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Abstract. The current paper proposes a novel color correction approach
based on a probabilistic segmentation framework by using 3D Gaussian
Mixture Models. Regions are used to compute local color correction func-
tions, which are then combined to obtain the final corrected image. The
proposed approach is evaluated using both a recently published met-
ric and two large data sets composed of seventy images. The evaluation
is performed by comparing our algorithm with eight well known color
correction algorithms. Results show that the proposed approach is the
highest scoring color correction method. Also, the proposed single step
3D color space probabilistic segmentation reduces processing time over
similar approaches.

Keywords: Color Correction, Gaussian Mixture Models, Image
Mosaicing.

1 Introduction

The photometrical correspondence between a pair of images is the object of
study in this paper. In general, image mosaicing uses sets of images taken with
the same lighting conditions and with a single camera, or similar ones. In this
way, the colors present on both images are very similar and the problem of pho-
tometric correspondence is overlooked. The general problem of compensating the
photometrical disparities between two geometrically registered images is referred
to as color correction. This process is performed through the use of one or several
color transfer functions (ctf) that use an image as a reference. In other words,
color correction is the problem of adjusting the color palette of an image using
information from the color palette of another image. The image that is used as a
reference is referred to as the source image, while the image which is going to be
adjusted is called the target image. Figure 1 shows the target (a) and source (b)
images of a city landscape. In Fig. 1 (c) a mosaic of both is shown. Due to light
and shadow variations, different sensors or vignetting effects from the lenses, the
mosaicing of the images shows disparities in color. These disparities are solved
using color correction methodologies.
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(a) (b) (c)

Fig. 1. A mosaic of two images of a city landscape scene (c). The colors of the target
image (a) must be corrected using information from the source image (b) to avoid the
artifacts present in the mosaic.

The problem of color correction has been widely studied during the last
decade. Some authors suggested to solve this problem by using non paramet-
ric approaches, i.e., methods that make no assumptions about the nature of the
color distribution. While some authors have attempted to model the radiometric
response functions of the sensors and the exposures [10], others inclusively model
the vignetting phenomenon [14] and there are some others that provide tech-
niques to model the combination of both [5] [6]. This trend is usually addressed
just for intensity images and so is not considered in color correction. In [3,4],
color correction is done through the estimation of global and local color transfer
functions. The complex estimation problem is reduced to a robust 2D tensor
voting in the corresponding voting spaces. A cumulative histogram matching
technique was presented in [2], while in [7] the entire probability density func-
tion is mapped without making assumptions on its nature. On the other hand,
model based parametric approaches try to model the color distribution in the
images and use tools that transfer the color distribution characteristics from one
image to the other. One of the most important works in this scope is [8]. In that
paper, a simple statistical distribution transfer methodology was proposed. It
was also in [8] that an alternative color model, namely the lαβ color-space, was
proved to be more effective for calculating the color transfer functions than the
usual RGB color-space. It is successfully employed since it minimizes the cross
channel correlation, which is present on many color spaces. This work has been
extended in [11], where tools that permitted RGB color space to be used with
similar effectiveness were presented. Principal component analysis where imple-
mented by [13]; while in [1] a gain compensation algorithm and a multi-band
blending post processing was proposed.

The current paper proposes a new color correction technique based on 3D
Gaussian Mixture Models (3DGMM ). To assess the effectiveness of the proposed
algorithm, a very large set of images is used, and eight other state of the art
algorithms for color correction are evaluated. The evaluation metric is taken from
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Fig. 2. Single channel color segmentation of the Source (a) and Target (e) images.
Single channel histograms, Gaussian components (dashed) and total Gaussian mass
(solid black) of the source (b) and target (f) images. 3D color segmentation of the
source (c) and target (g) images. Color distribution of all pixels (green dots) and 3D
Gaussian components (red ellipsoids) of the source (d) and target (h) images.

a recent performance evaluation of color correction algorithms [12]. Results show
that the proposed approach is the best performing color correction algorithm.

The remainder of the paper is organized as follows. In section 2 the color
correction technique based on 3D Gaussian Mixture Models (3DGMM ) is pre-
sented. Results and comparissons are given in section 3. Finally, conclusions are
presented in section 4.

2 Proposed Approach

The approach presented in [8] assumes a Gaussian distribution of color on both
the source and target images, i.e., it uses a linear color transfer function. The
Gaussian distribution based color transfer scheme, initially proposed in [8], can
be defined as follows: let μs and μt be the mean color of the source and target
images, while σs and σt are the standard deviations of the colors in those images.
Then, the corrected image’s color is given by the following Gaussian distribution
transfer function:

c′ = μs +
σs

σt
× (c− μt), (1)
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where c′ and c are the target image’s original and new single channel color. Equa-
tion (1) may be used to process single channel images (gain compensation) or
color images (color correction). For color images eq. (1) is applied separately for
the three color channels. However, in practical situations, the color distribution
of the whole image is seldom a normal distribution. Global modelling of the color
distribution fails in practice because it provides only a rough approximation of
the color distribution. By computing, for several regions, a local color transfer
function and assuming a separate Gaussian distribution for each region, the set
of color transfer functions will provide a more consistent color correction output.
This was proposed in [9], where the Reinhard’s methodology was extended to the
local scenario, namely through a color transfer scheme based on single channel
probabilistic segmentation and region mapping using the EM algorithm.

The current paper proposes to represent color distribution using 3DGMM
for joint probabilistic segmentation of the three color channels. Then, several
color transfer functions can be derived from the adaptation of equation (1). The
methodology consists of three stages and is detailed below.

2.1 Probabilistic Segmentation with 3DGMMs

The first stage consists of modelling the distribution of color in both images using
Gaussian Mixture Models (GMMs). GMMs are among the most statistically
mature methods for clustering. In this case they are used to model the color
distribution of the pixels by segmenting the given image. After segmentation,
each cluster is a Gaussian component from the mixture model. The following
notation refers to the RGB color space. However, the presented method is not
restricted to this color space. In fact, alternative color spaces have been tested,
although results have shown no particular advantages when compared to the
traditional RGB. This is because the joint color correction of the three color
channels avoids cross channel artifacts, as detailed below.

Let NG be the number of Gaussian components that model the color distri-
bution of an image. Let a given color be denoted as c = [r, g, b]. A Gaussian
component ωk has mean μk = [mean(r),mean(g),mean(b)] and standard de-
viation σk = [std(r), std(g), std(b)]. The color distribution is modelled by the
mixture of Gaussian components, so that the total density of pixels for a given
color D(c) is given by the weighted sum of the Gaussians:

D(c) =

NG∑

k=1

mpk × P k(c), (2)

where mpk is the mixture proportion of Gaussian component ωk, and P k(c)
is the probability of Gaussian ωk for color c, which is given by the difference
between two cumulative distribution functions of neighboring colors. The cu-
mulative distribution function of Gaussian ωk for a given color c, denoted as
cdf(ωk, (c)), is given by:
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cdf(ωk, c) =

3∑

i=1

(1
2
(1 + erf

(
c(i)− μk(i)√
2× (σk(i))2

))

3
, (3)

where (i) is the index of the color channel (i.e., i ∈ {r, g, b}), and erf is the error
function, also known as probability integral, given as:

erf(x) =
2√
π

∫ ∞

0

e−x2

dx. (4)

Hence, the probability of the Gaussian component k is computed as:

P k(c) = cdf(ωk, c+ λ)− cdf(ωk, c− λ), (5)

where λ = [cr/2, cr/2, cr/2] is given by half the image’s color resolution (cr).
In [9], each channel of the image undergoes a segmentation procedure similar

to this one. However, in that approach, since the probabilistic segmentation is
performed independently for each channel, the probabilities of Gaussian compo-
nents may be different from channel to channel, i. e., P k(c(1)) �= (P k(c(2)) �=
(P k(c(3)). The methodology proposed in the current paper uses a single prob-
ability function for all the three color channels, i.e., P k(c), as defined in eq.
(5). This reduces the occurrence of cross channel artifacts that arise from color
correction as is the case in [9]. As will be shown in section 3, by performing a
3DGMM of all three image channels in a joint segmentation step we are able to
improve the color correction performance and reduce processing time. Figure 2
shows the GMM color segmentation both for the 1D and the 3D cases.

2.2 Color Transfer Functions

The current paper proposes to perform a probabilistic segmentation of both the
source and target images using 3DGMMs. The result of the segmentation step
is that both the target and the source images are segmented into NG clusters,
each representing a Gaussian component for the inferred mixture model. It is
then necessary to associate each Gaussian component from the target image
to another of the source image. This association is referred to as matching of
Gaussian components. When spatial information exists, which is the case since
images are registered, the matching is performed based on the maximum spatial
correlation of pixel probabilities. To compute the spatial correlation, let color
be the function that retrieves the color of a pixel. The probability P that each
pixel x has of belonging to Gaussian component ωk is calculated using the color
retrieval function. For simplification purposes, P k(color(x)) will be from now on
denoted as P k(x). The matching of Gaussian components is computed as follows:
let m(k) be the matching function that outputs the index of the source image
Gaussian component for target image Gaussian component k:

m(k) = argmax(r(k, j)), ∀jε{1, 2, 3, ..., NG}, (6)
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where r represents the spatial correlation between the probabilities of target
image Gaussians Pt with source image Gaussians Ps, given by:

r(k, j) =

[W,H]∑

x=[1,1]

(P k
t (x )− P̄ k

t )× (P j
s (x)− P̄ j

s )

√√√√
[W,H]∑

x=[1,1]

(
P k
t (x)− P̄ k

t

)2 [W,H]∑

x=[1,1]

(
P j
s (x)− P̄ j

s

)2
, (7)

where P̄ k represents the probability of the average color of Gaussian k, i.e.,
P̄ k = P (μk), and W , H are the image’s width and height respectively.

The color correction procedure will make use of NG color transfer functions,
each one corresponding to a match between a region in the target with a region
in the source image. The color transfer functions (ctf) are obtained by adapting
(1) to the 3D case:

ctf k,m(k)(i) = μm(k)
s (i) +

σ
m(k)
s (i)

σk
t (i)

× (c(i)− μk
t (i)), (8)

2.3 Color Correction

Once the source and target images have been segmented into NG regions and
the corresponding color transfer functions for each match are computed, the
objective at this last stage is to correct the color of every single pixel. Because
of the probabilistic nature of the proposed color segmentation, pixels may have
non zero probability of belonging to more than one region. Hence, the proposed
color transfer approach is defined as a weighted combination of all the computed
color transfer functions:

c′(i) =
NG∑

k=1

mpk · P k
t (c) · ctf k,m(k)(i), (9)

where the bold symbol c′ denotes the three channel color of the color corrected
image and (i) is the index of the color channel.

3 Results

In order to test the proposed algorithm, the two data sets of a recent performance
evaluation [12] were used. They consist of a synthesized data set of 40 image pairs
and a real image data set of 30 image pairs. The registration of target / source
was not provided by the authors of [12]. Because of this, a manual process of
hand labelling pixels in both images was done to obtain the registration. In order
to compare the results of the proposed approach with the state of the art, eight
of the nine algorithms used in [12] were applied to the same data sets. Regarding
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Table 1. Average and standard deviation of CS and SS scores for the two data sets.
Average processing time per image is also provided. The proposed approach (# 10)
obtains the highest average CS score.

Synthetic Real
Approach Alg. CS SS Time CS SS Time
Reference # μ σ μ σ (sec) μ σ μ σ (sec)

Baseline #1 18.66 3.92 1.00 0.00 — 16.44 3.40 1.00 0.00 —
Brown 07 [1] #2 21.35 2.56 0.97 0.02 0.53 19.89 3.27 0.96 0.03 0.51
Xiao 06 [11] #3 19.03 5.97 0.71 0.27 0.72 19.43 5.80 0.65 0.17 1.35

Reinhard 01 [8] #4 19.86 4.92 0.79 0.15 0.43 20.25 6.78 0.67 0.17 0.94
Fecker 08 [2] #5 26.79 6.04 0.90 0.06 0.93 21.93 4.07 0.89 0.10 1.64
Zhang 04 [13] #6 26.29 6.65 0.91 0.07 0.70 20.41 3.56 0.87 0.13 0.93
Tai 05 [9] #7 27.45 7.77 0.90 0.08 54.47 21.23 4.24 0.85 0.13 148.00
Jia 05 [4] #8 27.71 7.33 0.91 0.06 233.50 21.82 4.05 0.85 0.17 235.70
Kim 08 [5] #9 27.82 7.58 0.90 0.06 5.93 21.85 4.03 0.88 0.10 6.92
this paper #10 28.18 4.11 0.74 0.11 23.19 22.41 3.40 0.89 0.11 54.43

the missing algorithm [7], it was not possible to find a public implementation
to guarantee a fair comparison. However, the algorithm presented in [7] did not
reach the best performance in none of the tests presented in [12].

The evaluation parameters, i.e., color similarity (CS) and structural similarity
(SS) were taken from [12]. For a better comparison of the tested methodologies,
the average processing time taken to correct one image is also presented. Al-
though results of both CS, SS and time are presented, the CS score is the most
important parameter, since it evaluates how well a color correction algorithm is
able to balance the colors in the target image so that they match the ones in the
source image (see details in [12]).

Table 1 shows the average CS and SS scores of the eight methods used for
comparison, as well as of the approach proposed in the current paper. Analyzing
Table 1, two different classes of methods may be identified: fast algorithms #1,
#2, #3, #4, #5 and #6, which have processing times under one second but
have limited CS scores; and highly effective algorithms #7 #8 #9 and #10 (the
proposed approach), which require more time to get the highest CS scores. Note
that this CS score corresponds to a logarithmic scale (see details in [12]). Results
show that the proposed approach has the highest average CS scores for both the
synthetic and real data sets. Furthermore, the proposed approach presents some
of the lowest values of standard deviation of CS, which accounts for a smaller
variation of CS scores throughout the images in the data sets. This is also a
very important remark since it accounts for the reliability and robustness of our
algorithm. The proposed approach is also much faster than two of the highest
scoring methods (#7 and #8).

The results presented in Table 1 are different in value from the ones presented
in [12] because there is a different registration. Nonetheless, the results presented
in the current paper are consistent with those in [12], where the best average CS
scores were also from algorithms #7 #8 and #9.
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Table 2. The output of the comparative methods and the proposed approach (alg.
#10) for two images in the data set. The image pairs are shown on the top of the
table. Below each image the CS and SS scores are displayed. For image Synthetic #34,
algorithm #9 achieves the highest CS score. In the case of Real #6, the proposed
approach outperforms all other methods.

Synthetic #34 Real #6

Source Target Source Target

Alg.; CS; SS Alg.; CS; SS Alg.; CS; SS Alg.; CS; SS

#1 ; 17.3 ; 1.00 #2 ; 19.8 ; .98 #1 ; 12.2 ; 1.0 #2 ; 18.3 ; .88

#3 ; 16.9 ; 0.93 #4 ; 16.2 ; 0.94 #3 ; 13.1 ; 0.40 #4 ; 12.9 ; .38

#5 ; 32.8 ; 0.84 #6 ; 33.0 ; 0.86 #5 ; 21.9 ; 0.58 #6 ; 21.9 ; .63

#7 ; 35.4 ; 0.83 #8 ; 35.2 ; 0.83 #7 ; 22.2 ; 0.65 #8 ; 22.2 ; 0.59

#9 ; 36.9 ; 0.83 #10 ; 36.1 ; 0.82 #9 ; 20.5 ; 0.57 #10 ; 22.7 ; 0.58
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Table 2 gives some qualitative results. Here it is also possible to verify that
the proposed approach shows the greatest similarity with the reference source
image when compared to the other eight algorithms.

4 Conclusions

This paper proposes to use a single step multi-dimensional probabilistic seg-
mentation of the three color channels of an image in order to perform color
correction. The color distribution of the images is modelled as a 3D mixture of
Gaussian components. The proposed approach is compared with several state of
the art algorithms used from color correction. In addition, a large set of images,
previously used in [12], are employed to assess the effectiveness of the color cor-
rection algorithms. Furthermore, the evaluation metric is taken from a recent
performance evaluation in color correction. The joint segmentation of the three
channel color reduces processing time from similar single channel methods and
avoids cross channel artifacts that may appear due to an independent color cor-
rection of each channel separately. The proposed approach obtained the highest
average CS scores and is amongst the lowest in CS standard deviation, which
definitely makes it a technique to take into account for devising color correction
algorithms. Results show that 3DGMM may be successfully applied to color
correction with effectiveness that overcomes the current state of the art.
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