
Approximation and Processing of Intensity Images with 
Discontinuity-Preserving Adaptive Triangular Meshes 

Abstract. A new algorithm for approximating intensity images with adaptive
triangular meshes keeping image discontinuities and avoiding optimization is
presented. The algorithm consists of two main stages. In the first stage, the
original image is adaptively sampled at a set of points, taking into account
both image discontinuities and curvatures. In the second stage, the sampled
points are triangulated by applying a constrained 2D Delaunay algorithm. The
obtained triangular meshes are compact representations that model the regions
and discontinuities present in the original image with many fewer points.
Thus, image processing operations applied upon those meshes can perform
faster than upon the original images. As an example, four simple operations
(translation, rotation, scaling and deformation) have been implemented in the
3D geometric domain and compared to their image domain counterparts.1

1   Introduction

The standard formats commonly used for image compression, such as GIF and
JPEG, were not originally devised for applying further processing. Thus, images
codified in those formats must be uncompressed prior to being able to apply image
processing operations upon them, no matter how big and redundant the images are.
Nonetheless, some researchers have managed to apply various basic operations upon
compressed representations. For example, [1] presents a technique for applying
arithmetic operations directly to JPEG images. Several techniques for image manip-
ulation and feature extraction in the DCT domain are also presented in [2].

An alternative to the problem of compactly representing images consists of the
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utilization of geometric representations, such as triangular meshes. Those meshes
allow the modeling of large areas of pixels with basic geometric primitives. For
example, a large white region can be represented by a few triangles instead of by
hundreds of pixels. Geometric representations are applicable since the pixels of an
image can be considered to be 3D points in a space in which coordinates x and y are
functions of the rows and columns of the image, and coordinate z is a function of the
gray level. An additional advantage of using geometric representations is that they
allow the application of techniques that have been successfully utilized in other
fields, such as computer graphics or computer vision (e.g., [3][6][7][15]).

Some algorithms have been proposed for generating geometric approximations
from images (e.g., [8][9]). These algorithms generate an initial high-resolution mesh
by mapping each pixel of the original image to a point in a 3D space and by linking
those points according to some topological criteria. Then, an iterative, optimization-
based algorithm decimates the obtained mesh until either a certain maximum error
between the current mesh and the original image is reached or a certain number of
points is attained. A recent algorithm [5] decimates an initial mesh based on a non-
optimization-based iterative algorithm that ensures a maximum approximation error.
The inconvenience of that method is that, since image discontinuities are not explic-
itly modeled, an oversampling of the given images is generated. 

Besides the use of geometric representations as tools for image modeling, little
research has been done regarding their utilization for simplifying and accelerating
general image processing operations. For instance, [4] presents a technique for seg-
menting range images approximated with adaptive triangular meshes. Furthermore,
[10] and [16] present an algorithm for segmenting intensity images. This algorithm
is based on an initial triangulation of corners detected in the image, followed by an
iterative, optimization-based split-and-merge technique applied to the triangles of
the mesh.

This paper presents an efficient algorithm for approximating intensity images
with adaptive triangular meshes without applying iterative optimization. The
obtained meshes preserve the shades and discontinuities present in the original
image. Furthermore, an efficient technique for converting triangular meshes to inten-
sity images is also described. Finally, it is shown how the previously obtained
triangular meshes can be utilized to accelerate image processing operations through
four basic translation, rotation, scaling and deformation operations.

This paper is organized as follows. The proposed approximation algorithm is
described in section 2. Section 3 presents a technique for generating intensity images
from triangular meshes. Section 4 describes the implementation of four simple
image processing operations applied upon the previously obtained triangular
meshes. Experimental results are shown in section 5. Conclusions and further
improvements are presented in section 6.

2   Approximation of Intensity Images with Adaptive Triangular 
Meshes

This section presents a technique for approximating intensity images with disconti-
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nuity-preserving adaptive triangular meshes. The triangular meshes are composed of
points sampled over the original image. Each point corresponds to a certain pixel
and is defined by three coordinates: row, column and gray level. The proposed tech-
nique consists of two stages. The first stage adaptively samples the given image at a
set of pixels. First, the image edges are detected, adaptively sampled and approxi-
mated by polylines. Then, the internal regions comprised between image edges are
adaptively sampled. The second stage triangulates the points sampled over internal
regions, using the previously obtained polylines as constraints for the triangulation.
Both stages are described below.

2.1  Image Adaptive Sampling

The aim of this stage is to sample the given image, obtaining a set of points that are
distributed according to the shades present in the image. The triangulation of those
points will be used as a higher abstraction-level representation of the original image.
Edges (contours) and internal regions in the image are approximated separately.

2.1.1  Edge Adaptive Sampling

Intensity images usually contain sudden changes in gray level due to region bound-
aries. The edge sampling stage approximates those boundaries with adaptive
polylines. First, the edges present in the original image are found by applying
Canny’s edge detector [11] and then by thresholding the result so that all pixels with
a value above zero are set to gray level 0 (black) while the other pixels are set to gray
level 255 (white). Thus, an edge image is generated, such as it is shown in Fig. 1
(right).

Then, each edge in the edge image is adaptively approximated by a collection of
segments that constitute a polyline. The points that define the segments of a polyline
are obtained through the following iterative procedure.

Fig. 1. (left) Original image of 512x512 pixels. (right) Edge image generated from the previous
image.
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First, the edge image is scanned from left to right and top to bottom until a pixel
contained in an edge is found. This pixel is chosen as the starting point, A. The cho-
sen edge is traversed from the starting point, and a second pixel contained in the
same edge and placed at a user defined number of pixels away from the starting
point is selected. This second pixel is the reference point, C. Both, the starting point
and the reference point generate an approximating segment, . The pixels that
belong to the chosen edge comprised between the starting point and the reference
point constitute the approximated points. The distance in image coordinates between
each approximated point and the approximating segment is the approximation error,

. If all the current approximation errors are below a given threshold d, a new ref-
erence point is selected by advancing the previous reference point C a fixed number
of pixels along the chosen edge. Then, a new segment, joining the starting point and
this new reference point is defined and the previous procedure is iterated. 

When an approximated point is found to have an error above d, that point is cho-
sen as the new starting point, B. The edge is traversed in this way until either one of
its extremes is reached or a bifurcation is found. The polyline that approximates the
previous edge with an error bounded by d is the set of segments that join all the start-
ing points found during the exploration of the edge, plus the final point in the edge
(extreme or bifurcation). The points that define the polyline constitute the control
points. Fig. 2 (left) shows an example of the previous procedure. 

When an edge has been successfully approximated by a polyline, all the points
traversed during the process are removed from the edge image so that they do not
intervene in further edge approximations. This polyline extraction procedure is
applied until all edges have been approximated and, therefore, the edge image is
white. Since the starting points of the polylines are found by applying the aforemen-
tioned scan-line algorithm, different executions of the edge sampling process upon a
same image will produce the same polylines.

Each polyline obtained above delimits a boundary between two neighboring
regions, indicating a discontinuity in the gray level values. The points that form the
polyline (control points) correspond to pixels that can be located at both sides of the
discontinuity. However, the final 3D triangular mesh requires that these discontinui-
ties be modeled as vertical “walls”. These walls can only be produced by unfolding
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each obtained polyline into two parallel polylines, each at a different gray-level
(height). This process is done by computing an opposite point for each polyline’s
control point. Each opposite point will be located at the other side of the discontinu-
ity in which its corresponding control point lies.

Given a control point P, its corresponding opposite point is obtained as follows.
First, an exploration line that bisects the polyline’s segments that meet at P and that
passes through P is computed, Fig. 2 (right). The pixels traversed by this line are
explored in both directions starting with P. The first pixel along that line where a sig-
nificative change of gray level occurs is chosen as P’s opposite point. The opposite
points corresponding to the extremes of the polyline are determined by considering
as exploration lines the lines perpendicular to the segments that abut at those
extremes, and then by applying the previous criterion. Fig. 2 (right) shows an exam-
ple of this procedure.

A new polyline is obtained for each original polyline by linking its corresponding
opposite points. Since the control points that define the original polyline may not be
located at the same side of the discontinuity, the new polyline and the original one
may not be parallel and, therefore, may have some segments that self-intersect. To
avoid this problem, the two polylines are traversed exchanging corresponding pairs
of control and opposite points, such that each polyline only contains the points that
are located at the same side of the discontinuity (all the points of a polyline must
have a similar gray level). Thus, two parallel polylines are finally generated from
each original polyline, one completely lying on one side of the discontinuity (at the
region with the highest gray level) and the other completely lying on the other side
(at the region with the lowest gray level), Fig. 2 (right). Fig. 3 shows the set of con-
trol points and opposite points corresponding to the example utilized so far.

2.1.2  Region Adaptive Sampling

This stage aims at obtaining a set of points adaptively distributed over the image,

Fig. 3. (left) Set of both control and opposite points obtained by the edge adaptive sampling
process (4,900 points). (right) Parallel polylines obtained from the previous points. 
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such that they concentrate in high-curvature regions and scatter over low variation
regions. The sampling process must be applied by taking into account that all the
edges in the image have already been considered by the previous step and do not
have to be resampled.

This process is done by applying a non-optimization, adaptive sampling tech-
nique previously developed [3]. That technique, which was originally proposed for
range images, efficiently samples a predefined number of pixels over the given
image adapting to the curvatures present in it. In order to apply that sampling tech-
nique to intensity images, it suffices to consider each pixel as a 3D point with three
coordinates, which correspond to the pixel’s row, column and gray level. The adap-
tive sampling process is summarized below. A complete description can be found in
[3].

First, a curvature image [3] is estimated from the original image, Fig. 4 (left).
Since the image contours have already been approximated with parallel polylines
(section 2.1.1), the curvatures of the pixels that belong to the contours of the original
image, detected through Canny’s edge detector, and their adjacent neighbors are
reset so that they do not cause further resampling.

Both, the original and curvature images are then divided into a predefined num-
ber of rectangular tiles. The following steps are independently applied to each tile.
First, a predefined number of points is chosen for each row of every tile, in such a
way that the point density is proportional to the curvatures previously computed for
the pixels of that row. After that horizontal sampling, a set of vertical curves is
obtained, Fig. 4 (center). 

Then, each vertical curve is adaptively sampled at a predefined number of points
whose density is again proportional to the curvature estimated for the pixels con-
tained in the curve. In the end, a predefined number of adaptively sampled points is
obtained for every tile, Fig. 4(right). The number of both tiles and points per tile is
defined by the user. Many tiles lead to uniformly-sampled meshes, while a few tiles
lead to degenerated meshes. An intermediate value must be experimentally set.

The merging of the two previous sets of points, obtained after both edge sam-
pling and region sampling, produces the final result of the adaptive sampling stage.

Fig. 4. (left) Curvature image. (center) Adaptively sampled vertical curves (7x7 tiles). (right)
Set of points obtained by region adaptive sampling (2,324 points). 
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Fig. 5 (left) shows the set of sampled points that approximate the given original
image.

2.2  Triangular Mesh Generation

The final aim of this stage is the generation of an adaptive triangular mesh from the
set of points obtained after the adaptive sampling stage. This triangular mesh is an
approximation of the given intensity image obtained by means of a constrained 2D
Delaunay triangulation algorithm [12]. The triangulation is applied to the x and y
coordinates of the sampled points. The constraints of the triangulation are the paral-
lel polylines that approximate the detected contours of the image. These polylines
can be either open or closed. In this way, it is guaranteed that the discontinuities of
the gray level values are preserved as edges in the generated triangular mesh. Fig. 5
(center) shows the final adaptive triangular mesh obtained for the current example.
The z coordinates of the vertices of that mesh correspond to the gray levels associ-
ated with them in the original image.

3   Generation of Intensity Images from Triangular Meshes

Any compression or coding algorithm requires a corresponding decompression or
decoding counterpart that allows the recovery of data in the original format. Like-
wise, a tool for generating intensity images from adaptive triangular meshes is
necessary. 

Triangular meshes are utilized to represent intensity images by assuming that the
first two dimensions of the points in the mesh correspond to row and column image
coordinates, and the third dimension to a gray level. An intensity image can be gen-
erated from a triangular mesh by considering that each triangle of the mesh
represents a plane that contains a set of points (pixels). The z coordinates of the
points inside that plane represent gray level values in the resultant image. Hence, the
image generation process can be based on computing the bounding box of every tri-

Fig. 5. (left) Final set of points obtained after the adaptive sampling process (7,224 points).
(center) Adaptive triangular mesh generated from the previous points. (right) Approximating
image obtained from the previous triangular mesh through z-buffering in 0.31 sec.
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angle T of the mesh, then finding the pixels of this box which are contained within T,
and finally obtaining the z coordinates of these points by using the plane equation
corresponding to T.

However, by taking advantage of the 3D nature of these triangular meshes, the
computational cost of the previous algorithm can be reduced almost by half by
applying a well-known algorithm, z-buffering, which is extensively utilized in com-
puter graphics. Thus, the image generation stage has been finally implemented as
follows. First, the triangular mesh is visualized in a window with the same size as
the desired image through functions of the standard 3D OpenGL library. Next, the z-
buffer obtained after this visualization is read with another OpenGL function
(glReadPixels). Finally, the intensity image is obtained by linearly mapping the val-
ues of the z-buffer to gray levels in the range [0-255]. 

Since the implementations of the OpenGL library take advantage of hardware
acceleration in most current computers (including PCs), the whole process turns out
to be very fast. For example, the approximating image (with 262,144 pixels) corre-
sponding to the example used so far was obtained in 0.31 seconds on a SGI Indigo II,
Fig. 5 (right). Other examples are shown in Fig. 6 and Fig. 7.

The approximation error (RMS) of the image shown in Fig. 5 (right) is 12.1. This
RMS error can be bounded to a desired tolerance by applying a previously devel-
oped algorithm [5], which approximates intensity images through bounded error
triangular meshes.

4   Geometric Processing of Triangular Meshes

The triangular meshes obtained above are representations of intensity images at a
higher level of abstraction. This allows the application of many image processing
operations more efficiently than if they were applied upon the individual pixels of
the original images. For example, translation, scaling, rotation and deformation
operations are trivially implemented by applying affine transformations to the 3D
coordinates of the points that constitute the meshes (see Fig. 6). Since those adaptive
meshes contain a fraction of the original amount of pixels, these operations perform
faster than their pixel-to-pixel counterparts. The actual results corresponding to the
examples shown in Fig. 6 are presented in the next section.

Another operation that can benefit from the previously obtained triangular
meshes is image segmentation. Image segmentation algorithms based on split-and-
merge techniques must iteratively process all the pixels of the input images, group-
ing and ungrouping them according to some uniformity criteria. Alternatively, the
triangles of an adaptive triangular mesh already capture some of those criteria.
Therefore, triangles can be merged instead of pixels, leading to an overall speed-up.
In order to implement such an image segmentation algorithm in the geometric
domain, it is possible to apply a fast technique previously developed for segmenting
range images [4]. This approach is more efficient than the one presented in [10][16],
since the latter generates an adaptive triangular mesh by applying an optimization-
based split-and-merge algorithm that considers the pixels contained in every trian-
gle. Conversely, the proposed technique does not require any costly optimization
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stages.
These basic operations are just a few examples of how triangular meshes can

help speed up conventional image processing. Many other computer vision and
image processing tasks are also susceptible to be accelerated with geometric pro-
cessing of adaptive triangular meshes. This will be the subject of further research.

5   Experimental Results

The proposed approximation algorithm has been tested with intensity images of dif-
ferent size and also compared to both a uniform (non-adaptive) sampling technique
and a mesh decimation technique based on iterative optimization [13]. A public
implementation of the latter technique (Jade) has been utilized.

The uniform sampling technique consists of choosing one pixel out of a pre-
defined number of pixels along the rows and columns of the image. On the other
hand, the optimization-based technique (Jade) starts with a high resolution triangular
mesh containing all the pixels from the image, and decimates it until either a certain
number of points is obtained or the approximating error is above a threshold. In

Fig. 6. Approximating images obtained by applying simple geometric operations. (top-left)
Translation. (top-right) Rotation. (bottom-left) Scaling. (bottom-right) Ellyptical deformation.
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order to be able to compare these techniques with the proposed one, Jade and the
uniform sampling process were run to produce triangular meshes with the same
number of points as the ones obtained with the proposed technique.

Fig. 7 shows two of the test images. The triangular meshes generated from these
images with the proposed technique were obtained in 7.64 (Lenna) and 1.26 (House)
seconds. All CPU times were measured on a SGI Indigo II with a 175MHz R10000
processor. These meshes contain 7,492 and 1,649 points respectively. The RMS
errors of the approximating images are 9.8, Fig. 7 (top-center), and 10.6, Fig. 7 (bot-
tom-center). If subsequent image processing operations were applied upon these
triangular meshes, those points would be the only ones to be processed. The same
operations applied upon the original images would require the processing of 262,144
and 65,536 pixels respectively, which is between one and two orders of magnitude
larger.

The proposed technique produced better image approximations than both the uni-
form sampling technique and the optimization based technique (Jade). For example,
given the same number of points, the proposed technique always produced lower
RMS errors (e.g., 9.8 and 10.6 in Fig. 7) than the uniform sampling technique (e.g.,
14.3 and 18.4 in Fig. 7) and than the optimization based technique (e.g., 11.7 and
15.3 in Fig. 7). The reason is that the proposed technique explicitly models the dis-
continuities in the image, while optimization-based techniques, such as Jade, are

Fig. 7. Approximating images. (left column) Uniform (non-adaptive) sampling. RMS errors:
14.3 (top) and 18.3 (bottom). (center column) Proposed technique. RMS errors: 9.8 (top) and
10.6 (bottom). (right column) Optimization-based technique (Jade). RMS errors: 11.7 (top)
and 15.3 (bottom).
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only able to keep those discontinuities by concentrating large numbers of points.
Moreover, the CPU times necessary to generate the adaptive triangular meshes cor-
responding to the two previous examples were two orders of magnitude faster with
the proposed technique (e.g., 7.64 and 1.26 sec) than with Jade (e.g., 1,580 and 675
sec).

Finally, the CPU times to perform the basic operations shown in Fig. 6 were mea-
sured and compared with the times to perform similar operations with a conventional
image processing software (CVIPtools) publicly available [14]. The images of
Lenna shown in Fig. 6 are approximating images obtained from an adaptive triangu-
lar mesh of 7,492 points computed with the proposed technique. This corresponds to
an RMS error of 9.84 with respect to the original image, which contains 512x512
(262.144) pixels. The CPU times to perform the translation with CVIPtools was 0.32
sec., while the same operation in the geometric domain took 0.00087 sec. The rota-
tion operation took 2.23 sec. with CVIPtools and 0.02 sec. with the proposed
technique. Finally, the scaling operation took 0.33 sec. with CVIPtools and 0.02 sec.
with the proposed technique in the 3D geometric domain. CVIPtools does not
include any routines for producing deformations such as the elliptical one shown in
Fig. 6. Therefore, it should be implemented with a user program that would access
the given image, pixel after pixel, with the subsequent time penalty. Similarly, all the
image deformations typically found in Adobe’s Photoshop-like image processing
packages are easily implementable in the 3D geometric domain by trivial mesh
deformations, requiring a fraction of the time utilized in the image domain.

In all the examples considered in this section, the given times do not include the
mesh generation and image reconstruction stages. The reason is that these stages
must only be applied once: to map the original image to the geometric domain and to
map the resulting mesh back to image space. If many operations are performed
(chained) in the geometric domain, the overhead of those two stages will become
negligible.

6   Conclusions and Future Lines

This paper presents a technique for approximating intensity images with discontinu-
ity-preserving adaptive triangular meshes without optimization, and explores the use
of those meshes to accelerate conventional image processing operations. The adap-
tive meshes generated with this algorithm are obtained faster than with optimization-
based algorithms and, since image discontinuities are explicitly handled, the results
are better than the ones obtained through both uniform (non-adaptive) sampling and
optimization-based algorithms. The paper also explores the utilization of adaptive
triangular meshes for accelerating image processing operations. Basic translation,
rotation, scaling and deformation operations have been developed in the geometric
domain and compared to a conventional image processing software, showing a faster
performance.

We are currently developing new algorithms for implementing conventional pro-
cessing operations (e.g., feature extraction, image enhancement, pattern recognition)
directly in the geometric domain. The application of this technique to color images
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