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Abstract. Several factorization techniques have been proposed for tack-
ling the Structure from Motion problem. Most of them provide a good
solution, while the amount of missing and noisy data is within an accept-
able ratio. Focussing on this problem, we propose to use an incremenal
multiresolution scheme, with classical factorization techniques. Informa-
tion recovered following a coarse-to-fine strategy is used for both, filling
in the missing entries of the input matrix and denoising original data. An
evaluation study, by using two different factorization techniques–the Al-
ternation and the Damped Newton–is presented for both synthetic data
and real video sequences. 1

1 Introduction

Structure From Motion (SFM) consists in extracting the 3D shape of a scene as
well as the camera motion from trajectories of tracked features. Factorization is
a method addressing to this problem. The central idea is to express a matrix of
trajectories W as the product of two unknown matrices, namely, the 3D object’s
shape S and the relative camera pose at each frame M : W2f×p = M2f×rSr×p,
where f , p are the number of frames and feature points respectively and r the
rank of W . The goal is to find the factors M and S that minimize

‖W − MS‖2
F (1)

where ‖ · ‖ is the Frobenius matrix norm [1].
The Singular Value Decomposition (SVD) gives the best solution for this

problem when there are not missing entries. Unfortunately, in most of the real
cases not all the data points are available, hence other methods need to be used.
With missing data, the expression to minimize is the following

‖W − MS‖2
F =

∑

i,j

|Wij − (MS)ij |2 (2)

where i and j correspond to the index pairs where Wij is defined.
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In the seminal approach Tomasi and Kanade [2] propose an initialization
method in which they first decompose the largest full submatrix by the factor-
ization method and then the initial solution grows by one row or by one column
at a time, unveiling missing data. The problem is that finding the largest full
submatrix is a NP-hard problem. Jacobs [3] treats each column with missing en-
tries as an affine subspace and shows that for every r-tuple of columns the space
spanned by all possible completions of them must contain the column space of
the completely filled matrix. Unknown entries are recovered by finding the least
squares regression onto that subspace. However it is strongly affected by noise
on the data. An incremental SVD scheme of incomplete data is proposed by
Brand [4]. The main drawback of that technique is that the final result depends
on the order in which the data are given. Brandt [5] proposes a different tech-
nique based on the expectation maximization algorithm (EM) and although the
feature points do not have to be visible in all views, the affine projection ma-
trices in each image must be known. A method for recovering the most reliable
imputation, addressing the SFM problem, is provided by Suter and Chen [6].
They propose an iterative algorithm to employ this criterion to the problem of
missing data. Their aim to obtain the projection of W onto a low rank matrix
to reduce noise and to fill in missing data.

A different approach to address the factorization with missing data is the Al-
ternation technique [7]. One of the advantages of this method is that it converges
quickly. The algorithm starts with an initial random S0 or M0 and solves one
factor at each iteration k, until the product MkSk converges to W . The key point
of this 2-step algorithm is that, since the updates of S given M (analogously in
the case of M given S) can be independently done for each row of S, missing
entries in W correspond to omitted equations. Due to that fact, with a large
amount of missing data the method would fail to converge.

In [7], Buchanan and Fitzgibbon summarize factorization approaches with
missing data and proposes the Alternation/Damped Newton Hybrid, which com-
bines the Alternation strategy with the Damped Newton method. The latter is
fast in valleys, but not effective when far from the minima. The goal of intro-
ducing this hybrid scheme is to give a method that has fast initial convergence
and, at the same time, has the power of non-linear optimization.

One disadvantage of the above methods is that. They give a good factorization
while the amount of missing points is low, which is not common in real image
sequences, unfortunately. Addressing to this problem, we recently presented an
iterative multiresolution scheme [8], which incrementally fill in missing data.
At the same time noisy data are filtered. The key point of that approach is
to work with a reduced set of feature points along a few number of consecutive
frames. Thus, the 3D reconstruction corresponding to the selected feature points
and the camera motion of the used frames are obtained. The missing entries of
the trajectory matrix can be recovered just multiplying the shape and motion
matrices. The amount of missing data is reduced after each iteration; at the
same time it increases the chances of having a better result. In the current paper
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we propose improvements over the original approach, as well as the use of two
different techniques under this incremental multiresolution scheme.

This paper is organized as follows. Section 2 briefly introduces the incremental
multiresolution scheme. Improvements on the original version are emphasized.
Section 3 presents an evaluation study of the use of two factorization techniques
with the proposed scheme. Conclusions and future work are given in section 4.

2 Iterative Multiresolution Scheme

In this section the iterative multiresolution scheme, which incrementally fill in
missing data, is presented. Essentially, the basic idea is to generate sub-matrices
with a reduced density of missing points. Thus, any classical factorization tech-
nique could be used for factoring these sub-matrices, recovering their correspond-
ing 3D shape and motion; at the same time missed data on the original matrix
will be filled with their resulting product. Additionally, it is expected that noisy
data are filtered. The technique consists of two stages, which are briefly described
below. Improvements on the original version are highlighted, more details of the
original technique can be found in [8].

2.1 Observation Matrix Splitting

Let W2f×p be the observation matrix (also referred through the paper as input
matrix) of p feature points tracked over f frames containing missing entries; it
will be denoted as W . Let k be the index indicating the current iteration number.

In a first step, the input matrix W is split in a uniformly distributed set of
k × k non-overlapped sub-matrices, Wk, with a size of � 2f

k � × � p
k�.

Then, in a second step, a multiresolution approach is followed. It consists in
computing four W2k overlapped sub-matrices with twice the size of Wk (only
for k > 2). The idea of this enlargement process is to study the behavior of
feature points contained in Wk when a bigger region is considered (see Fig. 1).

Since generating four W2k, for every Wk, is a computationally expensive task,
a simple and more direct approach is followed. It consists in splitting the input
matrix W in four different ways, by shifting W2k half of its size (i.e., Wk) through
rows, columns or both at the same time. Fig. 2 illustrates the five partitions of
matrix W—i.e., Wk and W2k sub-matrices generated at the sixth iteration. When
all these matrices are considered together, the overlap between the different areas
is obtained, see textured cell in Fig. 1 and Fig. 2. As it can be appreciated
in Fig. 2, corners and border cells are considered only twice and three times,
respectively, at each iteration.

2.2 Sub-matrices Processing

At this stage, the objective is to recover missing data by applying a factorization
technique at every single sub-matrix. Independently of their size hereinafter sub-
matrices will be referred as Ws.



An Iterative Multiresolution Scheme for SFM 807

Fig. 1. Wk and W2k overlapped matrices of the observation matrix W , computed
during the first stage (section 2.1), at iteration k = 6

W
2k

2f/k

p/k
W

k

Fig. 2. Five partitions of matrix W . Note the overlap between a Wk sub-matrix with
its corresponding four W2k sub-matrices, computed during the first stage (section 2.1)

Given a sub-matrix Ws, its factorization using a particular technique gives its
corresponding Ms and Ss matrices. Their product could be used for computing
an approximation error εs such as equation (2). Actually, in this paper we use
the root mean squared (rms) of this error per image point:

rmss =

√∑
i,j |(Ws)ij − (MsSs)ij |2

n
2

(3)

where i and j correspond to the index pairs where (Ws)ij is defined and n the
amount of those points in Ws.

The main advantage of using rms is that it does not depend on the number of
known entries. Therefore, it is a normalized measure that gives a better idea of
the goodness of the solution than the error defined at equation (2), which could
be confusing or provide erroneous results. For instance, by using the latter, a
big error value could be obtained only due to the fact of working with a great
amount of known entries. On the contrary, a small error value could correspond
to a case with a few known entries.

After processing the current Ws, its corresponding rmss is compared with a
user defined threshold σ. In case the resulting rmss is smaller than σ, every point
in Ws is kept in order to be merged with overlapped values after finishing the
current iteration. Additionally, every point of Ws is associated with a weighting
factor, defined as 1

rmss
, in order to measure the goodness of that value. These

weighting factors are later on used for merging data on overlapped areas. Oth-
erwise, the resulting rmss is higher than σ, computed data are discarded. With
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the rmss error measure, a unique threshold, valid for every matrix, is defined.
As mentioned above, this is the main advantage over the previous version.

Finally, when every sub-matrix Ws has been processed, recovered missing data
are used for filling in the input matrix W . In case a missing datum has been
recovered from more than one sub-matrix (overlapped regions), those recovered
data are merged by using their corresponding normalized weighting factors. On
the contrary, when a missing datum has been recovered from only one sub-
matrix, this value is directly used for filling in that position. Already known
entries in W could be also modified. In this case, instead of taking the new
computed data directly as in [8], the mean between the initial value and the new
one, obtained after the merging process, is assigned.

Once recovered missing data have been used for filling in the input matrix
W , the iterative process starts again (section 2.1) splitting the new matrix W
either by increasing k one unit or, in case the size of sub-matrices Wk at the
new iteration stage is quite small, by setting k = 2. This iterative process is
applied until one of the following conditions is true: a) the matrix of trajectories
is totally filled; b) at the current iteration no missing data were recovered; c) a
maximum number of iterations is reached.

3 Evaluation Study

Assuming both the filling missing entries and denoising capabilities, as it was
presented in [8], in this section a study of using the iterative multiresolution
scheme with different factorization techniques is presented. In particular, the
work is focussed on the use of: Alternation and Damped Newton [7]. Experi-
ments using both synthetic and real data are presented below. The methodology
proposed to evaluate the obtained results consists in applying:

– A factorization technique over the input matrix W .
– The same factorization technique with the proposed multiresolution scheme.

3.1 Synthetic Object

Synthetic data are randomly generated by distributing 35 3D feature points over
the whole surface of a cylinder, see Fig. 3 (left). The cylinder is defined by a
radius of 100 and a height of 400; it rotates over its principal axis; the camera
also moves. An input matrix W with 20% of known data, directly obtained
taking 35 frames, is used for the evaluation, see Fig. 3 (middle). Notice that W
has a banded structure; it is symmetric due to the way it has been generated.
Elements of the matrix W are represented by means of a grey level scale. Feature
point trajectories are plotted in Fig. 3 (right).

Factorization Using Alternation. Fig. 4 (left) shows the recovered trajecto-
ries obtained by applying the Alternation technique to the input matrix W for
this synthetic example. In this case, the resulting rms is 6.43.
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Fig. 3. (left) Synthetic cylinder. (middle) Input matrix of trajectories, with 20% of
known data. (right) The same feature point trajectories represented in the image plane.
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Fig. 4. (left) Recovered feature points trajectories applying Alternation to W .
(right) The same, but applying Alternation with the iterative mutiresolution scheme.

Fig. 5 shows intermediate results obtained after applying the Alternation tech-
nique with the multiresolution scheme to W . In order to illustrate the process,
the amount of recovered data at the third, fifth and last iterations of the mul-
tiresolution scheme are presented. While the input matrix has 20% of data, the
final one has 63% of data. The trajectories plotted in Fig. 4 (right) are obtained
after applying the Alternation technique to this final matrix (Fig. 5 (right)). The
rms value is 0.29. Notice that these trajectories do not form a cylinder, as one
might expected, due to the fact that the camera moves.

Fig. 6 (left) and (middle) shows the recovered x and y camera motion axes,
from both strategies and at each frame. The 3D plot corresponds to each compo-
nent of the vector axes: x(x, y, z), and y(x, y, z) at each frame. The obtained 3D
reconstructions of the cylinder are plotted in Fig. 6 (right). In order to show the
goodness of the reconstruction, the cylinder that best fits the final data is also
plotted. Fig. 6 (top) corresponds to results computed by applying Alterantion to
W , while Fig. 6 (bottom) presents the results obtained by applying Alternation
with the proposed multiresolution scheme.

It can be seen that the results are considerably improved with the proposed
multiresolution scheme, both for the recovered feature points trajectories and
for the obtained shape and motion.
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k=3, 30%data k=5, 46%data Wfinal, 63% data

Fig. 5. Third, fifth and last iterations of the multiresolution scheme when the Alter-
nation technique is used. A final matrix with 63% of data is obtained.
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Fig. 6. (left) and (middle) Plots of the recovered x and y camera motion axes, at each
frame. (right) 3D reconstructions of the cylinder. (top) Applying Alternation to W .
(bottom) Applying Alternation with the multiresolution scheme.

Factorization Using Damped Newton. The observation matrix W pre-
sented in Fig. 3 (middle) has been also used as input for the Damped Newton
factorization technique. Fig. 7 (left) plots the recovered trajectories applying the
Damped Newton to W . The rms is 0.76.

Fig. 7 (right) shows the obtained trajectories when Damped Newton is applied
with the proposed multiresolution scheme; in this case the rms is 22.22. As
pointed out in [6], the measure of error taking only the known entries of W
could be ambiguous. In this particular case, since this is a synthetic sequence, the
missing entries are available. Hence, the rms taking into account all those entries
has been computed for both results. Their values are 77.0 applying Damped
Newton to W and 69.1, with the multiresolution scheme. Again, better results,
not only visual but also numerical, are obtained with the multiresolution scheme.

The recovered x and y camera motion axes from both strategies are plotted
in Fig. 8 (left) and (middle) respectively. In Fig. 8 (right) the obtained 3D
reconstructions of the cylinder are shown.
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Fig. 7. (left) Recovered trajectories applying Damped Newton to W . (right) The same,
but applying Damped Newton with the proposed scheme.
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Fig. 8. (left) and (middle) Plots of the recovered x and y camera motion axes, at each
frame. (right) 3D reconstructions of the cylinder. (top) Applying Damped Newton to
W . (bottom) Applying Damped Newton with the multiresolution scheme.

The results obtained with the Damped Newton are not as good as the ones
obtained with the Alternation, both applying it to W and with the proposed
multiresolution scheme. Notice that, inspite of that, results with the proposed
scheme are better than using Damped Newton directly over W .

3.2 Real Object

A real video sequence of 101 frames with a resolution of 640×480 pixels is used.
The studied object is shown in Fig. 9 (left). A single rotation around a vertical
axis was performed. Feature points are selected by means of a corner detector
algorithm and 87 points distributed over the squared-face-box are considered.
An iterative feature tracking algorithm has been used. More details about corner
detection and tracking algorithm can be found in [9]. Missing data are obtained
by removing data randomly. As in the previous case, an input matrix with 20%
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Fig. 9. (left) Object used for the real case. (middle) Input matrix of trajectories, with
20% of known data. (right) Feature point trajectories represented in the image plane.
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Fig. 10. (left) Recovered feature points trajectories applying Alternation to W ,
Fig. 9 (middle). (right) The same, but applying Alternation with the proposed scheme.

of data is considered, see Fig. 9 (middle). Notice that the input matrix W has
not a band structure like in the synthetic case, but a structure that unveil the
random nature of missing entries. The feature point trajectories are plotted in
Fig. 9 (right). The methodology applied over the previous W is presented below.

Factorization Using Alternation. The Alternation technique is applied to
the input matrix W and the obtained rms is 2.41. Fig. 10 (left) plots an enlarge-
ment of the recovered trajectories, in order to avoid a plot such as Fig. 11 (top-
right).

On the contrary, when Alternation is applied with the proposed multiresolu-
tion scheme, results improve considerably. For instance, about 95% of data are
contained in matrix W during last iteration (recall that the input matrix only
contains about 20%), and the final resulting rms is 0.69. Fig. 10 (right) shows
the trajectories recovered with the proposed scheme.

Fig. 11 (left) and (middle) show the recovered x and y camera motion axes,
from both strategies. The obtained 3D reconstructions of the input object are
presented in Fig. 11 (right). As in the synthetic experiment, results are improved
applying Alternation with the proposed iterative multiresolution scheme.
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Fig. 11. (left) and (middle) Plot of the recovered x and y camera motion axes, at each
frame. (right) 3D reconstruction of the input object. (top) Results obtained applying
Alternation to W . (bottom) Applying Alternation with the proposed scheme.
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Fig. 12. (left) Recovered trajectories applying Damped Newton to W , Fig. 9 (middle).
(right) The same, but applying Damped Newton with the proposed scheme.

Factorization Using Damped Newton. The recovered trajectories applying
Damped Newton are plotted in Fig. 12 (left) and the rms is 0.87. Again, an
enlargement has been performed in order to obtain a better visualization.

Fig. 12 (right) shows the obtained trajectories applying Damped Newton with
the proposed multiresolution scheme. In this case, the rms is 7.38. Since the
missing points have been obtained randomly from a full matrix, all the entries
are available. Therefore, as in the synthetic case, all the points have been taken
into account for computing the rms. The resulting rms errors are 29.54 applying
Damped Newton to W and 8.15 with the multiresolution scheme.

Finally, the recovered x and y camera motion axes, from both strategies, are
plotted in Fig. 13 (left) and (middle), respectively. The obtained 3D reconstruc-
tions of the input object are shown in Fig. 13 (right).
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Fig. 13. (left) and (middle) Plots of the recovered x and y camera motion axes, at
each frame. (right) 3D reconstructions of the input object. (top) Applying Damped
Newton to W . (bottom) Applying Damped Newton with the multiresolution scheme.

As in the synthetic case, the obtained results using Damped Newton are
worse than the ones obtained with Alternation. Again, results with the pro-
posed scheme are better than the ones obtained using Damped Newton directly
over W .

4 Conclusions and Future Work

This paper presents improvements on the original iterative multiresolution ap-
proach. The main contribution is the modified definition of the error. Here, the
root mean of the previous error per image point is considered. As mentioned
before, this is a normalized measure that gives a better idea of the goodness
of the result. A less important improvement is the way in which the recovered
missing data are merged in the case of data known a priori. The average between
the input entries and the new computed data obtained after the merging process
is assigned. Moreover, in the current paper, the attention is not only focused on
the error value, but also on the obtained M and S. However, we would like to
define a function to measure the goodness of these recovered factors.

Additionally, when the original multiresolution scheme was presented, its vali-
dation was done using only the Alternation technique. In this work, the Damped
Newton technique is also studied and compared with the Alternation. Although
any factorization technique can be applied with this multiresolution scheme, the
Damped Newton method seems to be more appropriated when the input matrix
contains only a few missing data. Otherwise it takes a lot of time and may be
wrong results are obtained. As a future work the use of an hybrid technique will
be considered.
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