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1. Introduction 

Traffic accidents have become an important cause of fatality in modern countries. For 
instance, in 2002, motor vehicle accidents represented the half of non-natural death in the 
United States (National Center of Health Statistics, 2002); while in 2003 there were reported 
almost 150,000 injured and 7,000 killed in pedestrian accidents only in the European Union 
(United Nations Economic Commission for Europe, 2005). In order to improve safety, the 
industry has progressively developed different elements of increasing complexity and 
performance: from turn signals and seat belts to Anti-lock Braking Systems (ABS) and 
internal Airbags. Recently, research has moved towards even more intelligent on-board 
systems that aim to anticipate and prevent the accidents, or at least, minimize their effects 
when unavoidable. They are referred as Advanced Driver Assistance Systems (ADAS), in 
the sense that they assist the driver to take decisions, provide warnings in dangerous 
driving situations, and even at taking automatic evasive actions in extreme cases. 
One of the most prominent components of ADAS are the vision systems (monocular or 
stereo), which capture in a single snapshot all the surrounding information. Although 
monocular vision systems allow higher acquisition/processing rates, the use of on-board 
stereo vision heads is gaining popularity in ADAS applications. Stereo rigs are able to 
provide 3D information useful for facing up problems that can not be tackled with 
monocular systems (e.g., reliable distance estimation). Furthermore, the current technology 
is producing more and more inexpensive and compact stereo vision systems that let us think 
on a promising future. 
Accurate and real time camera pose estimation is one of the common difficulties of on-board 
vision systems. Applications such as obstacle avoidance, pedestrian detection, or traffic 
signal recognition, could both speed up the whole process and make use of additional 
information by a precise estimation of the current camera extrinsic parameters, related to the 

                                                                

This work has been partially supported by the Spanish Ministry of Education and Science under 
project TRA2004-06702/AUT. First and third authors were supported by The Ramón y Cajal 
Program. Second author was supported by Spanish Ministry of Education and Science grant 
BES-2005-8864.

Source: Scene Reconstruction, Pose Estimation and Tracking, Book edited by: Rustam Stolkin,
ISBN 978-3-902613-06-6, pp.530, I-Tech, Vienna, Austria, June 2007



Scene Reconstruction, Pose Estimation and Tracking 40

road. Most of recent works (e.g., Bertozzi et al., 2003b; Coulombeau & Laurgeau, 2002; Liang 
et al., 2003; Ponsa et al., 2005; Labayrade & Aubert, 2003) assume, or impose, a scene prior 
knowledge to simplify the problem. Although prior knowledge has been extensively used to 
tackle the driver assistance problem, it should be carefully used since it may lead to wrong 
results. Unlike previous works, this chapter presents an approach to estimate in real time 
stereo vision camera pose by using raw 3D data points. 
This chapter is organized as follows. Section 2 summarizes some of the approaches 
proposed in the literature to compute on-board vision system pose. The proposed approach 
is described in section 3. Section 4 presents experimental results on urban scenes, together 
with comparisons with (Sappa et al., 2006). Finally, conclusions and further improvements 
are given in section 5. 

2. Previous Approaches 

In this work, since we only have a road plane equation, the camera pose will refer to two 
independent angles plus a translational distance. Several techniques have been proposed in 
the literature for robust vision system pose estimation. They can be classified into two 
different categories: monocular or stereo. In general, monocular systems are used on an off-
line pose estimation basis. To this end, the car should be at rest and should face a flat road; 
once the camera pose is estimated its values are assumed to keep constant, or vary within a 
predefined range, during the on-line process (e.g., Ponsa et al., 2005; Bertozzi et al., 2003b). 
Although useful in most of highway scenarios, constant camera position and orientation is 
not a valid assumption to be used in urban scenarios since in general, vehicle pose is easily 
affected by road imperfections or artifacts (e.g., rough road, speed bumps), car’s 
accelerations, uphill/downhill driving, to mention a few. Notice that since the vision system 
is rigidly attached to the vehicle, camera pose and vehicle pose are indistinctly used through 
this work. 
In order to tackle urban scenarios, some monocular systems have been proposed to 
automatically compute camera pose by using the prior knowledge of the environment (e.g., 
Franke et al., 1998; Bertozzi et al., 2003a; Suttorp & Bücher, 2006). However, scene prior-
knowledge not always can help to solve problems, in particular when cluttered and 
changing environment are considered, since visual features are not always available. 
On the contrary to monocular approaches, stereo based systems in general are used on an 
on-line pose estimation basis. Since 3D data points are computed from every stereo pair, the 
corresponding vision system pose can be directly estimated related to these data whenever 
required. Broadly speaking, two different stereo matching schemes are used to compute 3D 
data points, either matching edges and producing sparse depth maps or matching all pixels 
in the images and producing dense depth maps (Faugeras & Luong, 2001). The final 
application is used to define whether preference is given to edge-based correspondences or 
to dense stereo correspondences. In general, for a successful reconstruction of the whole 
environment it is essential to compute dense disparity maps defined for every pixel in the 
entire image. However, the constraint of having a reduced computational complexity some 
times prevents the use of dense disparity maps. This very challenging problem has been 
usually tackled by making assumptions regarding the scene or by imposing constraints on 
the motion of the on-board stereo system. Furthermore, several solutions are proposed in 
order to compute 3D data points in a fast way based on ad hoc or application-oriented 
stereo vision systems. Although attractive, from the point of view of reduced processing 
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time, the use of ad hoc stereo vision systems is limited since no other approaches could take 
advantage of those application-oriented 3D data points. 
Different techniques relying on stereo vision systems have been proposed in the literature 
for driver assistance applications. For instance, the edge based v-disparity approach 
proposed in (Labayrade et al., 2002), for an automatic estimation of horizon lines and later 
on used for applications such as obstacle or pedestrian detection (e.g., Bertozzi et al., 2005; 
Broggi et al., 2003; Hu & Uchimura, 2005); it only computes 3D information over local 
maxima of the image gradient. A sparse disparity map is computed in order to obtain a real 
time performance. This v-disparity approach has been extended to a u-v-disparity concept in 
(Hu & Uchimura, 2005). In this new proposal, dense disparity maps are used instead of only 
relying on edge based disparity maps. Working in the disparity space is an interesting idea 
that is gaining popularity in on-board stereo vision applications, since planes in the original 
Euclidean space become straight lines in the disparity space. Up to our knowledge, all the 
approaches proposed to work on v-disparity space are based on Hough transform algorithm 
for extracting straight lines. 
In this chapter a real time approach able to handle the whole 3D data points of a scene is 
presented. Hence, while the proposed technique is intended to estimate the stereo vision 
camera pose parameters, collision avoidance algorithms or pedestrian detection could make 
use of the same 3D data together with the estimated camera pose. In other words, the 
underlying idea of the proposed approach is to develop a standalone application that runs 
independently from others applications or hardware systems. In this sense, a commercial 
stereo pair is used, instead of relying on an ad hoc technology. This will allow us in the 
future to upgrade our current stereo vision sensor without changing the proposed 
technique. 

3. Proposed Approach 

The proposed approach consists of two stages. Initially, 3D data are mapped onto YZ plane 
(see Fig. 1), where a set of candidate points are selected⎯candidates to belong to the road. 
The main objective of this first stage is to take advantage of the 2D structured information 
before applying more expensive processing algorithms working with raw 3D data. 
Secondly, a RANSAC based least squares fitting is used to estimate the parameters of a 
plane (i.e., road plane) fitting to those candidate points. Finally, camera position and 
orientation are directly computed, referred to the fitted plane. Similarly to (Sappa et al., 
2006), the provided results could be understood as a piecewise planar approximation, due to 
the fact that road and camera parameters are continuously computed and updated. Note 
that since on-board vision system pose is related to the current 3D road plane, camera 
position and orientation are equivalent to the 3D road plane parameters⎯3D plane 
parameters are expressed in the camera coordinate system. The proposed technique could 
be indistinctly used for urban or highway environments, since it is not based on a specific 
visual traffic feature extraction but on raw 3D data points. Before going into details about 
the proposed approach, the on-board stereo vision system is briefly introduced. 
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3.1 Stereovision System 

A commercial stereo vision system (Bumblebee from Point Grey1) was used. It consists of 
two Sony ICX084 colour CCDs with 6mm focal length lenses. Bumblebee is a pre-calibrated 
system that does not require in-field calibration. The baseline of the stereo head is 12cm and 
it is connected to the computer by a IEEE-1394 connector. Right and left colour images were 
captured at a resolution of 640×480 pixels and a frame rate near to 30 fps. After capturing 
these right and left images, 3D data were computed by using the provided 3D 
reconstruction software. Fig. 1 shows an illustration of the on board stereo vision system. 

Figure 1. On-board stereo vision sensor with its corresponding coordinate system 

3.2 3D data point projection and noisy data filtering 

Let S(r,c) be a stereo image with R rows and C columns, where each array element (r,c) 
(r∈[0,(R-1)] and c∈[0,(C-1)]) is a scalar that represents a surface point of coordinates (x,y,z),
referred to the sensor coordinate system. Fig. 1 depicts the sensor coordinate system 
attached to the vehicle's windshield. Notice that vertical variations between consecutive 
frames⎯due to road imperfections, car accelerations, changes in the road slope: 
flat/uphill/downhill driving, etc⎯will mainly produce changes on camera height and pitch 
angle (camera height is defined as the distance between the origin of the coordinate system 
and the road plane). In other words, yaw and roll angles are not so affected by those 
variations. Even though the roll angle is not plotted in this paper, its value is easily retrieved 
from the plane equation. The estimation of yaw angle is not considered in this work. 
The aim at this stage is to find a compact subset of points, ζ, containing most of the road 
points. Additionally, noisy data points should be reduced as much as possible in order to 
avoid both a very time consuming processing and a wrong plane fitting. 
Original 3D data points (xi, yi, zi) are mapped onto a 2D discrete representation P(u,v);
where u = (yi ⋅ σ  and v = (zi ⋅ σ . σ represents a scale factor defined as: 
σ=((R+C)/2)/((ΔX+ΔY+ΔZ)/3); R, C are the image's rows and columns respectively, and 
                                                                
1 www.ptgrey.com
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(ΔX, ΔY, ΔZ) is the working range in every dimension⎯on average (34×12×50) meters. Every 
cell of P(u,v) keeps a pointer to the original 3D data point projected onto that position, as 
well as a counter with the number of mapped points. Fig. 2(top-right) shows the 2D 
representation obtained after mapping the 3D cloud presented in Fig. 2(left)⎯every black 
point represents a cell with at least one mapped 3D point. 

0

Figure 2. (left) 3D data points from the stereo rig. (top-right) Points projected to the YZ plane. 
(bottom-right) Cells finally selected to be used during the plane fitting stage (notice that one 
cell per column has been selected using the dynamic threshold) 

Finally, points defining the ζ subset are selected by picking up one cell per column. This 
selection process is based on the assumption that the road surface is the predominant 
geometry in the given scene⎯urban or highway scenarios. Hence, it goes bottom-up, in the 
2D representation, through every column, and picks the first cell with more points than an 
adaptive threshold, τ. Cells containing less mapped points than τ are filtered by setting to 
zero its corresponding counter⎯points mapped onto those cells are considered as noisy 
data. The value of τ is defined for every column as 80% of the maximum amount of points 
mapped onto the cells of that column. It avoids the use of a fixed threshold value for all 
columns. Recall that the density of points decreases with the distance to the sensor, hence 
the threshold value should depend on the depth⎯the column position in the 2D mapping. 
This is one of the differences with respect to (Sappa et al., 2006), where a constant threshold 
value was defined. Fig. 2(bottom-right) depicts cells finally selected. The ζ subset of points 
gathers all the 3D points mapped onto those cells. 

3.3 RANSAC based plane fitting 

The outcome of the previous stage is a subset of points, ζ, where most of them belong to the 
road. In the current stage a RANSAC based technique (Fischler & Bolles, 1981) is used for 
fitting a plane to those data2, ax+by+cz=1. In order to speed up the process, a predefined 
threshold value for inliers/outliers detection has been defined (a band of ±5cm was enough 
for taking into account both 3D data point accuracy and road planarity). An automatic 
threshold could be computed for inliers/outliers detection following robust estimation of 
standard deviation of residual errors (Rousseeuw & Leroy, 1987). 
                                                                
2 Notice that the general expression ax+by+cz+d=0 has been simplified dividing by (-d), since 

we already know that (d 0).
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Figure 3. Results from a short video sequence: (left) Camera height; (right) Camera pitch 
angle

The proposed plane fitting works as follows. 

Random sampling: Repeat the following three steps K times (in our experiments K=100)
1. Draw a random subsample of 3 different 3D points from ζ.
2. For this subsample, indexed by k (k = 1, .... , K), compute the plane parameters (a,b,c).
3. For this solution (a,b,c)k, compute the number of inliers among the entire set of 3D 

points contained in ζ, as mentioned above using ±5cm as a fixed threshold value. 

Solution: 
1. Choose the solution that has the highest number of inliers. Let (a,b,c)i, be this solution. 
2. Refine (a,b,c)i considering its corresponding inliers, by using the least squares fitting 

approach (Wang et al., 2001), which minimize the square residual error (1-ax-by-cz)2.
3. In case the number of inliers is smaller than 10% of the total amount of points contained 

in ζ, those plane parameters are discarded and the ones corresponding to the previous 
frame are used as the correct ones. In general, this happens when 3D road data are not 
correctly recovered since occlusion or other external factor appears. 

Finally, camera height (h) and orientation (Θ), referred to the fitted plane (a,b,c), are easily 

computed. Camera height is given by: h = 1/ 222 cba ++ . Camera orientation⎯pitch 
angle⎯is directly computed from the current plane orientation: Θ = arctan(c/b). Both values 
can be represented as a single one by means of the horizon line (e.g., Zhaoxue & Pengfei, 
2004; Rasmussen, 2004a; Rasmussen, 2004b), in particular this compact representation will 
be used in the next section for comparisons. The horizon line position (vi) for a given frame 
(i) is computed by back-projecting into the image plane a point lying over the plane, far 
away from the camera reference frame, Pi(x, y, z). Let (yi = (1 - czi)/b) be the y coordinate of Pi

by assuming xi=0. The corresponding yi back-projection into the image plane, which define 
the row position of the sought horizon line, is obtained as vi = v0 + f yi / zi = v0 + f/(zi b) – f c/b;
where, f denotes the focal length in pixels; v0 represents the vertical coordinate of the 
principal point; and zi is the depth value of Pi (in the experiments zi = 10,000).
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Figure 4. (top) Horizon line for the video sequence presented in Fig. 3. (bottom) Two single 
frames with their corresponding horizon line 

4. Experimental Results 

The proposed technique has been tested on different urban environments. The proposed 
algorithm took, on average, 350 ms per frame on a 3.2 GHz Pentium IV PC with a non-
optimized C++ code. 
Fig. 3 presents variations in the camera height and pitch angle during a sequence of about 
one minute long⎯only variations in the camera height position and pitch angle are plotted, 
both related to the current fitted plane. Notice that, although short, this video sequence 
contains downhill/uphill/flat scenarios (see Fig. 4 (bottom)). This illustration shows that 
variations in the camera position and orientation cannot be neglected, since they can change 
considerably in a short trajectory (something that does not happen on highways scenarios). 
These variations can be easily appreciated on the horizon line representation presented in 
Fig. 4 (top).
A comparison between the proposed technique and (Sappa et al., 2006) has been performed 
using a 100 frame-long-video sequence. The main difference between these techniques lies 
on the way cells to be fitted are selected, section 3.2. Fig. 5 presents camera height and pitch 
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angle of both approaches. Fig. 6 depicts the corresponding horizon line position, computed 
with both approaches, as a function of the sequence frames. Although both approaches give 
similar results, values obtained with the new proposal are more reliable and fit better the 
current road geometry, since not only cells near to the sensor but the whole set of point on 
the direction of the camera optical axis is used. Finally, Fig. 7 presents four single frames of 
this video sequence together with their corresponding horizon line. 
The proposed technique is already being used on a shape-based pedestrian detection 
algorithm (Gerónimo et al., 2006) in order to speed up the searching process. Although out 
of the scope of this paper, Fig. 8 presents illustrations of two different scenarios showing the 
importance of having the right estimation of camera position and orientation. In these 
illustrations, (a), (b) and (c) columns show results by using three different, but constant, 
horizon line positions, while (d) column depicts the corresponding results obtained by using 
a horizon line position automatically computed by the proposed technique. Following the 
algorithm presented in (Ponsa et al., 2005), a 3D grid, sampling the road plane, is projected 
on the 2D image. The projected grid nodes are used as references to define the bottom-left 
corners of pedestrian sized searching windows. These windows, which have a different size 
according to their corresponding 3D depth, move backward and forward over the assumed 
plane looking for a pedestrian-like shape. Therefore, a wrong road plane orientation⎯i.e., 
horizon line⎯drives to a wrong searching space, so that the efficiency of the whole 
algorithm decreases. A few searching bounding boxes are highlighted in Fig. 8 to show their 
changes in size according to the distance to the camera. 

Figure 5. Results obtained by using the proposed technique (dynamic threshold) and (Sappa 
et al., 2006) (fixed threshold): (top) Camera height; (bottom) Camera pitch angle 
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Figure 6. Horizon line position corresponding to the sequence presented in Figure 5. 

Figure 7. Horizon line for four different frames of the sequence presented in Figure 5. 
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(a) (b) (c) (d)

Figure 8. Searching bounding boxes using fixed and automatically computed horizon lines. 
In all the cases only very few bounding boxes are highlighted. Fixed horizon line 
ASSUMING: (a) an uphill road; (b) a flat road; (c) a downhill road. (d) Automatically 
computed horizon line by using the proposed technique. Notice that, only in the latter case, 
the horizon line position is correctly placed in both scenarios. 

5. Conclusions and Further Improvements 

An efficient technique for a real time pose estimation of an on-board camera has been 
presented. It improves a previous proposal (Sappa et al., 2006) by defining a dynamic 
threshold for selecting points to be fitted. After an initial mapping and filtering process, a 
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compact set of points is chosen for fitting a plane to the road. The proposed technique can fit 
very well to different road geometries, since plane parameters are continuously computed 
and updated. A good performance has been shown in several scenarios⎯uphill, downhill 
and flat roads. Furthermore, critical situations such as car's accelerations or speed bumps 
were also considered. Although it has been tested on urban environments, it could be also 
useful on highways scenarios. 
Further work will be focused on developing new strategies in order to reduce the initially 
chosen subset of points; for instance by using a non-constant cell size for mapping the 3D 
world to 2D space (through the optical axis). A reduced set of points will help to reduce the 
whole CPU time. Furthermore, the use of Kalman filtering techniques and other geometries 
for fitting road points will be explored.
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