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Abstract. This paper presents a method for finding the surface normals
and reflectance of an object from a set of images obtained under differ-
ent lighting conditions. This set of images, assuming a Lambertian ob-
ject, can be approximated by a three dimensional linear subspace, under
an orthographic camera model and without shadows and specularities.
However, a higher dimensional subspace is needed when images present
pixels in shadow, specularities or ambient illumination. This paper pro-
poses on the one hand to consider pixels in shadow and specularities as
missing data; and on the other hand a rank-four formulation to recover
the ambient illumination. An adaptation of the Alternation technique is
introduced to compute the sought surface normals and light-source ma-
trices. Experimental results show the good performance of the proposed
Alternation-based strategy.
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1 Introduction

Photometric stereo aims at estimating the surface normal and reflectance at
every point of an object by using several intensity images obtained under dif-
ferent lighting conditions. The general assumptions are that the projection is
orthographic, the camera and objects are fixed and the moving light source is
distant from the objects. Hence, it can be assumed that the light shines on each
point in the scene from the same angle and with the same intensity. The starting
point is that the set of images produced by a convex Lambertian object, under
arbitrary lighting, can be approximated by a low-dimensional linear subspace of
images [1]. Concretely, without shadows and specularities, a Lambertian object
produces a 3D subspace of images [2]. This linear property suggests to use factor-
ization techniques to model the image formation and obtain each of the factors
that contribute to it. The intensity image data are stacked into a measurement
matrix, whose rows and columns correspond to each of the pixels and images,
respectively. The Singular Value Decomposition (SVD) [3] is in general used to
decompose this matrix into the surface and light-source matrices.

Most photometric stereo approaches assumes that images do not have shadows
nor specularities (e.g., [4]), which correspond to points with very low and high
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intensities values, respectively. These points do not follow a Lambertian model.
Although if there are only a few of them the Lambertian model could be used as
a good approximation, their presence can bias the obtained results. Hence, some
approaches propose methods to reject them or tend to reduce their influence on
the results.

Hayakawa [5] presents a photometric stereo approach for estimating the sur-
face normals and reflectance of objects, which is similar to the factorization
method presented in [6] for the shape and motion estimation. This approach
factorize the measurement matrix by using the SVD, assuming rank 3. Further-
more, Hayakawa proposes a strategy to deal with shadows. First of all, shadows
and illuminated data are classified, by using an intensity threshold. The idea is to
select an initial submatrix, whose entries do not correspond to pixels in shadow.
Then, the surface normals and reflectance of pixels in shadow are estimated by
growing a partial solution obtained from the initial submatrix. Unfortunately, to
find a submatrix without shadows is in general a quite expensive task. In addi-
tion, the SVD has a high computational cost when dealing with large matrices,
which are common in this application. Epstein et al. [7] present an approach
based on [5] for learning models of the surface geometry and albedo of objects.
It is based on the SVD and also assumes rank 3. They point out that in [5] the
obtained reflection and light directions are recovered up to a rotation. In order
to solve that ambiguity, they introduce the surface integrability.

In real images, the presence of shadows, specularities or ambient illumination
is quite common. In those cases, a subspace with a dimension higher than three
is needed to approximate properly the measurement matrix [8]. Yuille et al. [9]
propose an iterative method to locate and reject shadows. In addition, they
propose an extension of [7] to a rank-four formulation that allows to recover the
ambient illumination. In a recent paper, Basri et al. [1] proposes an approach
that allows arbitrary lightings, including any combination of point sources and
diffuse lightings. They use spherical harmonics [8], which form an orthonormal
basis for describing functions on the surface of a sphere. In particular, they
present two methods, the first one uses a first order harmonic approximation (a
4D space), while the second one uses a second order harmonic approximation (a
9D space). They propose to remove unreliable pixels, such that saturated pixels,
and fill in missing data by using Wiberg’s algorithm [10].

This paper proposes on the one hand, to consider pixels in shadow and spec-
ularities as missing data, in order to reduce their influence to the results; and on
the other hand, a rank-4 formulation that includes an ambient illumination term.
Since the SVD can not be applied to a missing data matrix, an adaptation of
the Alternation technique [11], which can deal with missing data, is introduced
to factorize the measurement matrix into the surface and light-source matrices.
Hence, not only the surface normals and reflectance are recovered, but also the
ambient illumination. The rest of the paper is organized as follows. Section 2
introduces the classical rank 3 formulation. The Alternation technique adapted
to the photometric stereo is presented in Section 3. Section 4 proposes a gen-
eralization to the rank-4 case that allows to recover the ambient illumination.
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Experimental results with real images are given in Section 5. Finally, concluding
remarks are summarized in Section 6.

2 Rank 3 Formulation

A measurement matrix I contains the grey-level intensity image data at p pixels
through f frames. In particular, the kth-row of I corresponds to the intensities of
the kth-pixel in every image, while its jth-column corresponds to the intensities
of all the pixels of the jth-frame. Hence, the matrix I is defined as:

Ip×f =

⎡
⎢⎣

i11 . . . i1f

...
...

ip1 . . . ipf

⎤
⎥⎦ (1)

The space of images of the object obtained by varying the light source direction
spans a three dimensional space [2], if there are not shadows or specularities.
Therefore, it can be assumed that the rank of I is 3. Assuming a Lambertian
reflectance model, this matrix can be factorized as:

I = RNMT (2)

where

Rp×p =

⎡
⎢⎣

r1 0
. . .

0 rp

⎤
⎥⎦ (3)

is the surface reflectance matrix (being r the surface reflectance at each pixel),

Np×3 =
[
n1 . . .np

]t =

⎡
⎢⎣

n1x n1y n1z

...
...

...
npx npy npz

⎤
⎥⎦ (4)

is the surface matrix (n represents the surface normal at each pixel),

M3×f =
[
m1 . . .mf

]
=

⎡
⎣mx1 . . . mxf

my1 . . . myf

mz1 . . . mzf

⎤
⎦ (5)

is the light-source direction matrix (m represents the light-source direction at
each frame), and

Tf×f =

⎡
⎢⎣

t1 0
. . .

0 tf

⎤
⎥⎦ (6)

is the light-source intensity matrix (t represents the light-source intensity at each
frame).

Using the above definitions, the surface matrix S and the light-source matrix L
are defined as follows:

Sp×3 =
[
s1 . . . sp

]t =

⎡
⎢⎣

s1x s1y s1z

...
...

...
spx spy spz

⎤
⎥⎦ = RN (7)
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L3×f =
[
l1 . . . lf

]t =

⎡
⎣ lx1 . . . lxf

ly1 . . . lyf

lz1 . . . lzf

⎤
⎦ = MT (8)

Therefore, the measurement matrix can be decomposed as:

I = SL (9)

Hence, the surface matrix S and the light-source matrix L can be recovered
from the intensity images obtained under varying illumination. Furthermore,
and once the factors are obtained, synthetic images can be generated, considering
arbitrarily light positions and substituting it to the expression (9).

3 Adapted Alternation to Photometric Stereo

The problem presented above could be tackled by any factorization technique.
In general, Singular Value Decomposition (SVD) is used to compute the S and
L factors from a measurement matrix I; however, if entries of I corresponding
to pixels in shadow or saturated regions (also denoted as specularities) are con-
sidered as missing data, SVD can not be applied. In this paper, an adaptation
of Alternation [11], which is able to deal with missing data, is proposed to fac-
torize the matrix I. The algorithm is summarized below for the rank 3 case, the
extension to the rank 4 case is presented in the next Section.

Algorithm
1. Set a lower and an upper threshold to define the shadows and specularities,

respectively. The lower threshold depends on the intensity values in each set
of images, while the upper threshold is, in general, 255.

2. Consider the entries corresponding to shadows and specularities as missing
data in I.

3. Apply the Alternation technique to I. The algorithm starts with an initial
random p × 3 matrix S0 (analogously with a 3 × f random L0) and repeats
the next two steps until the product SkLk converges to I:
– Compute L1: Lk = (St

k−1Sk−1)−1(St
k−1I)

– Compute S1: Sk = ILt
k(LkLt

k)−1

Solution: S contains the surface normals and reflectance, L contains the light
source direction and intensities and the product SL is the best rank-3 approxi-
mation to I.

However, as in the SVD case [5], the obtained decomposition is not unique,
since any 3 × 3 invertible matrix Q gives the following valid decomposition:

I = SL = ŜQQtL̂ (10)

Therefore, at the end of the algorithm, one of the constraints proposed in [5] is
used to determinate the matrix Q:
1 These products are computed only considering known entries in I .
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1. The relative value of the surface reflectance is constant or known in at least
six pixels. The matrix Q can be computed with the following system:

ŝkQQtŝt
k = 1, k = 1, · · · , p (11)

where ŝk is the kth-vector of Ŝ.
2. The relative value of the light-source intensity is constant or known in at

least six frames. Here Q can be obtained by solving the following system:

l̂tkQQtl̂k = 1, k = 1, · · · , f (12)

where l̂k is the kth-vector of L̂.

If the value of the reflectance or the value of the light intensity is known, it is
substituted to the corresponding above equation. Actually, if the value is not
known, the reflectance and the light intensity are recovered only up to scale. In
our experiments, the second constraint is used and a total of f equations (the
number of available images) are considered.

4 Generalization to the Rank 4 Case

This Section proposes a generalization of the previously presented formulation
to the rank 4 case. It allows to include a term corresponding to the ambient
illumination. With this new formulation, the equation (9) is transformed as:

Ip×f = Sp×3L3×f + ap×1 (13)

where ap×1 is the ambient illumination, which does not depend on the light
source direction. It could take a different value at each pixel. In matrix formu-
lation, this equation can be expressed as:

Ip×f =
[
S a

] [
L
1

]
(14)

Notice that each of the factors can be of rank 4 at most. Therefore, in this case,
the Alternation technique is applied considering a rank 4 value for I (step 3,
Section 3) and the following decomposition is obtained:

Ip×f = Ãp×4B̃4×f (15)

At each step of the Alternation, the last row of B̃ is set to be a vector of ones. As
in the rank-3 case, any 4 × 4 matrix Q gives the following valid decomposition:

I =
[
S a

] [
L
1

]
= Ãp×4B̃4×f = Ap×4Q4×4Q

t
4×4B4×f (16)

The linear transformation Q4×4 can be computed by using one of the aforemen-
tioned constraints. In order to compute it more easily, this matrix is separated
into two different matrices: Q1 and Q2 with dimensions 4 × 3 and 4 × 1, respec-
tively. That is,

I = AQQtB = A
[
Q1 Q2

] [
Qt

1
Qt

2

]
B =

[
AQ1 AQ2

] [
Qt

1B
Qt

2B

]
(17)
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If the surface reflectance is constant or known in every pixel, the matrix Q is
computed by solving the linear systems defined by the equations:

akQ1Q
t
1a

t
k = 1, k = 1, · · · , p (18)

where ak is the kth-vector of the first factor A, and
a = AQ2 (19)

On the contrary, if the intensity of the light source is constant or known in every
image, the matrix Q is computed by solving the linear systems defined by:

bt
kQ1Q

t
1bk = 1, k = 1, · · · , p (20)

where bk is the kth-vector of the second factor B, and
1 = Qt

2B (21)

Finally, the Q matrix is used to obtain the final factors:

Ã = AQ, B̃ = QtB (22)

5 Experimental Results

Images from the Yale data base (http://cvc.yale.edu) are used to validate the
proposed approach. These images were captured using a purpose-built illumina-
tion rig, which is fitted with 64 computer controlled strobes. Extreme cases, in
which almost all pixels of the image are in shadow, are not considered in these
experiments. In particular, two different data sets are presented here; a scene
containing: i) a ball; ii) a sculptured bust.

The objective of this Section is to show the improvements of the obtained
results when pixels in shadow and specularities are considered as missing entries
in I. Hence, results obtained taking the full image matrix I are compared with
the ones obtained when those particular entries are considered as missing data.

5.1 Ball Images

These images contain regions of specular reflection, that is pixels with an in-
tensity image of 255 (see Fig. 2 (top)). They have a size of 294×294 pixels and

a b c d e

Fig. 1. Ball images, recovered factors: (a) reflectance; (b) ambient illumination; (c),
(d) and (e) x, y and z components of the surface normals
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Fig. 2. (top) A set of the original images of the ball; (middle) images recovered by
projecting the original ones onto a four-dimensional subspace; (bottom) images of the
middle, adding the ambient component

a b c d e

Fig. 3. Ball images, 28% of missing data, recovered factors: (a) reflectance; (b) ambient
illumination; (c), (d) and (e) x, y and z components of the surface normals

Fig. 4. Case 28% of missing data: (top) a set of the original images of the ball; (mid-
dle) images recovered by projecting the original ones onto a four-dimensional subspace;
(bottom) images of the middle, adding the ambient component

only 49 images are considered, given a measurement matrix I with a size of
66,921×49 (background pixels are not considered). Fig. 1 shows the reflectance,
ambient illumination and coordinates of the recovered surface normals, obtained
taking the full I. Fig. 2 gives a comparison between the original images (top)
and the recovered ones with the product of the obtained factors, without the
ambient term (middle) and with the ambient term (bottom). It can be seen
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Fig. 5. Images synthesized by considering random light source positions

a b c d e

Fig. 6. Sculptured bust images, recovered factors: (a) reflectance; (b) ambient illumi-
nation; (c), (d) and (e) x, y and z components of the surface normals

Fig. 7. (top) A set of the original images of the sculpture; (middle) images recovered
by projecting the original ones onto a four-dimensional subspace; (bottom) images of
the middle, adding the ambient component

that specular regions in the original images keep quite specular in the recovered
ones.

The measurement matrix I has a percentage of missing data of 28% when
specular pixels are considered as missing data. These missing data are not used
for computing the factors in the third step of the adapted-Alternation algo-
rithm (Section 3). Fig. 3 shows the results obtained in this case. It can be
seen that the reflectance and ambient are considerably less specular than the
recovered ones in the full data case (Fig. 1). Fig. 4 shows some original im-
ages (top) and the recovered ones in the case of 28% of missing data, without
the ambient term (middle) and adding the ambient term (bottom). Notice that
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the recovered images are not as specular as the obtained in the full data case
(Fig. 2(bottom)).

Just as an illustration, Fig. 5 shows five synthetic images obtained by taking
random positions of the light source. The surface matrix (S) obtained in the pre-
vious case (28% of missing data) is multiplied by each of the new light positions.
The ambient term is added, in order to give more realistic images. This can be
very useful, for instance in object recognition or industrial inspection. Any light
position can be considered, providing thus a wide range of different images.

5.2 Sculptured Bust Images

The images of this second real data set also contains saturated pixels (see
Fig. 7 (top)). They have a size of 404×260 pixels and the obtained measurement
matrix has a size of 65,246×49 (background pixels are not considered). The re-
flectance, ambient and surface normals obtained in this case are shown in Fig. 6.

a b c d e

Fig. 8. Sculptured bust images, 16% of missing data, recovered factors: (a) reflectance;
(b) ambient illumination; (c), (d) and (e) x, y and z components of the surface normals.

Fig. 9. Case 16% of missing data: (top) a set of the original images of the sculptured
bust; (middle) images recovered by projecting the original ones onto a four-dimensional
subspace; (bottom) images of the middle, adding the ambient component
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Fig. 7 shows some original (top) and recovered images, without the ambient
term (middle) and adding the ambient term (bottom). The original specular
regions are a little specular in the recovered images (see Fig. 7 (bottom)).

The measurement matrix has a percentage of missing data of 16% when sat-
urated points are considered as missing data. Fig. 8 shows the obtained results
in this case. The ambient and reflectance are less saturated than in the full data
case (Fig. 6). Finally, some original and recovered images are shown in Fig. 9. It
can be seen that the recovered images ((middle) and (bottom)) are considerably
less saturated than in previous case (see Fig. 7 (bottom)).

6 Conclusion

This paper presents a method to recover the surface normals and reflectance of an
object from a set of images obtained under different lighting conditions. Intensity
image data are stacked into a measurement matrix, which can be approximated
by a rank-3 matrix, assuming a Lambertian object and an orthographic camera
model. This paper proposes to consider pixels in shadow and specular regions as
missing data. In addition, a rank-4 formulation that allows to recover the ambient
illumination is introduced. An adaptation of the Alternation technique is used
to factorize the measurement matrix into the surface and light-source matrices.
Experimental results with real images show the viability of the proposed adapted
Alternation approach. Furthermore, results are improved when specularities are
considered as missing data. Analogous results were obtained when shadows were
considered as missing data; due to the lack of space they are not presented here.
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