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ABSTRACT 

This paper presents a new hybrid range image segmentation 
approach. Two separate techniques are applied consecu- 
tively. First, iin edge based segmentation technique extracts 
the edge points-creases and jumps-contained in the given 
range image. Then, by using only the edge point position 
information, the boundaries are computed. Secondly, the 
points clustered into each region are approximated by single 
surfclces through a Genetic Algorirhm (CA).  The C A  takes 
advantage of previous edge representation finding the sur- 
face paramettw that best fit each region. It works in a local 
way, according to the boundary information, reducing con- 
siderably the required CPU time. Experimental results with 
diflerent range images are presented; moreover a compari- 
son using either the edge detection stage or  not is given. 

1. INTRODUCTION 

Range image interpretation is usually based in high level rep- 
resentation. Therefore, with this objective in mind, several 
works have been proposed within the range image segmenta- 
tion field during the last years. They can be roughly 
classified into three categories: edge-based [1][2], region- 
based [3][4] and hybrid techniques [5][6][7]. Although each 
one of them has its own attractive characteristics, hybrid 
techniques seem to be the most appropriate option when a 
general solution is sought. That is because hybrid techniques 
take advantage of the rich information given by the edge 
detection algorithms by integrating with the efficiency of the 
surface based techniques. 

Generally, hybrid techniques use the information pro- 
vided by edge detection techniques to estimate the number of 
classes or to select optimal region seeds-to initialize clus- 
tering or region growing algorithms. In these cases, the edge 
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detection technique is carried out to guide and improve the 
region based segmentation methods. 

In this sense, this paper presents a combined use of two 
techniques. First, edge points are detected by means of a 
scan line approach. Then, the edges defined by those points 
are extracted through a graph representation strategy. These 
sets of edges are the boundaries of the regions contained in 
the given range image. Next, the second technique is carried 
out over each set of enclosed points computing the approxi- 
mating functions. The surface parameters are found by using 
a genetic algorithm approach. 

In [8] has been shown that optimal surface fitting under 
geometric constraints is feasible with an evolutionary algo- 
rithm. This problem is generally formulated as a non linear 
programming problem, which tries to optimally fit the data 
to candidate shape descriptions. But, with non linear con- 
straints it is very difficult to optimize the functions and there 
is not a known method to guarantee a satisfactory solution. 
CA allows an efficient exploration of the search space and an 
exhaustive exploitation of the best solutions as well. How- 
ever, due to: I )  the multi-modal nature of the fitting 
functions, 2) the presence of noise, and 3) the very large 
number of points to be processed at each iteration of the 
algorithm, it is difficult to use a CA technique to fit the data 
points contained into a given range image. For the previous 
reasons, this work proposes first the segmentation of the 
given range image into individual surfaces-by means of an 
edge based segmentation technique-and then the approxi- 
mation of each region by using a GA approach. Additionally, 
the first stage is responsible to detect the shadow regions 
which are not considered by the second stage. In this way, a 
good performance in terms of CPU time is achieved and a 
satisfactory rate of convergence can be guaranteed. 

The paper is organized as follow. Section 2 summarizes 
the edge extraction technique. Section 3 presents the surface 
fitting technique. Section 4 shows experimental results and 
comparisons. Finally, conclusions are given in section 5. 
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Figure 1. (top-left) Binary edge map. (top-right) Triangular mesh 
from the 2D Delaunay triangulation (triangles with long edges 
have been removed, only triangles at edge or noisy regions are 
preserved). (bottom-Zej) MST resulting from the graph 
representation. (bottonr-right) Enlargement of the MST. 

2. EDGE EXTRACTION 

This section describes the technique used for extracting the 
edges contained in the given range image. It consists of four 
stages. First, a binary edge map is generated by extracting 
crease and jump edges. Then those selected points are trian- 
gulated over their 2D space by means of a Delaunay 
triangulation algorithm. The resulting triangular mesh is con- 
sidered as a weighted graph, next the Minimum Spanning 
Tree-MST-is computed. Finally, after filtering that MST, 
the edges defining each region are obtained and the enclosed 
points are labelled. Each stage is summarized below: a com- 
plete description of each one of them can be found in [9]. 

2.1. Binary Edge Map Generation 

The aim of this first stage is to generate a two dimensional 
array R, where each element is a binary value indicating 
whether that point is an edge point or not. This stage has 
been implemented by using a scan line technique similar to 
the one presented in [ 1][2]. A scan line can be understood as 
a profile digitalization where its 2D projection can be repre- 
sented by a planar curve. In [ I ]  and [2], rows, columns, and 
diagonals are considered as scan lines. On the contrary, in 
the current work, only rows and columns are considered. 

At this stage, every row and column (hereinafter called 
scan lines) is approximated by a set of quadratic functions. 
These functions are obtained by a recursive splitting algo- 
rithm. I t  computes the parameters of the approximating 
function by using three points-the first, middle and last 
point of the considered scan line. Then. the approximation 
error between the obtained quadratic function and every 
point of the scan line is computed. If this error is above a 
given threshold, the considered scan line is split into two 

curves at the point where the biggest error appears. Next the 
parameters of the quadratic curve are computed again, by 
using the new .set of points. This splitting algorithm is 
applied recursively while the approximation error is above 
the given threshold. 

The result of this recursive algorithm is a set of quadratic 
curves approximating. the given scan line. From each qua- 
dratic curve, the first and last points are selected and their 
positions in a binary map are labelled. The 3D coordinates 
associated with each selected point are kept and will be used 
during the next stage. Fig. l(rop-left) shows an example of a 
binary map from the proposed scan line approximation 
algorithm. 

2.2. 2D Triangulation and Graph Generation 

At this stage, the points of the binary map are triangulated 
through a 2D Delaunay algorithm. Then, the obtained planar 
triangular mesh is considered as a weighted graph G .  The 
vertices of the mesh are the nodes of that graph and the edges 
defining the triangles give the edges of that graph. Each edge 
of the graph has associated a cost which is defined by the 3D 
distance between the points joined by this edge. In order to 
speed up further processing, edges with a cost higher than 
some given threshold are removed (Fig. I(rop-right) shows 
an example of a planar triangular mesh, edges with a high 
cost have been removed). 

2.3. Minimum Spanning Tree Generation 
Given a weighted graph G ,  the MST of G is the acyclic sub- 
graph of G that contains all the nodes and such that the sum 
of the costs associated with its edges is minimum. It can be 
computed by applying Kriiskal's algorithm [lo]. 

Fig. I(Dorrom-lefr) shows the MST obtained from the tri- 
angular mesh showed in Fig. l(top-right), an enlargement of 
that MST is presented in Fig. l(6orrorn-rigkt). As expected, 
the generated trees go along the edge points defining the 
boundaries by linking them. However, the algorithm also 
generates several short branches which have to be removed 
during the next step. 

2.4. MST Filtering and Region Labelling 
T.he resulting MST can be understood as a set of independent 
trees. Each of these trees is a polyline where its segments are 
the graph's edges. As shown in Fig. I(borroni-/efr), several 
short branches-isolated or linked with the boundaries- 
were generated from the MST. Then, in order to remove 
those short branches, a kind of operiirig algorithrn is per- 
formed. I t  consists in applying an iterative erosion process 
followed by a dilation process. The latter is applied as many 
times as those of the erosion. The opening algorithm (erosion 
and dilation process) considers the segments of the polyline 
as basic processing elements (like pixels for the classical 
opening operator of intensity image processing). Those seg- 
ments linked from only one of their ending points, end 
segmerits, are removed during the erosion stage. This stage is 

755 



Figure 2. (kfri Boundaries obtained from the opening stage. 
(right) The three labelled regions. 

applied t times and at each iteration, all the end segments of 
that configuration are removed. Once the erosion process is 
completed, a dilation process is performed. This algorithm is 
carried out over the end segments left by the erosion process. 
It consists in putting back the segments connected with each 
one of the end segments present at each iteration. The num- 
ber of dilations is the same as the number of erosions. 

Next, the different boundaries are extracted and labelled. 
Finally, the enclosed points are also labelled as items of that 
region. Fig. :2(left) shows the boundaries obtained from the 
opening stage. Notice that some branches, resulting from 
linking noisy data, still remain. Due to they do not define any 
closed boundary are labelled as items of their surrounding 
region. The obtained boundaries are used to extract the three 
regions showed in Fig. 2(right). 

3. SURFACE FITTING BY MEANS OF A 
GENETIC ALGORITHM 

The outcome of the previous stage is a set of regions cover- 
ing all the surface of the given range image. In the example 
used so far these regions are: a cylinder ( I ) ,  a plane (2) and a 
sphere (3) (see Fig. 2(right)). At this stage, the objective is to 
fit each one of these sets of points by means of a single sur- 
face by using a GA. This stage is applied independently over 
each region. In order to speed up the convergence of the CA, 
only one out of twenty five points defining each region have 
been considered. It is owing to the knowledge that each 
region is defined by a single surface, then i t  is not necessary 
to take into account all the contained points. 

In the current implementation a real-valued chromosome 
representation has been used. Each gene corresponds to a 
coefficient in a shape equation and i t  is defined by a floating 
point number. It has been considered three surface primi- 
tives: planes, spheres and cylinders. In the case of planes, a 
four genes parametric representation: { n l ,  n2, n3, d }  has 
been used; n l ,  n2. n3 are the components of the unit normal 
vector associated with the plane and d is the constant defin- 
ing its minimum distance from the origin of the reference 
frame. In the case of the spheres, again a four genes paramet- 
ric representation {pl, p2, p 3 ,  r }  has been used; PI, p 2 ,  p3 
are the coordinates of the centre point and r is the radius of 
the sphere. In the case of cylinders, a seven genes representa- 
tion {cl ,  c2, c3, N I ,  N , ,  N , ,  r }  has been used; c I ,  c2. c3 are 

the coordinates of the starting point of the cylinder, NI ,  N,, 
N3 are the components of the unit vector defining the axis 
direction and r is the radius. 

The used CA is Genocop I11 [ I  11 which is specialized to: 
a )  handle constrained function optimizations with non 

linear constraints in order to ensure that solutions 
do not fall outside the range; 

b) avoid trivial null solutions; 
c) include information about the mutual positions of 

The main characteristic of this algorithm is the presence 
of two populations: a reference ser and a search set. The ref- 
erence population is a set of fully feasible individuals which 
satisfy all constraints whereas the search population may not. 
At each iteration, the search population is allowed to move 
around the solution space; an individual S of the search set is 
combined randomly with an individual R of the reference set 
to generate a new one that will replace R if i t  is better than it. 
Moreover Genocop I I I  uses operators to ensure that any 
mutation and cross-over operation always produce a child 
from the constrained solution space. 

The fitting function to be minimized is the sum, for all the 
points, of the true geometric distances to each theoretical 
surface, being known a prior the classification of the surfaces 
in the data. For example in the case of the sphere the func- 
tion to be minimized is the following: 

the different shapes in the images; 

~ ( ~ ( x i - P I ) ) + ( Y i - P 2 ~ 2 +  ( z i - P 3 )  2 2  - r )  

i = O  
where x,, yi, zi are the coordinates of the point i, and I I  is the 
number of points belonging to the sphere. 

4. EXPERIMENTAL RESULTS 

The proposed technique has been tested with different noisy 
range images, defined by 480x640 (rows x columns) points 
from the K2T data base. Moreover, a comparisons using 
either the edge extraction stage or not is presented. CPU 
times have been measured on a Sun Ultra 5. Fig. I(top-lefr) 
shows the binary map obtained by using the scan line pro- 
cessing approach; i t  contains 4,549 points. This binary map 
was generated in 7.56 sec. The points of the binary map were 
used by the 2D Delaunay algorithm to generate a triangular 
mesh with 7,940 triangles. The 2D Delaunay triangulation 
was computed in 0.53 sec. Fig. I(rop-right) shows the trian- 
gular mesh (graph) obtained after removing long edges. This 
graph contains 8,558 edges. From that graph, the MST was 
generated in 3.22 sec. I t  is shown in Fig. I(Dortom-lefr) (an 
enlargement is shown in Fig. 1 (Dorrom-right)). Finally, Fig. 
2(left) shows the boundaries obtained from the opening pro- 
cess. There, some open boundaries still remain; they are 
removed by the final labelling stage. The opening process 
took 0.3 sec. generating a representation with 3,204 seg- 
ments. Fig. 2(right) shows the three regions labelled and 
extracted from the previous boundary representation. The 
labelling process took I .8 sec. The surface parameters fitting 
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Cylinder ( I )  
C !  = -5.61 

I I I I 

Plane (2) Sphere (3) 

111 = -0.282 PI = -8.15 

N I  = -0.92 

I I 
Table 1: Parameters of the surfaces showed in Fig. 2 ( r ight)  
(these parameters are close to the real parameters of the original 
surfaces). 

Figure 3. (left) Intensity image. ( r ight)  Regions obtained by the 
edge extraction stage (Section 2). 

each of these regions were obtained by the CA approach pre- 
sented in Section 3. They are shown in Table I .  These 
parameters were obtained in 251 sec. by the CA. 

Fig 3 shows another result obtained from a range image 
of the same set. The CPU time to obtain the regions showed 
in Fig. 3(righr) was 84.65 sec. From this time: 14.92 sec. 
were used by the binary map generation; then, 1.43 sec. by 
the 2D Delaunay triangulation; 56.34 sec. were used by the 
MST generation; 4.79 sec. by the opening stage; and finally 
7.17 sec. were required to extract and label the regions. The 
edge extraction stage succeeds in obtaining the regions and 
boundaries that define the object contained in the scene, but 
on the contrary, some crease edges defined by the intersec- 
tion of the floor with the wall are missed. Then, the opening 
algorithm removes that unconnected boundary linking the 
floor with the wall. At the second stage, the CA is the 
responsible to obtain the surface parameters fitting the differ- 
ent regions (five regions in the current example, the shadow 
regions are not considered). The CA finds the parameters of 
each surface in 3,231.1 sec. 

Finally, the range image corresponding to the example of 
Fig. 1 has been used to compare the CPU times of the pro- 
posed technique-edge based segmentation plus CA-with 
a segmentation without using the edge extraction stage- 
only using the C A  stage. The segmentation results (surface 
parameters) are comparable but the segmentation which does 
not involve edge extraction took almost eight times the time 
spent by the proposed technique (Edge Detection plus CA: 
264.41 sec.; Genetic Algorithm 2,000 sec.). In the second 
case, the adopted fitting function maximizes the number of 
points instead of minimize least square error. 

5. CONCLUSIONS 

This paper proposes an hybrid technique which merge the 
speed of an edge based segmentation technique with the flex- 
ibility of surface fitting by using a CA approach. 

The use of CA for segmenting range images is an nppeal- 
ing option. However, when large range images are 
considered, the required CPU time makes i t  difficult to use. 
For that reason this paper propose the use of a fast edge 
based segmentation stage at the first stage. Then, the CA is 
used only in a second stage over each detected region. It is 
carried out in a local way reducing considerably the required 
CPU time. Moreover. another advantage of the proposed 
hybrid technique is that shadow regions are detected at the 
first stage and left out, avoiding spend time trying to fit them. 

Further work will consist of the automatic determination 
of the kind of surface primitives to be used for fitting each 
region. 
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