
Efficient Approximation of Gray-Scale Images through
Bounded Error Triangular Meshes

Miguel Angel Garcia Boris Xavier Vintimilla Angel Doming0 Sappa
Dept. of Computer Science and Mathematics

Rovira i Virgili University
Ctra. Salou s/n. 43006 Tarragona, Spain

magarcia@etse. urv. es

Inst. of Organization and Control of Industrial Systems
Polytechnic University of Catalonia

Diagonal 647. 08028 Barcelona, Spain
(vintimi, sappa)@ioc. upc. es

Abstract
This paper presents an iterative algorithm for
approximating gray-scale images with adaptive tri-
angular meshes ensuring a given tolerance. A t each
iteration, the algorithm applies a non-iterative
adaptive meshing technique. In this way, this tech-
nique converges faster than traditional mesh
refinement algorithms. The performance of the pro-
posed technique is studied in terms of compression
ratio and speed, comparing it with an optimization-
based mesh refinement algorithm.

1. Introduction

Images are commonly transferred and stored in
compact form through well-known representations,
such as GIF and JPEG. Unfortunately, these repre-
sentations are not well-suited for applying further
image processing operations directly in the com-
pressed domain. An alternative way of compressing
images is through the utilization of geometric repre-
sentations, such as triangular meshes. Geometric
representations are applicable since the pixels of an
image can be considered to be 3D points in a space
in which coordinates x and y are the rows and col-
umns of the image, and coordinate z is the gray
level.

The advantage of geometric representations is
that further processing can be directly applied in the
3D geometric domain. For instance, scaling, transla-
tion and rotation operations can be simply
implemented by applying affine transformations to

This work has been partially supported by the Government of Spain
under the CICYT project TAP96-0868. The second and third authors
have been supported by the Spanish Agency for International
Cooperation.

0-7803-5467-2/99/ $10.00 0 1999 IEEE

the 3D coordinates of the vertices that constitute the
meshes. An algorithm that uniformly samples the
resulting meshes suffices to recover the correspond-
ing gray-scale images.

Two main geometric approaches have been pro-
posed in the literature. The first approach generates
an adaptive triangular mesh by starting with a few
triangles and then successively splitting them in
order to reduce the approximation error (e.g., [l]) .
Alternatively, the algorithm can start with a fine
mesh and successively make it coarser until the
approximation error is above the desired tolerance
(e.g., [SI). The second geometric approach applies
iterative optimization in order to modify the posi-
tions of the control points of a regular grid, such
that the approximation error with respect to the orig-
inal image is minimized (e.g., 6) . For its application
to gray-scale images, surface discontinuities must
be taken into account, such as in [2] and [3]. The
two previous approaches can be combined by apply-
ing both iterative optimization and refinement (and
merging) until a good solution is found, such as in 7.

This paper presents a new algorithm comprised in
the first geometric approach. It generates an adap-
tive triangular mesh that approximates a gray-scale
image guaranteeing a maximum root-mean-square
error (RMS) or tolerance with respect to the given
image. Contrarily to previous adaptive meshing
techniques that start with either a fine or coarse
mesh and progressively make it coarser or finer
point after point, the proposed technique applies a
fast, non-iterative meshing algorithm at each itera-
tion. Thus, adaptive meshes fulfilling the desired
tolerance are obtained faster than with previous
techniques.

The proposed algorithm is described in section 2.
Experimental results with real gray-scale images are

168

Figure 1. The curvatures associated with each row of
an image tile are interpreted as a discrete probability
density function. When the image space of the
corresponding probability distribution function is
uniformly sampled, the positions of the chosen pixels at
that row are obtained.

shown in section 3 . Conclusions and future work are
given in section 4.

2. Image Approximation

Given a gray-scale image, it is approximated by a
triangular mesh through an iterative process consist-
ing of four main stages that are described below.

2.1. Initial .adaptive triangulation

An initial triangular approximation of the given
gray-scale image is obtained in two stages. In the
first stage a predefined number of pixels is chosen
from the image by applying a non-iterative adaptive
sampling technique proposed in [4][5]. In the sec-
ond stage, the chosen pixels are triangulated through
a 2D Delaunay algorithm [9]. The adaptive sampling
process is summarized below.

First, a curvature image is estimated from the
original image as described in [4][5]. Figure 2(top-
right) shows an example. Both the original and cur-
vature images are divided into a predefined number
of rectangular tiles. The following steps are inde-
pendently applied to each tile.

First, a predefined number of pixels is chosen for
each row of every tile according to the previously
computed curvature (more pixels are chosen in high
curvature areas) as illustrated in Figure 1. After the
previous sampling, a set of vertical curves is
obtained, Figure 2(bottom-left). Each vertical curve

Figure 2. (topleft) Original image with 262,144 pixels
(512x512). (fop-right) Curvature image. (bottom-/e@
Adaptively sampled vertical curves (6x5 tiles). (bottom-
right) Initial set of pixels chosen by the adaptive
sampling process (1,548 vertices).

Figure 3. (/eft) 3D adaptive triangular mesh. (centefj
Approximating image obtained through z-buffering in
0.19 sec. (RMS=22.4). (right) Binary image showing
error regions in black and their enclosing rectangles.

is adaptively sampled by applying a similar princi-
ple. Thus, a predefined amount of pixels is obtained
for every tile, Figure 2(bottom-right). Those pixels
are triangulated by applying a 2D Delaunay algo-
rithm to their row and column coordinates [9].
Figure 3(left) shows an example of the resultant
mesh. The z coordinates of the vertices of that mesh
correspond to the gray-levels associated with them
in the original image.

2.2. Generation of the approximating image

Once the initial triangular mesh has been com-
puted, it is necessary to obtain its corresponding
gray-scale image (approximating image) in order to
determine the accuracy with which that mesh

169

approximates the original image. This is done by
sampling the 3D mesh uniformly at as many posi-
tions as pixels has the original image (mesh
backprojection). By taking advantage of the 3D
nature of the triangular mesh, the cost of this sam-
pling process can be significantly reduced by
applying z-buffering. This is done in practice by
displaying the triangular mesh in a window that con-
tains as many pixels as the original image, through
functions of the standard 3D OpenGL library. The z-
buffer obtained after this visualization is read
through another OpenGL function (glReadPixels).
The z-buffer values are linearly mapped to gray lev-
els in the range [0 ... 2551. Since the OpenGL
implementations in most current computers (includ-
ing PCs) take advantage of hardware acceleration,
the whole process is very fast. For example, the
approximating image (with 262,144 pixels) corre-
sponding to the mesh shown in Figure 3(left) was
obtained in 0.19 seconds on a SGI Indigo 11, Figure
3 (center).

2.3. Determination of error regions

If the RMS of the approximating image is below
the specified tolerance, the algorithm concludes.
Otherwise, the algorithm proceeds by identifying
the regions of the approximating image whose error
with respect to the original image is above the
tolerance.

First, an error image is obtained by subtracting
each pixel of the approximating image from the cor-
responding pixel of the original image and by taking
the absolute value of the result. This error image is
converted to a binary image by thresholding it with
the given tolerance, Figure 3(right).

All black regions in the binary image represent
error regions that must be resampled. The binary
image is labelled in order to determine the different
error regions contained in it. Then, the enclosing
rectangle for each separate error region is com-
puted. Very small enclosing rectangles (e.g., less
than 3x3 pixels) are discarded. Rectangles larger
than an initial tile are subdivided.

Each enclosing rectangle is then resampled by
applying the technique described in Section 2.1. The
number of pixels adaptively sampled over each
enclosing rectangle is defined as k times the number
of pixels previously sampled over it, with k being a
real larger than one. The previously sampled pixels
in each enclosing rectangle are substituted for the
new ones.

2.4. Delaunay retriangulation

The resampled pixels and the old ones that did
not belong to any enclosing rectangle are retriangu-
lated by applying the 2D Delaunay algorithm. At
this point, the image approximation algorithm pro-
ceeds by iterating from step 2.2 until the RMS of the
approximating image is below the given tolerance.
The final result for the current example was
achieved after 3 iterations, given a tolerance equal
to 15. The total CPU time was 7.7 sec. on a SGI
indigo 11.

2.5. External representation of triangular meshes

The triangular meshes obtained with the proposed
algorithm are kept in a compact representation by
only saving the coordinates of each sampled pixel
(row, column, gray-level). For 5 12x512~256
images, 4 bytes per pixel are necessary. After down-
loading the pixels into memory, they are
triangulated by applying the 2D Delaunay algo-
rithm. Hence, there is no need to store the mesh
topology as it can be recovered directly from the
sampled pixels.

3. Experimental results

The proposed algorithm has been tested upon
5 12x5 12x256 real gray-scale images. The CPU
times were measured on a SGI Indigo 11. Figure 4
shows the final approximating images (back-
projected meshes) for three of the test images. The
top row shows approximating images corresponding
to tolerances (RMS errors) equal to 12 (left) and
14 (right). The associated meshes contain 7,772 and
5,807 vertices. Considering 4 bytes per vertex, this
corresponds to compression ratios of 8 : l and 11:l
respectively. These meshes were obtained in 10.3
and 7.9 seconds. The middle row shows results cor-
responding to tolerances equal to 14 and 16. The
compression ratios are 9 : l and 12:l. The associated
triangular meshes were obtained in 7.9 and 7.8 sec-
onds. Finally, the bottom row shows the result
corresponding to tolerances equal to 12 and 13. The
compression ratios are 7 : l and 1O:l. The meshes
were obtained in 11.8 and 8.7 seconds respectively.

The proposed algorithm has been compared with
a mesh refinement algorithm based on iterative opti-
mization [8]. An implementation of the latter, called
Jade, is publicly available. Jade starts with a dense
triangular mesh, which in our case contains all the

170

