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Abstract. This paper proposes a novel approach to estimate Normal-
ized Difference Vegetation Index (NDVI) from just the red channel of
a RGB image. The NDVI index is defined as the ratio of the difference
of the red and infrared radiances over their sum. In other words, infor-
mation from the red channel of a RGB image and the corresponding
infrared spectral band are required for its computation. In the current
work the NDVI index is estimated just from the red channel by training a
Conditional Generative Adversarial Network (CGAN). The architecture
proposed for the generative network consists of a single level structure,
which combines at the final layer results from convolutional operations
together with the given red channel with Gaussian noise to enhance
details, resulting in a sharp NDVI image. Then, the discriminative model
estimates the probability that the NDVI generated index came from the
training dataset, rather than the index automatically generated. Exper-
imental results with a large set of real images are provided showing that
a Conditional GAN single level model represents an acceptable approach
to estimate NDVI index.

1 Introduction

Computer vision applications can be found in almost every domain, including
topics such as medical imaging, gaming, video surveillance, multimedia, indus-
trial applications, remote sensing, just to mention a few. In most of the cases
these applications are based on images obtained from a cameras working at the
visible spectrum. There are some cases, in particular in medical imaging and
remote sensing, where cross-spectral and multispectral images are considered.
The appealing factor of using images from different spectral bands lies on the
one hand on the possibility to obtain information that cannot be seen at the
visible spectrum; on the other hand, on the combined use of information that
can be considered to generate some kind of high level reasoning; for instance
in remote sensing the combined usage of images from different spectral bands
is considered to generate vegetation indexes. These vegetation indexes are used
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to determine the health and strength of vegetation and their definitions involve
several factors, like soil reflectance, atmosphere, vegetation density, etc.

Among the different indexes proposed in the literature, the Normalized Dif-
ference Vegetation Index (NDVI) is the most widely used [1]; in general, it is
used to determine the condition, developmental stages and biomass of culti-
vated plants and to forecasts their yields. The values of this index go from -1
to 1, with the value zero representing the approximate where the absence of
vegetation begins. Negative values represent non-vegetated surfaces. This index
is calculated as the ratio between the difference and sum of the reflectance in
NIR and red regions:

NV DI =
RNIR − RRED

RNIR + RRED
, (1)

where RNIR is the reflectance of NIR radiation and RRED is the reflectance of
visible red radiation.

Although interesting, cross/multi-spectral solutions need the set up of more
than one camera. For instance, in the case of NDVI, an image from the visible
and an image from the NIR spectra are required. In other words, we need two
cameras, acquiring images at the same time of the same scene, in order to be
able to compute the values of Eq. (1). It should be noticed that before computing
Eq. (1) images need to be accurately registered—i.e. the information should be
referred to the same reference system. Unfortunately, since images from different
spectra are considered their may look different, so the problem is how to find
the same set of points in both spectra [2] to be used as references. Recently,
deep learning based approaches have been proposed to overcome this drawback
and find correspondences in cross-spectral domains [3,4]. Once these points are
obtained we can proceed by registering the images in a single reference system.

Cross/multi-spectral approaches provide unique solutions to different com-
plex problems, however, as mentioned above, different preprocessing stages need
to be performed before computing these solutions; hence, in the current work
we wonder whether it is possible to obtain the same result but just using infor-
mation from a single spectral band. Actually, a similar philosophy has been
recently presented in [5] where vegetation index is estimated based on a learning
approach from a single near infrared spectral band image. Although interesting
results have been obtained, the weakness point of that approach lies on the need
of having NIR images, which are not that much common like visible spectrum
images. In the current work we propose to explore the possibility to estimate
NDVI vegetation index using the red channel from the visible spectrum. The
index is estimated from a learning based approach, where a Conditional Gener-
ative Adversarial Network (CGAN) is trained with a large data set. The CGAN
architecture used in the current work is similar to the one presented in [6], but
including a conditional red channel image at the final layer of the learning model
to improve the details of the generated NDVI vegetation index. Additionally, a
more elaborated loss function is proposed to preserve details of the given image.

The rest of the paper is organized as follows. Section 2 introduces the Gen-
erative Adversarial Network formulation. Then, Sect. 3 presents the architecture
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Fig. 1. Conditional Generative Adversarial process implemented on the current work
to estimate NDVI vegetation index.

proposed in the current work, detailing the design, proposed loss functions and
training with cross-spectral datasets. Section 4 depicts the experimental results
and finally, conclusion are presented in Sect. 5.

2 Generative Adversarial Networks

Generative Adversarial Networks (GANs) are powerful and flexible tools quite
useful in several computer vision problems; one of their most common appli-
cations is image generation. In the GAN framework [7], generative models are
estimated via an adversarial process, in which simultaneously two models are
trained: (i) a generative model G that captures the data distribution, and (ii) a
discriminative model D that estimates the probability that a sample came from
the training data rather than G. The training procedure for G is to maximize
the probability of D making a mistake. In this architecture it is possible to apply
certain conditions to improve the learning process. According to [8], to learn the
generator’s distribution pg over data x , the generator builds a mapping function
from a prior noise distribution pz(z) to a data space G(z; θg) and the discrimi-
nator, D(x; θd), outputs a single scalar representing the probability that x came
from training data rather than pg. G and D are both trained simultaneously,
the parameters for G are adjusted to minimize log(1 − D(G(z))) and for D to
minimize logD(x) with a value function V (G,D):

min

G

max

D
V (D,G) = Ex∼p data(x) [logD(x)] + (2)

Ez ∼p data(z) [log(1 − D(G(z)))].

Generative adversarial networks can be extended to a conditional model if
both the generator and discriminator are conditioned on some extra informa-
tion y. This information could be any kind of auxiliary information, such as
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class labels or data from other modalities. We can perform the conditioning by
feeding y into both discriminator and generator as additional input layer. The
objective function of a two-player minimax game would be as:

min

G

max

D
V (D,G) = Ex ∼p data(x) [logD(x|y)] + (3)

Ez ∼p data(z) [log(1 − D(G(z|y)))].

In the current work a novel Conditional GAN model is proposed for vegeta-
tion index estimation from just the red channel of a RGB image; it is inspired
on both the GAN network architecture presented in [9] for NIR colorization
and on the triplet model proposed by [5] for learning vegetation indexes using
NIR images. Actually, it is an adaptation of the architectures mentioned above,
which consists of reducing the number of layers and removing the internal num-
ber of levels of learning architecture (FLAT or single). Another difference with
previous approaches lies on the proposed loss function, which do not take into
account only intensity level information but also it considers image structure
information.

3 Proposed Approach

This section presents the approach proposed for NDVI index vegetation estima-
tion. As mentioned above, it uses a similar architecture to the one presented in
[5], where a conditional adversarial generative learning network has been pro-
posed. A traditional scheme of layers in a deep network is considered. In the
current work the usage of a Conditional GAN model is evaluated with a Flat
scheme, this GAN’s model has been used because it presented good performance
to solve problems like colorization, dehazing, enhancement, object recognition,
etc. Based on the results that have been obtained on this type of problems, where
improvements in accuracy and performance have been obtained, we propose the
usage of a learning model that allows the mapping of a vegetation index based
on a single channel of RBG images (the red channel). The model will receive as
an input a patch corresponding to red channel of a RGB image. Gaussian noise
is added to each patch of the learning architecture to increase the variability in
the learning process of the generation index patches, increasing the time of the
convergence and generalization. A l1 regularization term has been added on each
layer of the model in order to prevent the coefficients to overfit, which make the
network learns small weights to minimize the loss, maximizes the distribution of
model outputs, and improve the generalization capability of the model. Figure 1
depicts the Conditional GAN process proposed in the current work.

As mentioned above, in our case, the generator network has been imple-
mented using a single level of layers (FLAT). Figure 2 presents an illustration
of the GAN network used in this research. In all the cases, at the output of the
generator network the vegetation index is obtained. This vegetation index will
be validated by the discriminative network, which will evaluate the probability
that the generated image (vegetation index in grayscale), is similar to the real
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Fig. 2. GAN architecture for NDVI Vegetation Index estimation; A single level layer
model (FLAT) evaluated as Generator Network; on bottom the Discriminator Network.

one used as a ground truth. Additionally, in the generator model, in order to
obtain a better image representation, the CGAN framework is reformulated for
a conditional generative image modeling tuple. In other words, the generative
model G(z; θg) is trained from a red channel of a RGB image plus Gaussian noise,
in order to produce a NDVI vegetation index image; additionally, a discrimina-
tive model D(z; θd) is trained to assign the correct label to the generated NDVI
image, according to the provided real NDVI image, which is used as a ground
truth. Variables (θg) and (θd) represent the weighting values for the generative
and discriminative networks.

The model has been defined with a multi-term loss (L) conformed by the
combination of the Adversarial loss plus the Intensity loss (MSE) and the Struc-
tural loss (SSIM). This combined loss has been defined to avoid the usage of only
a pixel-wise loss (PL) to measure the mismatch between a generated image and
its corresponding ground-truth image. This multi-term loss function is better
designed to human perceptual criteria of image quality, which is detailed next.
The Adversarial loss is designed to minimize the cross-entropy to improve the
texture loss :
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Fig. 3. Pairs of patches (64× 64) from country category (two-left columns) and field
category (two-right columns) [10]: (top) RGB image; (middle) Red channel of the
given RGB image; (bottom) NDVI vegetation index computed from RGB images and
the corresponding NIR images.

LAdversarial = −
∑

i

logD(Gw(Iz|y), (Ix|y), (4)

where D and Gw are the discriminator and generator of the real Ix|y and gener-
ated Iz|y images conditioned by the red channel of the RGB of the GAN network.

The Intensity loss is defined as:

LIntensity =
1

NM

N∑

i=1

M∑

j=1

(NDV Iei,j − NDV Igi,j)
2
, (5)

where NDV Iei,j is the vegetation index estimated by the network and NDV Igi,j
is the ground-truth vegetation index and N × M is the size of the patches. This
loss measures the difference in intensity of the pixels between the images without
considering texture and content comparisons. Additionally, this loss penalizes
larger errors, but is more tolerant to small errors, without considering the specific
structure in the image.

To address the limitations of the simple Intensity loss function, the usage
of a reference-based measure is proposed. One of the reference-based index is
the Structural Similarity Index (SSIM) [11], which evaluates images accounting
for the fact that the human visual perception system is sensitive to changes in
local structure; the idea behind this loss function is to help the learning model to
produce a visually improved image. The Structural loss for a pixel p is defined as:

LSSIM =
1

NM

P∑

p=1

1 − SSIM(p), (6)
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where SSIM(p) is the Structural Similarity Index (see [11] for more details)
centered in pixel p of the patch P .

The Final loss (L) used in this work is the accumulative sum of the individual
Adversarial, Intensity and Structural loss functions:

LFinal = LAdversarial + LIntensity + LSSIM (7)

4 Experimental Results

The proposed approach has been evaluated using the red channel of RGB images
and their corresponding NDVI vegetation index (ground truth), computed from
Eq. (1) using NIR and red channel images; this cross-spectral data set came from
[10]. The country and field categories have been considered for evaluating the
performance of the proposed approach, examples of this dataset are presented
in Fig. 3. This dataset consists of 477 registered images categorized in 9 groups
captured in RGB (visible spectrum) and NIR (Near Infrared spectrum). The
country category contains 52 pairs of images of (1024 × 680 pixels), while the
field category contains 51 pairs of images of (1024 × 680 pixels). In order to
train our network to generate vegetation index from each of these categories
380.000 pairs of patches of (64× 64 pixels) have been cropped both, in the RGB
images as well as in the corresponding NDVI images. Additionally, 3800 pairs of
patches, per category, of (64 × 64 pixels) have been also generated for validation.
It should be noted that images are correctly registered, so that a pixel-to-pixel
correspondence is guaranteed.

Table 1. Root Mean Squared Errors (RMSE) and Structural Similarities (SSIM)
obtained with the proposed GAN architecture by using different loss functions (SSIM
the bigger the better).

Training RMSE SSIM

Country Field Country Field

GAN with LAdversarial + LIntensity 3.93 4.12 0.86 0.83

GAN with LAdversarial + LSSIM 3.81 3.96 0.91 0.89

GAN with LFinal 3.53 3.70 0.94 0.91

The Conditional Generative Adversarial network evaluated in the current
work is a Flat (single level of learning layer) for NDVI vegetation index estima-
tion. It has been trained using a 3.4 four core processor with 16GB of memory
with a NVIDIA Titan XP GPU. Qualitative results are presented in Figs. 4 and 5.
Figure 4 shows NDVI vegetation index images from the country category gen-
erated with the proposed Flat GAN network. Additionally, Fig. 5 shows NDVI
vegetation index images from the field category generated with the proposed Flat
GAN network. Quantitative evaluations for the different loss functions have been
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Fig. 4. (1st.Col) Ground truth NDVI index from the Country category . (2nd. −
4th.Col) NDVI index obtained with the proposed GAN architecture with different loss
functions: LFinal, LAdversarial + LSSIM and LAdversarial + LIntensity.

Fig. 5. (1st.Col) Ground truth NDVI index from the Field category . (2nd.−4th.Col)
NDVI index obtained with the proposed GAN architecture with different loss functions:
Lfinal, LAdversarial + LSSIM and LAdversarial + LIntensity.

obtained and provided below. Up to our humble knowledge there are not previ-
ous work on similar technique to estimate vegetation index using only the red
channel of RGB images. Hence, the only way to evaluate results is by comparing
the Root Mean Square Error (RMSE) of each approach. The RMSE measures
the distance between the estimated NDVI with respect to the ground truth,
which is the standard deviation of the residuals. Residuals are measures of how
different are the images compared from each other.

The results obtained with the multi-term loss approach show that the Struc-
tural Similarity metric contributes to improve the texture of the estimated NDVI
vegetation index. Furthermore, the Intensity level loss function, which measure
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the Mean Square Error between the estimated value and the corresponding
ground truth, helps to evaluate the estimation.

Table 1 presents the average Mean Square Errors (MSE) and the Structural
Similarity metric (SSMI) obtained with the the single level architecture when
different loss functions (LAdversarial + LSSIM ), (LAdversarial + LIntensity) and
(LFinal) are evaluated in the two categories used as case studies. It can be appre-
ciated that the results obtained with the LFinal loss function reaches the best
result. The results obtained show that the more elaborated the loss function is,
the better results will be obtained, since the network will be more capable to
learn complex scenes at a faster convergence. Having in mind that the NDVI
indexes resulting from the learning process are represented as images in the
range of [0, 255], the results presented in Table 1 show that the average devia-
tion of the estimated values is 1.4%. Additionally, looking at the SSIM metric,
which is a perception-based model that considers image degradation as perceived
change in structural information, we can observe that on average, in both cate-
gories, results are above 0.9. This value means that obtained results highly pixels
inter-dependencies. These dependencies carry important information about the
structure of the objects in the visual scene. This metric combined with MSE
allows us to confirm that the NDVI index obtained with the proposed results is
a valid approach.

5 Conclusion

This paper tackles the challenging problem of NDVI vegetation index estimation
by using a novel Conditional Generative Adversarial Network model. The novelty
of the proposed approach lies on the usage of just a single spectral band (the red
channel of RGB images). The architecture proposed for the generative network
consists of a single level structure, which combines at the final layer results
from convolutional operations together with the given red channel, resulting in
a sharp NVDI image. Then, the discriminative model estimates the probability
that the NDVI generated index came from the training dataset, rather than the
index automatically generated. Different loss functions are evaluated trying to
help the learning model to produce a visually improved image. The proposed
loss function takes into account both intensity level information together with
image structure information. Experimental results with a large set of outdoor
images shows the validity of the proposed approach to estimate NDVI index
from monospectral images. As a future work the possibility to obtain the NDVI
from all the channels will be considered.
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