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Abstract. This paper presents a novel cycle generative adversarial net-
work (CycleGAN) architecture for synthesizing high-quality depth maps
from a given monocular image. The proposed architecture uses multiple
loss functions, including cycle consistency, contrastive, identity, and least
square losses, to enable the generation of realistic and high-fidelity depth
maps. The proposed approach addresses this challenge by synthesizing
depth maps from RGB images without requiring paired training data.
Comparisons with several state-of-the-art approaches are provided show-
ing the proposed approach overcome other approaches both in terms of
quantitative metrics and visual quality.

Keywords: depth maps-like · transfer domain · cross-spectral
super-resolution

1 Introduction

The ability to generate synthetic depth maps with high fidelity and accuracy has
garnered significant attention in the field of computer vision. Depth maps provide
crucial perceptual information, enabling a wide range of applications such as 3D
reconstruction, scene understanding, and object recognition, just to mention a
few. However, acquiring depth maps from real-world scenarios is a challenging
and expensive task, often requiring specialized sensors or complex calibration
procedures. In order to address this limitation, the use of deep learning-based
generative models has emerged as a promising solution.

The significance of synthesizing depth maps lies in its wide range of poten-
tial applications. Depth maps can facilitate object detection and recognition in
challenging environments, enable accurate 3D scene understanding for robotics
[17] and autonomous driving [7], and enhance virtual reality experiences (e.g.,
[11,18]). Furthermore, the ability to synthetically generate depth maps opens
up new possibilities for data augmentation, reducing the need for extensive data
collection and annotation [16].

Exploiting the possibility of using synthesized depth maps, [19] presents a
method for unsupervised learning of depth estimation and visual odometry using
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deep feature reconstruction. The proposed approach leverages the power of deep
neural networks to learn depth estimation and motion estimation directly from
unlabeled monocular sequences. In [9] the authors propose the fusion of color and
hallucinated depth map for enhancing image segmentation. The fusion of depth
with RGB increases the accuracy of semantic segmentation, four different fusion
strategies are evaluated on computer-generated synthetic datasets. Also focusing
on scene understanding, [12] proposes a CNN-based approach to predict occluded
portions of a scene by hallucinating semantic and depth information. These are
just a few illustrations of the usage of depth maps generated from monocular
views. In all cases, the quality of results depends on the accuracy of the synthe-
sized depth maps. Hence, having in mind this dependency on map precision, in the
current paper a CycleGAN architecture is proposed to generate accurate depth
maps. The proposed model uses multiple loss functions. The key contribution of
our work lies in the incorporation of multiple loss functions into the generative
architecture. The proposed approach leverages the cycle-consistency loss [4,20],
which enforces the reconstruction of the original input from the synthesized depth
map and vice versa. Additionally, the integration of contrastive [2], identity and
relativistic losses further enhance the quality and realism of the generated depth
maps. By combining these loss functions, the proposed architecture achieves a
balance between stability and diversity in the synthesized depth maps. The con-
trollable structure guided self-content preserving loss encourages the preservation
of distinct image features [15], the identity loss ensures consistency in preserving
structural information [8], and the generative adversarial model that enhances the
perceptual quality and realism of the generated depth maps [6].

Extensive evaluations of the performance and quality of the synthesized depth
maps through comprehensive experiments and comparisons with state-of-the-art
methods are provided. The manuscript is organized as follows; Sect. 2 presents
the proposed approach. Then, Sect. 3, depicts experimental results and com-
parison with state-of-art approaches. Both quantitative and qualitative results
are provided showing the improvements reached with the proposed approach.
Finally, conclusions and future works are given in Sect. 4.

2 Depth Map Generation

This section presents the architecture proposed for generating synthetic depth
maps, building upon the approach presented in [14], which was initially pro-
posed for generating thermal-like representations. Our objective is to leverage
the insights and techniques learned from synthesizing thermal-like images and
extend them to the generation of depth information, which plays a pivotal role
in various computer vision tasks. The depth of information provides valuable
insights about the objects present in a scene, which can be extracted and uti-
lized to enhance the performance of other computer vision algorithms. Motivated
by this concept, the original approach is extended to enable the generation of
synthetic depth maps from RGB images. This extension aims to harness the
potential of depth information and empower computer vision systems with a
richer understanding of the scene.
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Fig. 1. Cycle GAN proposed architecture.

The knowledge gained from generating thermal-like representations is lever-
aged to exploit the similarities and underlying principles between thermal and
depth data in the current study. Although they capture different aspects of the
scene, both modalities provide valuable information for understanding the envi-
ronment. Therefore, we adapt and enhance the existing architecture to accommo-
date the generation of depth maps. The architecture of our approach is presented
in Fig. 1.

The proposed architecture leverages the capabilities of generative adversarial
networks (GANs) and the Cycled GAN framework [20]. By utilizing two gen-
erators (G1 and G2) a framework is established for the translation of grayscale
images into visually consistent and realistic depth maps. The generators are
trained to map grayscale images to depth maps, while the discriminators pro-
vide feedback on the authenticity and quality of the generated depth maps. In
order to ensure the quality and accuracy of the synthesized depth maps, multiple
loss functions are incorporated into this work. These loss functions are designed
to guide the training process and encourage the generation of depth maps that
closely resemble the ground truth depth information. The cycle consistency loss,
Eq. (1), enforces the preservation of structural information during the trans-
lation process. It consists of two components: the forward cycle loss and the
backward cycle loss. The forward cycle loss measures the discrepancy between
the original grayscale image and the reconstructed grayscale image obtained by
applying G1 and G2 consecutively. Similarly, the backward cycle loss measures
the discrepancy between the original and reconstructed depth maps obtained by
applying G2 and G1 consecutively. These losses encourage the preservation of
important visual features and enhance the realism of the generated depth maps.
This loss can be defined as:

Lcycle(G1, G2) = Ex∼pdata(x)[‖x − G2(G1(x))‖1]
+Ey∼pdata(y)[‖y − G1(G2(y))‖1].

(1)

In addition to the cycle-consistency loss, identity loss, Eq. (2), is employed
in this study to ensure that the generated depth maps retain relevant visual
information from the source domain. This loss promotes the preservation of
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the input grayscale image’s identity during the translation process, preventing
unnecessary modifications. The identity loss is defined as follows:

Lidentity = Ex∼pdata(x)[‖x − G1(x)‖1]
+ Ey∼pdata(y)[‖y − G2(y)‖1].

(2)

To enforce meaningful relationships between the generated depth maps and
the corresponding real depth maps, the introduced contrastive loss in this paper
encourages the generator to produce depth maps that exhibit similar depth val-
ues and spatial structures to the real depth maps. The contrastive loss comprises
two components, including the cycle consistency loss, which measures the dis-
crepancy or difference between the reconstructed depth map and the real depth
map obtained by applying G1 to the real depth map. Similarly, the other gener-
ator that produces the identity-generated depth map measures the discrepancy
or difference of the generated depth map compared to the depth map obtained
by applying G2 to the real depth map.

Contrastive loss has also been implemented to minimize the distance or dis-
similarity of similar pairs of data points and maximize the distance or dissimi-
larity of dissimilar pairs of data points in a given dataset. According to [1], this
loss can be defined as:

Lcontrastive(Ŷ , Y ) =
L∑

l=1

Sl∑

s=1

�contr (v̂s
l , v

s
l , v̄

s
l ) , (3)

where Vl ∈ R
Sl×Dl represents a tensor whose shape depends on the model archi-

tecture. The variable Sl denotes the number of spatial locations of the tensor.
Consequently, the notation vs

l ∈ R
Dl is employed to refer to the Dl-dimensional

feature vector at the s-th spatial location. Additionally, v̄s
l ∈ R

(Sl−1)×Dl repre-
sents the collection of feature vectors at all other spatial locations except the
s-th one.

The proposed architecture additionally incorporates the least square loss,
which serves as a variant of the adversarial loss. This loss function is designed
to encourage the generated depth maps to closely align with the distribution of
real depth maps, thereby enhancing the realism of the synthesized results. The
least-square loss achieves this by minimizing the squared differences between the
predictions of the discriminators and their corresponding target labels. By uti-
lizing this loss, the training process is further stabilized. Specifically, the binary
cross-entropy loss is replaced with a least square loss formulation. The mathe-
matical definition of the least square loss for both the generator and discriminator
components can be expressed as follows:

LLS-GAN
D =

1
2
Exr∼P[(D(xr) − 1)2] +

1
2
Exf∼Q[D(xf )2] (4)

LLS-GAN
G =

1
2
Exf∼Q[(D(xf ) − 1)2], (5)
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where xr represents a real depth map from the real data distribution, xf rep-
resents a generated (fake) depth map from the generator, D(xr) represents the
discriminator’s output (probability) for a real depth map xr, and D(xf ) repre-
sents the discriminator’s output (probability) for a generated depth map xf . To
enhance the synthesis of depth maps, instance normalization is employed, which
adjusts the features of each depth map individually. Applying this normalization
process effectively reduces style differences between the generated and real-depth
maps, leading to improved overall quality and realism in the synthesized depth
maps.

By combining the loss functions presented above, and by using instance nor-
malization, the proposed architecture aims to improve the accuracy, quality, and
realism of the synthesized depth maps. It enables the generation of depth maps
that capture important depth information in a visually consistent and meaning-
ful manner, which can benefit a wide range of computer vision tasks, including
depth estimation, scene understanding, and 3D reconstruction. The final loss
function is obtained as:

Lfinal = λ1LLSGAN(G,D,X, Y ) + λ2Lcont (G,H,X)
+λ3Lcont(G,H, Y ) + λ4Lidentity(G,F ) + λ5Lcycle(G,F ), (6)

where λi are empirically defined. Lastly, the modification proposed in [14] is also
considered to optimize the performance of the image generator model. The pro-
posed adjustment entails modifying the beta1 parameter in the Adam optimizer,
which governs the decay rate of past gradient information. The beta1 parame-
ter of the Adam optimizer has been modified to 0.5. This adjustment aimed to
enhance the training efficiency of the model by placing more emphasis on the
current gradient information. By reducing the decay rate of historical gradients,
the optimizer became more responsive to recent updates, potentially resulting
in improved convergence speed during the training process.

3 Experimental Results

This section presents the experimental results obtained with the proposed model.
Details of the experimental setup employed during the training process are pro-
vided. Furthermore, an extensive comparison is performed to assess the perfor-
mance of the proposed method against several state-of-the-art image-to-image
translation methods.

3.1 Datasets

The NYU v2 dataset [13] is used for training the different architectures. It con-
sists of 1449 RGBD pairs captured using the Microsoft Kinect sensor. Specif-
ically, for the research, the first 1000 pairs from the dataset were selected for
training, while the remaining 449 pairs were used for testing. As a preprocessing
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step, all the images were resized to 256 × 256 pixels to ensure consistency and
facilitate the training process. The NYU v2 dataset provides a diverse range of
indoor scenes, enabling the evaluation of the proposed approach’s performance
and generalization ability across various real-world scenarios.

Fig. 2. Experimental results: (1st. col.) input images; (2nd.-5th. col.) results of state-
of-the-art approaches together with results from the proposed approach and the corre-
sponding ground truth depth map from NYU v2 test set.
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Fig. 3. Experimental results: (1st. col.) input images; (2nd.-5th. col.) results of state-
of-the-art approaches together with results from the proposed approach and the corre-
sponding ground truth depth map from NYU v2 test set.

3.2 Training Details

The proposed approach underwent extensive training to ensure the effectiveness
of the synthetic depth maps generated. Each of the techniques and our proposed
approach was included in the training process with the NYU data set. This train-
ing process was conducted for a total of 400 epochs, with each epoch consisting of
multiple iterations. A batch size of 1 was employed, meaning that each iteration
processed a single RGB image and a single depth map. To facilitate the training
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process and expedite computation, a high-performance NVIDIA GeForce RTX
3090 Ti graphics card was utilized. This powerful hardware accelerated the train-
ing procedure by efficiently processing the complex computations involved in the
training of the generative adversarial network.

The training process takes approximately 20 h, reflecting the significant com-
putational demands of the training process and the large number of iterations
performed. This extended duration was necessary to allow the network to learn
and refine its parameters to generate high-quality synthetic depth maps that
accurately capture the underlying depth information. Throughout the training
process, the network iteratively learned to optimize the various loss functions,
including cycle-consistency loss, identity loss, contrastive loss, and least square
loss. By continuously updating the network’s parameters based on these loss
functions, the model gradually improved its ability to generate realistic and
accurate depth maps from RGB inputs.

3.3 Comparison with SOTA Methods

The results obtained with the proposed approach have been compared with sev-
eral state-of-the-art generative adversarial networks: CycleGAN [20], CUT [10],
Fast CUT [10], Hneg [5], DCL and SimDCL [3]. These methods were trained
using the same dataset and experimental configurations. Quantitative results of
the comparison are presented in Table 1, where the metrics used for quantita-
tive evaluation are Structural Similarity Index (SSIM) and Peak Signal-to-Noise
Ratio (PSNR). The values shown in the table correspond to the average per-
formance of the test images from the NYU v2 dataset. The table provides a
comprehensive overview of the performance of each method in terms of SSIM
and PSNR scores. The higher the SSIM score, the better the structural similarity
between the generated images and the ground truth. On the other hand, a higher
PSNR score indicates better reconstruction fidelity. By comparing the results
obtained by the proposed approach with those of the state-of-the-art methods,
it can be appreciated the superior performance in terms of image quality and
reconstruction accuracy.

Figures 2 and 3 display a collection of grayscale input images from the test set
of the NYU v2 dataset, along with the results obtained by each of the aforemen-
tioned state-of-the-art methods. The figure shows the input grayscale images,
the corresponding depth map representations generated by each method, and
the corresponding ground truth depth maps. Through a visual examination of
those figures, the performance of the different methods can be assessed in accu-
rately capturing the depth information from the grayscale input images. This
qualitative analysis provides insights into the strengths and limitations of each
approach in producing high-quality depth maps. By comparing the results of the
proposed method with those of the state-of-the-art methods, the effectiveness of
the proposed method in generating visually appealing and accurate depth maps
can be appreciated.

Finally, in Fig. 4 the depth values of a case study are depicted with different
colors in order to highlight the quality of the shapes obtained with the proposed
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Fig. 4. Enlargement of the depth maps presented in Fig. 2(middle) to compare results
from the proposed approach with respect to the state-of-the-art.
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Table 1. Average results on synthetic image generation from the NYU v2 testing set.
Best results in bold.

Approaches NYU Dataset

PSNR SSIM

CycleGAN [20] 17,2879 0,8036

CUT [10] 16,9203 0,7975

FastCUT [10] 17,0133 0,7987

DCLGAN [3] 16,8829 0,7966

SimDCL [3] 16,9831 0,7920

HnegSRC [5] 16,9805 0,7992

Proposed Approach 17,9773 0,8245

approach. The varying shades and gradients represent the different depth levels
captured by each method. This visual distinction allows for a better understand-
ing of the depth estimation capabilities and the level of fidelity achieved by the
proposed approach compared to the state-of-the-art approaches.

From the experimental results, it can be inferred that the proposed architec-
ture has shown the best performance for generating synthetic depth maps. The
generated depth maps exhibit high quality and are visually consistent with the
corresponding real-depth maps. The inclusion of multiple loss functions has con-
tributed to the stability and improved the quality of the generated depth maps.
Comparative evaluations with state-of-the-art methods have demonstrated that
the proposed architecture outperforms existing approaches in terms of generating
high-quality depth maps. The ability to accurately capture depth information
from RGB images is crucial for various computer vision tasks, and our archi-
tecture shows the potential in providing valuable depth information that can
be extracted and utilized to enhance the performance of other computer vision
algorithms.

4 Conclusions

This paper presents a novel CycleGAN architecture based on the usage of mul-
tiple loss functions for synthesizing high-quality depth maps. The integration
of cycle consistency, contrastive, identity, and relativistic losses has resulted in
improved network stability and the generation of high-quality depth maps. Com-
parisons with state-of-the-art approaches have demonstrated the superior perfor-
mance of the proposed method. As for future work, different potential research
directions will be explored. One avenue is to investigate the use of advanced
loss functions, such as perceptual loss or style loss, to further enhance the visual
quality and realism of the synthesized depth maps. Additionally, exploring more
sophisticated network architectures, data augmentation techniques, and domain
adaptation methods could enhance the generalization ability and overall per-
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formance of the depth map synthesis model. Furthermore, focusing on domain-
specific improvements and understanding the specific requirements of depth map
synthesis in different application domains could lead to tailored optimizations
and advancements. Continuing to advance the field of depth map synthesis and
addressing these future research directions can unlock new possibilities and appli-
cations in computer vision, robotics, augmented reality, and related fields.
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