycled loss (LCycled) is used to determinate the consistency between input and
cycled output; it is defined as:

LCycled =
1
N

∑

i

||GH2M (GM2H(IM )) − IM ||, (2)

where GM2H and GH2M are the generators that go from one domain to the other
domain.

The identity loss (LIdentity) is used for maintaining the consistency between input
and output; it is defined as:

LIdentity =
1
N

∑

i

||GH2M (IM ) − IM ||, (3)

where G is the generated image and I is the input image.
The structural similarity loss (LSSIM ) for a pixel P is defined as:

LSSIM =
1

NM

P∑

p=1

1 − SSIM(p), (4)

where SSIM(p) is the Structural Similarity Index (see [35] for more details) centered
in pixel p of the patch (P ). The Sobel loss (LSobel) is used to determinate the edge
consistency between input and cycled output; it is defined as:

LSobel =
1
N

∑

i

||Sobel(GH2M (GM2H(IM ))) − Sobel(IM )||, (5)

where GM2H and GH2M are the generators that go from one domain to the other
domain and Sobel gets the contour of the images.

The total loss function (Ltotal) used in this work is the weighted sum of the indi-
vidual loss function terms:

Ltotal = λ1LAdversarial + λ2LCycled + λ3LIdentity + λ4LSSIM + λ5LSobel, (6)

where λi are weights empirically set for each loss function.

3.2 Datasets

The proposed approach is trained by using two datasets. The novel dataset from [29]
and the FLIR-ADAS mentioned in Sect. 2.1. For the first dataset, only mid-resolution
(MR) and high-resolution (HR) images, acquired with two different cameras at different
resolutions (mid and high resolution) are considered; each resolution set has 951 images
and 50 images are left for testing. Figure 2 shows some illustrations of this dataset, just
images from the mid-resolution and high-resolution are depicted.

For the second dataset, which contains 8862 training images, just one out of nine
images have been selected, resulting in a sub-set of 985 images. This subsampling pro-
cess has been applied in order to have more different scenarios since these images cor-
respond to a video sequence, consecutive images are quite similar. Figure 3 shows some
illustrations from this second dataset.
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Fig. 2. Examples of thermal images. (top) MR images from Axis Q2901-E. (bottom) HR images
from FC-6320 FLIR [29].

Both datasets have HR images with a native resolution of 640 × 512; these images
have been cropped to 640 × 480 pixels, centered, to be exactly x2 of MR images;
both datasets have 8bits and are saved in jpg format, so both have similar scenarios but
acquired in different places and conditions.

The main idea is to train the network with a shuffle mix of images between these
two datasets, having the same proportion of images, sizes, and the same condition’s
scenarios. As mention in Sect. 3.3, the validation is done with the same set of images
used in the PBVS-CVPR2020 challenge [28], to compare the results with the most
recent results in the state-of-the-art literature.

Fig. 3. Examples of the Free FLIR Thermal Dataset for Algorithm Training (FLIR-ADAS).

3.3 Evaluation

The quantitative evaluations of the proposed method are performed as proposed in [29]
for MR to HR case; this evaluation has been adopted in the PBVS-CVPR2020 Chal-
lenge [28], referred to as evaluation2, which consists in getting the average results of
PSNR and SSIM measures on the generated SR of mid-resolution images and com-
pared with the semi registered high-resolution image obtained from the other camera.
This process is illustrated in Fig. 4. Just a centered region containing 80% of the image
is considered in order to use these measures. For a fair comparison, the images from the
validation set are the same ones used in the previous works mentioned above. Results
from this evaluation2 are compared with those presented in [29].
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Fig. 4. PBVS-CVPR2020 challenge evaluation2 approach [28].

4 Experimental Results

This section presents the results obtained with the unsupervised SThISR architecture
proposed in this work. Section 4.1 describes the settings used for training the proposed
approach, while Sect. 4.2 presents the quantitative results.

4.1 Settings

The proposed approach is trained on a NVIDIA Geforce GTX mounted in a worksta-
tion with 128 GB of RAM, using Python programming language, Tensorflow 2.0, and
Keras library. Only the two datasets mentioned in Sect. 2.1 are considered, no data-
augmentation process has been applied to the given input data.

Images are up-sampled by bicubic interpolation, due to the CycleGAN transfer
domain (from mid to high resolution) needs images at the same resolution. Images are
normalized in a [−1, 1] range. The network was trained for 100 epochs without dropout
since the model does not present overfit. The generator is a ResNet with 6 residual
blocks (ResNet-6) using Stochastic AdamOptimizer to prevent over fittings and lead
to faster convergent and avoiding degradation in the training phase. The discriminators
use a patchGAN architecture, and it validates if the generated image together with the
GT images is real or not. For each epoch in the training phase, input images were shuf-
fle random mix. The hyper-parameters used were 0.0002 for learning rate for both the
generator and the discriminator networks; epsilon = 1e−05; exponential decay rate for
the 1st moment momentum 0.5 for the discriminator and 0.4 for the generator. For λi

values weights in losses, the set of values that obtain the best results were: for LCycled

= 10, LIdentity = 5, LSSIM = 5 and LSobel = 10. The proposed architecture has been
trained twice, one with just the first dataset and once with both datasets.

4.2 Results

The quantitative results obtained for each training, together with previous works and
other approaches from the PBVS-CVPR2020 Challenge are shown in Table 1 using
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PSNR and SSIM measures comparison. The best results are highlighted in bold and the
second-best result is underline. As can be appreciated, the proposed SThISR approach
achieves better results than other works. Between both current work results, using just
one dataset gets seven-tenths better PSNR results rather than using both datasets. SSIM
measure gets higher result using the two datasets buts just by one-thousandth. These
results show that using just the first dataset the proposed approach archive better results,
meaning that this dataset is varied enough to train a network and that it is possible to do
a Single Thermal Image Super-Resolution between two different domains using images
acquired with different camera resolutions and without registration.

Table 1. Quantitative average results of evaluation detail in Sect. 3.3. +Winner approaches at the
PBVS-CVPR2020 Challenge. Work1 using just first dataset; Work2 using both datasets. Bold and
underline values correspond to the first and second best results respectively.

Approachs’ PSNR SSIM

Bicubic interpolation 20,24 0,7515

[29] 22,42 0,7989

MLVC-Lab+ 20,02 0,7452

COUGER AI+ 20,36 0,7595

Current work1 22,98 0,8032

Current work2 22,27 0,8045

Regarding the quality of the obtained results, Fig. 5 shows the worst and best super-
resolution results from the validation set. The worst result gets 20.11/0.6464 PSNR
and SSIM measures respectively; it should be mentioned that although it is the worst

Fig. 5. Examples quality results. (top) from left to right, MR image, HR image, worst results.
(bottom) best results.
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result from the whole validation set, it is considerably better than the results obtained
with a bicubic interpolation: 17.36/0.6193 PSNR and SSIM respectively. In the case of
the best result, a 26.06/0.8651 PSNR and SSIM measures respectively are obtained, in
this case, the bicubic interpolation reaches 19.41/0.8021 PSNR and SSIM respectively.
In conclusion, it could be stated that the most challenging scenarios are those with
objects at different depth and complex textures, on the contrary, it can be appreciated
that scenes with planar surfaces are more simple to obtain their corresponding super-
resolution representation.

5 Conclusions

This paper presents an extended version of the work presented at VISAPP 2020.
Two datasets are considered during the training stage, and adjusting different hyper-
parameters values on loss function in CycleGAN and adding a Sobel loss. The proposed
approach has shown an improvement on previous work and achieved better results on
state-of-the-art values comparing to the results from the first challenge on SR thermal
images in terms of PSNR and SSIM measures. It should be mentioned that the pro-
posed SThISR architecture is trained using an unpaired set of images. The first dataset
has large variability, showing that its not necessary the use of other datasets.
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