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Abstract. This paper focuses on near infrared (NIR) image colorization
by using a Conditional Deep Convolutional Generative Adversarial Net-
work (CDCGAN) architecture model. The proposed architecture is based
on the usage of a conditional probabilistic generative model. Firstly, it
learns to colorize the given input image, by using a triplet model archi-
tecture that tackle every channel in an independent way. In the pro-
posed model, the final layer of red channel consider the infrared image
to enhance the details, resulting in a sharp RGB image. Then, in the
second stage, a discriminative model is used to estimate the probability
that the generated image came from the training dataset, rather than the
image automatically generated. Experimental results with a large set of
real images are provided showing the validity of the proposed approach.
Additionally, the proposed approach is compared with a state of the art
approach showing better results.
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1 Introduction

Image acquisition devices have largely expanded in recent years, mainly due to
the decrease in price of electronics together with the increase in computational
power. This increase in sensor technology has resulted in a large family of images,
able to capture different information (from different spectral bands) or comple-
mentary information (2D, 3D, 4D); hence, we can have: HD 2D images; video
sequences at a high frame rate; panoramic 3D images; multispectral images;
just to mention a few. In spite of the large amount of possibilities, when the
information needs to be provided to a final user, the classical RGB represen-
tation is preferred. This preference is supported by the fact that human visual
perception system is sensitive to (400-700 nm); hence, representing the informa-
tion in that range helps user understanding. In this context, the current paper
tackles the near infrared (NIR) image colorization, trying to generate realis-
tic RGB representations. Different applications could take advantage of this
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contribution—infrared sensors can be incorporated for instance in driving assis-
tance applications by providing realistic colored representations to the driver,
while the image processing can be automatically performed by the system in
the infrared domain (e.g., semantic segmentation at the material level avoiding
classical problems related with the color of the object surface).

The NIR spectral band is the closest in wavelength to the radiation detectable
by the human eye; hence, NIR images share several properties with visible
images. The interest of using NIR images is related with their capability to
segment images according to the object’s material. Surface reflection in the NIR
spectral band is material dependent, for instance, most pigments used for mater-
ial colorization are somewhat transparent to NIR. This means that the difference
in the NIR intensities is not only due to the particular color of the material, but
also to the absorption and reflectance of dyes.

The absorption/reflectance properties mentioned above are used for instance
in remote sensing applications for crop stress and weed/pest infestations. NIR
images are also widely used in video surveillance applications since it is easier
to detect different objects from a given scene. In these two contexts (i.e., remote
sensing and video surveillance), it is quite difficult for users to orientate when
NIR images are provided, since the lack of color discrimination or wrong color
deploy. In this work a neural network based approach for NIR image coloriza-
tion is proposed. Although the problem shares some particularities with image
colorization (e.g., [1,2]) and color correction/transfer (e.g., [3,4]) there are some
notable differences. First, in the image colorization domain—gray scale image to
RGB—there are some clues, such as the fact that luminance is given by grayscale
input, so only the chrominance needs to be estimated. Secondly, in the case of
color correction/transfer techniques, in general three channels are given as input
to obtain the new representation in the new three dimensional space. In the par-
ticular problem tackled in this work (NIR to visible spectrum representation)
a single channel is mapped into a three dimensional space, making it a diffi-
cult and challenging problem. The manuscript is organized as follows. Related
works are presented in Sect. 2. Then, the proposed approach is detailed in Sect. 3.
Experimental results with a large set of images are presented in Sect. 4. Finally,
conclusions are given in Sect. 5.

2 Related Work

The problem tackled in this paper is related with infrared image colorization, as
mentioned before, somehow it shares some common problems with monocromatic
image colorization that has been largely studied during last decades. Colorization
technique algorithms mostly differ in the ways they obtain and treat the data for
modeling the correspondences between grayscale and color. There have been a
lot of techniques, like spatial and frequency based variational methods, in which
obtain perceptually inspired color and contrast enhancement of digital images,
and the color logarithmic image processing (CoLIP) and antagonist space, Gavet
et al. [5] design a framework that defines a vectorial space for color images.
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It illustrates the representation of the chromaticity diagram with color modifi-
cation application, namely white balance correction and color transfer. Another
technique is the grayscale image matting and colorization, Chen et al. [6] present
a variation of a matting algorithm with the introduction of alpha’s distribution
and gradient into the Bayesian framework and an efficient optimization scheme.
It can effectively handle objects with intricate and vision sensitive boundaries,
such as hair strands or facial organs, plus they combine this algorithm with the
color transferring techniques to obtain his colorization scheme. Welsh et al. [7]
describe a semi-automatic technique for colorizing a grayscale image by trans-
ferring color from a reference color image. They examine the luminance values
in the neighborhood of each pixel in the target image and transfer the color
from pixels with matching neighborhoods in the reference image. This technique
works well on images where differently colored regions give rise to distinct lumi-
nance clusters, or possess distinct textures. In other cases, the user must direct
the search for matching pixels by specifying swatches indicating corresponding
regions in the two images. It is also difficult to fine-tune the outcome selectively
in problematic areas. There are other approaches like colorization by example; in
[8] an algorithm that colorizes one or more input grayscale images is presented.
It is based on a partially segmented reference color image. By partial segmenta-
tion they assume that one or more mutually disjoint regions in the image have
been established, and each region has been assigned to a unique label.

The approaches presented above have been implemented using classical image
processing techniques. However, recently Convolutional Neural Network (CNN)
based approaches are becoming the dominant paradigm in almost every com-
puter vision task. CNNs have shown outstanding results in various and diverse
computer vision tasks such as stereo vision [9], image classification [10] or even
difficult problems related with cross-spectral domains [11] outperforming conven-
tional hand-made approaches. Hence, we can find some recent image colorization
approaches based on deep learning, exploiting to the maximum the capacities
of this type of convolutional neural networks. As an example, we can mention
the work presented in [2]. The authors propose a fully automatic approach that
produces brilliant and sharpen image color. They model the unknown uncer-
tainty of the desaturated colorization levels designing it as a classification task
and use class-rebalancing at training time to augment the diversity of colors
in the result. On the contrary, [12] presents a technique that combines both
global priors and local image features. Based on a CNN a fusion layer merges
local information, dependent on small image patches, with global priors com-
puted using the entire image. The model is trained in an end-to-end fashion, so
this architecture can process images of any resolution. They leverage an existing
large-scale scene classification database to train the model, exploiting the class
labels of the dataset to more efficiently and discriminatively learn the global
priors. In [13], a recent research on colorization, addressing images from the
infrared spectrum, has been presented. It uses convolutional neural networks to
perform an automatic integrated colorization from a single channel NIR image to
RGB images. The approach is based on a deep multi-scale convolutional neural
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network to perform a direct estimation of the low RGB frequency values. The
main problem with this approach lies on the blur results generated by the multi-
scale approach. For that reason it requires a final step that filters the raw output
of obtained image from the CNN and transfers the details of the input image to
the final output image. Finally, also based on the usage of the CNN framework,
[14] proposes a NIR image colorization using a Deep Convolutional Generative
Adversarial Network (DCGAN). In that work, a colorization model is obtained
based on a flat GAN architecture where all the colors are learned at once from
the given input NIR image. This architecture has limitations since all the colors
are considered together.

Generative Adversarial Networks (GANs) are a class of neural networks
which have gained popularity in recent years. They allow a network to learn to
generate data with the same internal structure as other data. GANs are powerful
and flexible tools, one of its more common applications is image generation. It is
a framework presented on [15] for estimating generative models via an adversar-
ial process, in which simultaneously two models are trained: a generative model
G that captures the data distribution, and a discriminative model D that esti-
mates the probability that a sample came from the training data rather than
G. The training procedure for G is to maximize the probability of D making
a mistake. This framework corresponds to a minimax two-player game. In the
space of arbitrary functions G and D, a unique solution exists, with G recover-
ing the training data distribution and D equal to 1/2 everywhere. According to
[16], to learn the generator’s distribution p, over data x, the generator builds a
mapping function from a prior noise distribution ,z(z) to a data space G(z;0,).
And the discriminator, D(x;6,), outputs a single scalar representing the proba-
bility that « came from training data rather than p,. G and D are both trained
simultaneously, the parameters for G are adjusted to minimize log(1 — D(G(z)))
and for D to minimize logD(X) with a value function V (G, D):

min max

G D

V(D, G) =E; ~, data(m)[lOgD(x)] + (1)
E. ~p aua(y[log(1 — D(G(2)))].

Generative adversarial nets can be extended to a conditional model if both
the generator and discriminator are conditioned on some extra information y.
This information could be any kind of auxiliary information, such as class labels
or data from other modalities. We can perform the conditioning by feeding y
into both discriminator and generator as additional input layer. The objective
function of a two-player minimax game would be as :

min max

G D

V(D,G) = Ey ~p asea(,y[logD(z|y)] + (2)
E. ~p aaa)[log(1 — D(G(z]y)))].

In order to improve the efficiency of the generative adversarial networks, [17]
proposes some techniques, one of them named the virtual batch normalization;
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it allows to significantly improve the network optimization using the statistics of
each set of training batches. The main disadvantage is that this process is com-
putationally expensive. Our proposal is based on designing a generative adver-
sarial deep learning architecture that allows the colorization of images of the
near infrared spectrum, so that they can be represented in the visible spectrum.
The following section will explain in detail the proposed network model.

3 Proposed Approach

This section presents the approach proposed for NIR image colorization. As
mentioned above, a recent work on colorization [14] has proposed the usage of a
deep convolutional adversarial generative learning network. It is based on a tra-
ditional scheme of layers in a deep network. In the current work we also propose
the usage of a conditional DCGAN but in a triplet learning layers architecture
scheme. These models have been used to solve other types of problems such as
learning local characteristics, feature extraction, similarity learning, face recogni-
tion, etc. Based on the results that have been obtained on this type of solutions,
where improvements in accuracy and performance have been obtained, we pro-
pose the usage of a learning model that allows the multiple representation of
each of the channels of an image of the visible spectrum (R, G, B). Therefore,
the model will receive as input a near infrared patch (NIR), with a Gaussian
noise added in each channel of the image patch to generate the necessary vari-
ability to generate more diversity of colors, to be able to generalize the learning
of the colorization process. A [1 regularization term has been added on a single
layer in order to prevent the coefficients to fit so perfectly to overfit, which can
improve the generalization capability of the model.

A Conditional DCGAN network based architecture is selected due to several
reasons: (7) the learning is conditioned on NIR images from the source domain;
(i) its fast convergence capability; (iii) the capacity of the generator model to
easily serve as a density model of the training data; and (iv) sampling is simple
and efficient. The network is intended to learn to generate new samples from
an unknown probability distribution. In our case, the generator network has
been modified to use a triplet to represent the learning of each image channel
independently; at the output of the generator network, the three resulting image
channels are recombined to generate the RGB image. This will be validated by
the discriminative network, which will evaluate the probability that the colorized
image (RGB), is similar to the real one that is used as ground truth. Additionally,
in the generator model, in order to obtain a true color, the DCGAN framework is
reformulated for a conditional generative image modeling tuple. In other words,
the generative model G(z; ;) is trained from a near infrared image plus Gaussian
noise, in order to produce a colored RGB image; additionally, a discriminative
model D(z;60,) is trained to assign the correct label to the generated colored
image, according to the provided real color image, which is used as a ground
truth. Variables (6,) and (04) represent the weighting values for the generative
and discriminative networks.
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The CDCGAN network has been trained using Stochastic AdamOptimazer
since it prevents overfitting and leads to convergence faster. Furthermore, it is
computationally efficient, has little memory requirements, is invariant to diago-
nal rescaling of the gradients, and is well suited for problems that are large in
terms of data and/or parameters. Our image dataset was normalized in a (—1,1)
range and an additive Gaussian Distribution noise with a standard deviation of
0.00011, 0.00012, 0.00013 added to each image channel of the proposed triplet
model. The following hyper-parameters were used during the learning process:
learning rate 0.0002 for the generator and the discriminator networks respec-
tively; epsilon = 1e-08; exponential decay rate for the 1st moment momentum
0.5 for discriminator and 0.4 for the generator; weight initializer with a standard
deviation of 0.00282; [1 weight regularizer; weight decay le-5; leak relu 0.2 and
patch’s size of 64 x 64.

The Triplet architecture of the baseline model is conformed by convolutional,
de-convolutional, relu, leak-relu, fully connected and activation function tanh
and sigmoid for generator and discriminator networks respectively. Addition-
ally, every layer of the model uses batch normalization for training any type
of mapping that consists of multiple composition of affine transformation with
element-wise nonlinearity and do not stuck on saturation mode. It is very impor-
tant to maintain the spatial information in the generator model, there is not
pooling and drop-out layers and only the stride of 1 is used to avoid down-
size the image shape. To prevent overfitting we have added a 11 regularization
term (\) in the generator model, this regularization has the particularity that
the weights matrix end up using only a small subset of their most important
inputs and become quite resistant to noise in the inputs; this characteristics is
very useful when the network try to learn which features are contributing to
the learning process. Park and Kang [18], present a color restoration method
that estimates the spectral intensity of the NIR band in each RGB color chan-
nel to effectively restores natural colors. According to the spectral sensitivity
of conventional cameras with the IR cut-off filter, the contribution of the NIR
spectral energy in each RGB color channel is greater in the red channel, hence
our architecture add the NIR band at the final red channel layer, this improve
the details of generated images, color and hue saturation. Figure 1 presents an
illustration of the proposed Triplet GAN architecture.

The generator (G) and discriminator (D) are both feedforward deep neural
networks that play a min-max game between one another. The generator takes
as an input a near infrared image blurred with a Gaussian noise patch of 64 x 64
pixels, and transforms it into the form of the data we are interested in imitating,
in our case a RGB image. The discriminator takes as an input a set of data,
either real image (z) or generated image (G(z)), and produces a probability of
that data being real (P(z)). The discriminator is optimized in order to increase
the likelihood of giving a high probability to the real data (the ground truth
given image) and a low probability to the fake generated data (wrongly colored
NIR image), as introduced in [16]; thus, the conditional discriminator network
it is updated as follow:
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Conditional Deep Convolutional Generative Adversarial Network Architecture:

(G) Generator Network with Triplet Model
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(D) Discriminator Network
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Fig. 1. Illustration of the network architecture used for NIR image colorization.

m

ou - D llogD () +log(1 — DGy, =), 3)
i=1

where m is the number of patches in each batch, x is the ground truth image
and y is the colored NIR image generated by the network and z is the ran-
domly Gaussian sampled noise. The weights of the discriminator network (D)
are updated by ascending its stochastic gradient. On the other hand, the gener-
ator is then optimized in order to increase the probability of the generated data
being highly rated, it is updated as follow:

o, - D log(1 — D(G(D, =), (4)
=1

where m is the number of samples in each batch and y is the colored NIR image
generated by the network and z is the randomly Gaussian sampled noise. Like
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in the previous case, the weights of the generator network (G) are updated by
descending its stochastic gradient.

4 Experimental Results

The proposed approach has been evaluated using NIR images and their cor-
responding RGB obtained from [19]. The wurban and old-building categories
have been considered for evaluating the performance of the proposed approach.
Figure 2 presents two pairs of images from each of these categories. The urban
category contains 58 pairs of images of (1024 x 680 pixels), while the old-building
contains 51 pairs of images of (1024 x 680 pixels). From each of these categories
250.000 pairs of patches of (64 x 64 pixels) have been cropped both, in the NIR
images as well as in the corresponding RGB images. Additionally, 2500 pairs of
patches, per category, of (64 x 64 pixels) have been also generated for validation.
It should be noted that images are correctly registered, so that a pixel-to-pixel
correspondence is guaranteed.

Fig. 2. Pair of images (1024 x 680 pixels) from [19], urban category (the two images in
the left side) and old-building category (the two images in the right side): (top) NIR
images to colorize; (bottom) RGB images used as ground truth. (Color figure online)

The CDCGAN network proposed in the current work for NIR image coloriza-
tion has been trained using a 3.2 eight core processor with 16 GB of memory
with a NVIDIA GeForce GTX970 GPU. On average every training process took
about 28h. Results from the proposed architecture have been compared with
those obtained with the GAN model presented in [14].

Colored images are referred to as (RGByr) while the corresponding RGB
images, provided in the given data sets, are referred to as (RGBgr) and used
as ground truth. The quantitative evaluation consists of measuring at every
pixel the angular error (AFE) between the obtained result (RGBxrr) and the
corresponding ground truth value (RGBgr):

dOt(RGBN[R7 RGBGT)
norm(RGByr) * norm(RGBgr)

AngularError = cos™* (

()
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This angular error is computed over every single pixel of the whole set of
images used for validation. Table1 presents the average angular errors (AE)
obtained with the proposed approach for the two categories together with the
results obtained with [14] for the same categories. It can be appreciated that
in all the cases the results with the proposed CDCGAN are better that those
obtained with [14].

Table 1. Average angular errors obtained with the approach presented in [14] (flat
DCGAN) and with the proposed Triplet based CDCGAN architecture.

Category [14] | Prop. Approach (CDCGAN)
Urban 6.15]5.94
Old-building | 6.95 | 5.71

Qualitative results are presented in Figs. 3 and 4. Figure 3 shows NIR images
from the urban category colorized with the proposed CDCGAN network and with
the approach presented in [14]; ground truth images (last column) are depicted
to appreciate the similarity reached with the proposed approach. Similar results
have been obtained when images from the old-building category are colorized

Fig. 3. (1st.Col) NIR patches from the Urban category. (2nd.Col) Results from the
approach presented in [14] (flat DCGAN). (3rd.Col) Colorization obtained with the
proposed approach (CDCGAN network). (4th.Col) Ground truth images. (Color figure
online)
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Fig. 4. (1st.Col) NIR patches from the Old-Building category. (2nd.Col) Results
from the approach presented in [14] (lat DCGAN). (3rd.Col) Colorization obtained
with the proposed approach (CDCGAN network). (4th.Col) Ground truth images.
(Color figure online)

with the proposed CDCGAN network (see Fig.4). As mentioned above, the
usage of a conditional triplet model allows to improve results with respect to the
flat model [14]. This improvement can be particularly appreciated in both the
color and the edges of the colorized images.

5 Conclusions

This paper tackles the challenging problem of NIR image colorization by using
a novel Conditional Generative Adversarial Network model. Results have shown
that in most of the cases the network is able to obtain a reliable RGB repre-
sentation of the given NIR image. Comparisons with a previous approach shows
considerable improvements. Future work will be focused on evaluating others
network architectures, like auto-encoders, cycle-consistent adversarial networks,
which have shown appealing results in recent works. Additionally, increasing the
number of images to train, in particular the color variability, will be considered.
Finally, the proposed approach will be tested in other image categories.
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