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Abstract. Several factorization techniques have been proposed for tack-
ling the Structure from Motion problem. Most of them provide a good
solution, while the amount of missing data is within an acceptable ra-
tio. Focussing on this problem, we propose an incremental multiresolu-
tion scheme able to deal with a high rate of missing data, as well as
noisy data. It is based on an iterative approach that applies a classical
factorization technique in an incrementally reduced space. Information
recovered following a coarse-to-fine strategy is used for both, filling in
the missing entries of the input matrix and denoising original data. A
statistical study of the proposed scheme compared to a classical factor-
ization technique is given. Experimental results obtained with synthetic
data and real video sequences are presented to demonstrate the viability
of the proposed approach.1

1 Introduction

Structure From Motion (SFM) consists in extracting the 3D shape of a scene as
well as the camera motion from trajectories of tracked features. Factorization is
a method addressing to this problem. The central idea is to express a matrix of
trajectories W as the product of two unknown matrices, namely, the 3D object’s
shape S and the relative camera pose at each frame M : W2f×p = M2f×rSr×p,
where f and p are the number of frames and feature points respectively and r
the rank of W2f×p. These factors can be estimated thanks to the key result that
their rank is small and due to constraints derived from the orthonormality of the
camera axes. The Singular Value Decomposition (SVD) is generally used when
there are not missing entries. Unfortunately, in most of the real cases not all the
data points are available, hence other methods need to be used.

In the seminal approach Tomasi and Kanade [1] propose an initialization
method in which they first decompose the largest full submatrix by the factor-
ization method and then the initial solution grows by one row or by one column
at a time, unveiling missing data. The problem is that finding the largest full
submatrix of a matrix with missing entries is a NP-hard problem. Jacobs [2]
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treats each column with missing entries as an affine subspace and shows that,
for every r-tuple of columns, the space spanned by all possible completions of
them must contain the column space of the completely filled matrix. Missing
entries are recovered by finding the least squares regression onto that subspace.
However, this approach is strongly affected by noise on the data. An incremental
SVD scheme of incomplete data is proposed by Brand [3]. The main drawback
of that scheme is that the final result depends on the order in which the data are
encountered. Brandt [4] proposes a different technique that addresses the affine
reconstruction under missing data by means of an EM algorithm. Although the
feature points do not have to be visible in all views, the affine projection ma-
trices in each image must be known. A method for recovering the most reliable
imputation, addressing the SFM problem, is provided by Suter and Chen [5].
They propose an iterative algorithm to employ this criterion to the problem of
missing data. Their aim is not to obtain the factors M and S, but the projection
onto a low rank matrix to reduce noise and to fill in missing data. Wiberg [6] in-
troduces the Alternation technique to solve the factorization with missing data.
Since then, several variants of this approach have been proposed in the literature.
In [7], Buchanan and Fitzgibbon summarize different factorization approaches
with missing data and propose the Alternation/Damped Newton Hybrid, which
combines the Alternation strategy with the Damped Newton method.

One disadvantage of the above methods is that the result depends on the
percentage of missing data. They give a good factorization while the amount
of missing points is reduced, which is not common in real image sequences,
unfortunately. Additionally to this problem, when real sequences are considered,
the presence of noisy data needs to be taken into account in order to evaluate
the performance of the factorization technique. Addressing to these problems,
we propose to use an iterative multiresolution scheme, which incrementally fill
in missing data. A statistical study of the performance of the proposed scheme
is carried out considering different percentages of missing and noisy data. The
key point of the implemented approach is to work with a reduced set of feature
points along a few number of consecutive frames. Thus, the 3D reconstruction
corresponding to the selected feature points and the camera motion of the used
frames are obtained. Missing entries of the trajectory matrix are recovered, while,
at the same time, noisy data are filtered.

This paper is organized as follows. Section 2 contains a brief review of Alterna-
tion factorization techniques for the case where there are missing data. Section 3
presents the incremental multiresolution scheme used to factorize a matrix of
trajectories that has a large amount of missing data. The error function is de-
fined in section 4. Section 5 contains results obtained with synthetic and real
data. Conclusions and future work are given in section 6.

2 Alternation Technique

Let be W2f×p the matrix of trajectories of p feature points, tracked over f
frames—also denoted as W , or input matrix. The goal of Alternation is to find
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the best rank r approximation to W , where r < 2f, p. That is, to compute the
matrix factors M and S such that minimize the cost function:

‖W − MS‖2
F (1)

where ‖ · ‖ is the Frobenius matrix norm [8]. In the case of missing data:

‖W − MS‖2
F =

∑

i,j

|Wij − (MS)ij |2 (2)

where i and j correspond to the index pairs where Wij is defined.
The algorithm starts with an initial random 2f × r matrix M0 and repeats

the next steps until the product MkSk converges to W :

Sk = (M t
k−1Mk−1)−1M t

k−1W Mk = WSk(St
kSk)−1 (3)

As pointed out in [9], the most important advantage of this 2-step algorithm
is that these equations are the matrix versions of the normal equations. That is,
each Mk and Sk is the least-squares solution of a set of equations of the form
W = MS. Besides, since the updates of M given S (and analogously in the case
of S given M) can be independently done for each row of S, missing entries in
W correspond to omitted equations. Due to that fact, with a few data points
the method would fail to converge, but this happens only with large amounts of
missing data.

In the application of affine SFM, the last row of S should be filled with
ones S =

[
X 1

]t, where X are the 3D recovered coordinates of the feature
points. Through the paper, an Alternation for SFM with motion constraints
(AM) approach has been used. Hence, at each iteration k, it is used the fact that
M is the motion matrix—the relative camera pose at each frame. Therefore,
given Mk−1, and before computing Sk, we impose the orthonormality of the
camera axes at each frame.

3 Proposed Approach

We propose an iterative multiresolution approach using the AM previously de-
scribed. We will refer it as Incremental Alternation with Motion constraints
(IAM). Essentially, our basic idea is to generate sub-matrices with a reduced
density of missing points. Thus, the AM could be used for factoring these sub-
matrices and recovering their corresponding 3D shape and motion. The proposed
technique consists of two stages, which are fully explained below.

3.1 Observation Matrix Splitting

Let W2f×p be the observation matrix of p feature points tracked over f frames
containing missing entries. Let k be the index denoting the current iteration
number. In a first step, W is split into k × k non-overlapped sub-matrices, each
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one of them defined as Wk(i,j) , i ∈ (0, � 2f
k �], j ∈ (0, � p

k �]. For the sake of presen-
tation simplicity, hereinafter a sub-matrix in the current iteration level k will be
referred as Wk (assuming k > 1, since k = 1 is simply the AM method).

Although the idea is to focus the process in a small area (sub-matrix Wk), with
a reduced density of missing data, recovering information from a small patch can
be easily affected from noisy data, as pointed out in [5]. Hence there is a trade
off between the size of a sub-matrix and the confidence of its recovered data.
In order to improve the confidence of recovered data a multiresolution approach
is followed. In a second step, and only when k > 2, four W2k overlapped sub-
matrices, with twice the size of Wk are computed as illustrated in Fig.1. The idea
of this enlargement process is to study the behavior of feature points contained
in Wk when a bigger region is considered. Other strategies were tested in order
to compute in a fast and robust way sub-matrices with a reduced density of
missing entries (e.g. quadtrees, ternary graph structure), but they do not give
the desired and necessary properties of overlapping.

Since generating four W2k for every Wk is a computationally expensive task,
a simple and more direct approach is followed. It consists in splitting the input
matrix W in four different ways, by shifting W2k half of its size (i.e., Wk) through
rows, columns or both at the same time. When all these matrices are considered
together, the overlap between the different areas is obtained.

Fig. 1. W2k overlapped matrices of the observation matrix W , computed during the
first stage (section 3.1), at iteration k = 6

3.2 Sub-matrices Processing

At this stage, the objective is to recover missing data by applying AM at every
single sub-matrix. Independently of their size hereinafter sub-matrices will be
referred as Wi.

Given a sub-matrix Wi, the AM gives its corresponding Mi and Si matrices.
Their product could be used for computing an approximation error εi such as
equation (2). In case the resulting error is smaller than a user defined threshold σ,
every point in Wi is kept in order to be merged with overlapped values after
finishing the current iteration. Additionally, every point of Wi is associated with
a weighting factor, defined as 1

εi
, in order to measure the goodness of that value.

These weighting factors are later on used for merging data on overlapped areas.
Otherwise, the resulting error is higher than σ, computed data are discarded.
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Finally, when every sub-matrix Wi has been processed, recovered missing data
are used for filling in the input matrix W . In case a missing datum has been
recovered from more than one sub-matrix (overlapped regions), those recovered
data are merged by using their corresponding normalized weighting factors. On
the contrary, when a missing datum has been recovered from only one sub-
matrix, this value is directly used for filling in that position.

Once recovered missing data were used for filling in the input matrix W , the
iterative process starts again (section 3.1) splitting the new matrix W (the input
one merged with recovered data) either by incrementing k one unit or, in case
the size of sub-matrices Wk at the new iteration stage is quite small (the smaller
Wk size was set to 5×5), by setting k = 2. This iterative process is applied until
one of the following conditions is true: a) the matrix of trajectories is totally
filled; b) at the current iteration no missing data were recovered; c) a maximum
number of iterations is reached.

4 The Error Function

As pointed out in [5], the cost function defined by equation (2) could be ambigu-
ous and in some cases contradictory. That is because that formula only takes into
account the recovered values corresponding to known features, but it ignores how
the rest of entries are filled. Therefore, in order to compare the proposed IAM
scheme with the classical AM, an error function that considers all the features of
the sequence, including missing points, is used (see equation (1)). Unfortunately,
this is only possible when we have access to the whole information. Hence, when
real data are considered, in order to perform a comparison by using the proposed
error function, a full matrix should be selected. This matrix is used as input and
missing data are randomly removed.

As it will be presented in short, noise is added to the input matrix W . However,
since the aim is also to study how the data are filtered, the entries of the matrix
of trajectories given by the product MS are compared with the corresponding
elements in the input matrix W .

5 Experimental Results

As it was previously mentioned we want to do an statistical study about the
filtering capability of the IAM scheme compared to the classical AM. At the
same time, the robustness to missing data will be considered. In order to per-
form a comparison that help us to infer some conclusions, different levels of
Gaussian noise—standard deviation (also denoted as std) with values from 1

8
to 1, both in a synthetic and a real case—are added into the 2D feature point
trajectories and different amounts of missing data are considered—from 20% up
to 80%. Statistical results are obtained by applying: a) AM over the input ma-
trix W ; b) AM after filling in missing data with the proposed IAM. Although
this strategy consists of two parts (IAM+AM), for simplicity, we referred it as
IAM.
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For each setting (level of noise, amount of missing data) 100 attempts are
repeated and the number of convergent cases—those in which the error value
is smaller than a threshold—obtained with each approach is computed. Due to
the fact that for each setting the error takes a different range of values, a unique
threshold is difficult to define. Therefore, it is defined for each particular setting,
by the mean of the inliers error values ε 2 obtained from AM and IAM. Notice
that more convergent cases does not necessary mean that a better performance
is achieved for that setting. The idea is compare AM and IAM, not the dif-
ferent settings. Experiments using both synthetic and real data are presented
below.

5.1 Synthetic Object

Synthetic data are randomly generated by distributing 35 3D feature points
over the whole surface of a cylinder, see Fig.2 (left). The cylinder is defined by
a radius of 100 and a height of 400; it rotates over its axis. The corresponding
input matrices are obtained using different number of frames. In order to obtain
a low percentage of missing data, a few frames are taken and the resulting input
matrices are quite small. The IAM performs worse in these cases. However,
the goal is to show its performance for a great amount of missing data, when
other factorization techniques tend to fail. Additionally, the small size of the
input matrices does not help to see the denoising capability of both AM and
IAM.

−100 −50 0 50 100−100

0

100

−50

0

50

Fig. 2. (left) Synthetic object used to test the proposed approach. (right) Input object
used for the real case.

As shown in Fig. 3 (left), the case of free-noisy data differs considerably from
the others. In particular, for the IAM approach, a high average of convergent
cases is obtained, no matter the ratio of missing data. Notice that with IAM
and for 80% of missing data, a ratio of convergence of 100 is obtained. That
does not mean a better result that working with a low percentage of missing
data. As mentioned above, the idea is not to compare with the other settings,
but with the AM, which has a ratio of convergence of about 2 for the same
setting.
2 The inliers ε are defined as |ε| < q3 + 1.5Δq—where q3 is the value of the third

quartile and Δq is the interquartile distance q3 − q1.
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Fig. 3. Synthetic case. (left) Ratio of convergence for the different percentages of miss-
ing data, fixing different standard deviation (std) values. (right) The same for different
std values, fixing various percentages of missing data. Zero std means no noisy data.

5.2 Real Object

Experimental results with a real video sequence of 101 frames with a resolution
of 640 × 480 pixels are presented. The studied object is shown in Fig. 2 (right).
A single rotation around a vertical axis is performed. Feature points are selected
by means of a corner detector algorithm and 87 points over the object to be
studied are considered. An iterative feature tracking algorithm has been used.
More details about corner detection and tracking algorithm can be found in [10].
Different ratios of missing data are obtained by randomly removing data; the
removed data are recorded in order to compute the error value (1).

Again, in Fig. 4 (left) it seems that for the case of no noise and a percentage
of missing data from 40 up to 60, both AM and IAM performs worse than for
other percentages. As shown in Fig. 4 (right), the number of convergent cases is
in general higher applying IAM than AM.
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Fig. 4. Real case. (left) Ratio of convergence for the different percentages of missing
data, fixing different standard deviation (std) values. (right) The same for different std
values, fixing various percentages of missing data. Zero std means no noisy data.
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6 Conclusions and Future Work

This paper presents an efficient technique for tackling the SFM problem when
a high ratio of missing and noisy data is considered. The proposed approach
exploits the simplicity of an Alternation technique by means of an iterative
scheme. Missing data are incrementally recovered improving the final results.
Noise have been added to the data and a statistical study about the filtering
capability of AM compared to our incremental strategy have been done. It has
been shown that, in most of the cases, results of IAM are better than the ones
of AM in the sense of number of convergent cases.

In the future, we would like to use the proposed icremental multiresolution
scheme with other classical factorization techniques. Additionally, other func-
tions that consider the goodness of the obtained M and S and not only the
recovered elements of W will be studied.
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