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assumed that the sensor moves over a sphere of a certain 
radius that is centered at the middle of the scene, and that 
all objects to be reconstructed are inside this sphere. 

The next-best-view problem has received much atten- 
tion in the robotics and computer vision communities. The 
majority of proposals (e.g., [1][9][11][12]) resort to the 
modeling of the unseen areas/volume of the scene to be 
reconstructed and then compute the amount of such 
unseen space that is visible from each allowed position of 
the sensor. The sensor is supposed to move over a surface 
(cylinder or sphere) that is discretized for computational 
savings. A form of ray-tracing is usually necessary in 
some of the stages of the process. 

The next-best-view position is then chosen among the 
different candidate sensor positions by some kind of opti- 
mization process that maximizes the amount of unseen 
space discovered by the new view from that position. An 
optimization technique is also proposed in [ 131 where the 
uncertainty of the superquadrics used to model the per- 
ceived objects is minimized, the sensor position being 
related to the parameters of the superquadrics. 

Unfortunately, all these stages, from the modeling of 
unseen volumes in space, to the determination of visibility 
regions or the final optimization process, are computa- 
tionally costly. The computational complexity is related to 
the fact that the core of the next-best-view problem is the 
generation of the minimum number of views that allow 
the reconstruction of the scene. However, that problem is 
known to be NP-complete [9]. Therefore in many cases, it 
would be faster to move the sensor to a new position 
through a simple search strategy and to acquire and pro- 
cess a few more range images than, as in many previous 
proposals, to apply costly processes to come up with a 
solution that is not even guaranteed to be the best. 

Taking those considerations into account, we propose a 
different strategy based on two stages (voting and hole 
filling). The first stage finds out the new point of view as 
the result of a voting process that only considers the loca- 
tion of occlusion edges, avoiding thus the computation of 
visibility regions. Occlusion edges are known to be useful 
for this problem from previous work [S][lO]. This stage is 
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quite fast and sufficient to acquire a significative amount 
of the surfaces present in the scene. The second stage is 
responsible for covering the holes left by the first stage 
due to self-occlusions among objects. These holes tend to 
be relatively small and can be filled up with a few views. 
The different range images obtained during the acquisi- 
tion process can be integrated together by using a 
zippering algorithm such as [12]. 

The paper is organized as follows. The proposed algo- 
rithm is described in section 2 .  Section 3 presents 
experimental results based on a 3D graphical simulator. 
Section 4 gives conclusions and open lines of research. 

2 Next-Best-View Generation 

This section presents an algorithm for determining a set 
of views that allow the acquisition of the 3D surfaces of a 
given scene by means of a range sensor. No restrictions 
about the shape or number of objects are imposed. 

The sensor is assumed to move over a sphere (the 
observation sphere) located at the center of the target 
scene and with a radius large enough to guarantee that all 
objects to be sensed are inside the sphere. Since the sensor 
is always aiming at the center of the sphere, its position is 
fully determined by a pair of orientation and elevation 
angles. For efficiency purposes, the observation sphere is 
discretized into a number of cells so that the sensor can 
only be positioned at the center of a cell. When a cell is 
visited, it is marked to prevent it from being chosen again. 

The algorithm generates successive points of view until 
all surfaces of the scene are recovered. The process asso- 
ciated with each iteration can be summarized as follows. 
Given a new range image from the current point of view, a 
triangular mesh is generated and then integrated with the 
meshes obtained from previous views in order to obtain an 
estimation of the observed scene so far. 

From this integrated mesh, occlusion edges are identi- 
fied. Occlusion edges are triangle edges that belong to 
surface discontinuities in the triangular mesh (jump 
edges) and may occlude parts of the scene. For each 
occlusion edge, both a normal and a tangent vector are 
obtained. These vectors contribute with a vote in two ori- 
entation histograms (discrete approximations of Extended 
Gaussian Images [7]) .  After all occlusion edges have been 
considered, two situations may arise, leading to the two 
stages of the algorithm mentioned before. 

The first situation occurs when a new direction is found 
in any of the histograms having a number of votes above a 
certain threshold. Moreover, this direction must corre- 
spond to a cell on the observation sphere that has not been 
visited yet. In that case, the next point of view is calcu- 
lated based on that direction. In practice, this situation 
occurs during the first part of the process, leading to the 
recovery of the majority of surfaces of the scene. 

The second situation occurs when all cells with a large 
number of votes have been visited, denoting occlusion 
edges that have not disappeared even when they were tar- 
geted with a specific viewpoint. In practice, this situation 
occurs at the end of the process when most of the surfaces 

have been recovered and only relatively small holes are 
left due to self-occlusions among objects. At this point, a 
hole filling strategy is applied. First, all separate holes are 
identified. Then the largest one is chosen as a target. The 
new point of view is selected by choosing the cell on the 
observation sphere that has not been visited yet and from 
which the largest amount of occlusion edges from the tar- 
get hole are visible. This implies an analysis of visibility 
that takes into account the occlusions that may be pro- 
duced by previously acquired surfaces. 

Disregarding the stage, after the new point of view is 
determined, a new range image is acquired and a new iter- 
ation starts over. The whole algorithm will stop when no 
occlusion edges are found, indicating that no open sur- 
faces are left, or when there are remaining holes but all 
cells on the observation sphere from where the holes 
should be visible have already been visited, and this 
implies either that it is not possible to observe those holes 
given the current observation sphere or that the objects in 
the scene contain open surfaces that cannot be closed. The 
latter situation could be detected at earlier stages, avoid- 
ing thus an exhaustive search over the observation sphere, 
by keeping track of the bounding box of each hole and 
marking as unfeasible those holes that cannot be reduced 
after a certain number of iterations. 

The algorithm is fully described next. 

2.1 Approximation of Range Images 

The exploration starts with a predetermined point of 
view. Every time a new range image is acquired, it is 
approximated by a triangular mesh in order to speed-up 
further processing. This can be done in different ways, 
including the adaptive technique proposed in [ 5 ] .  For the 
sake of conceptual simplicity though, we have opted for a 
simple uniform sampling of the range image, which 
already suffices our purposes. Each pixel selected from 
that sampling is converted to a 3D vertex referred to a 
local frame attached to the sensor. The coefficients of 
these transformation are obtained from the calibration of 
the range sensor. The sampling resolution needed for the 
next-best-view generation process should be, at least, half 
the minimum separation among objects. 

Once we have an initial triangulation in space describ- 
ing the surfaces of the scene, some triangles are removed 
in order to avoid that separate surfaces (e.g., surfaces 
belonging to different overlapped objects) may be joined. 

Specifically, all triangles whose barycenters project 
onto the background of the range image are removed. 
Moreover, all triangles whose normal vectors have an 
angle with respect to the viewing direction lower than a 
certain threshold z (100 degrees in this work) are also 
removed. This corresponds to a limit inclination (break- 
down angle [ 113) of 180 - T degrees. Finally, the mean p 
and the standard deviation <T of the perimeter of all trian- 
gles are computed and those triangles whose inclination is 
higher than 60 degrees and whose perimeter is larger than 
p + K O ,  1 < K < 2 ~ are also removed. This heuristic sup- 
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the sensor is mounted on a robotic arm, from the location 
and orientation of the terminal element of the robot. 

It is important to emphasize that the aim of this integra- 
tion is not the reconstruction of the scene, in the sense of 
the generation of a CAD model. That would require much 
more computational effort than what is necessary just to 
plan the next point of view. Thus, the proposed approach 
uncouples the reconstruction stage from the exploration 
one in order to speed-up the latter. Once all necessary 
range images have been acquired, the reconstruction pro- 
cess can be run off-line. Therefore, the proposed 
exploration model is just the concatenation of the different 
triangular meshes, with no merging involved. 

The objective now consists of determining the location 
of occlusion edges. When the first triangular mesh corre- 
sponding to the first view is available, all its exterior 
edges are also occlusion edges. However, as new views 
are acquired and new meshes available, there can be over- 
laps between meshes, and many edges that were originally 
exterior may become interior. Thus, the problem of detect- 
ing occlusion edges becomes the problem of finding what 
exterior edges from the triangular meshes obtained so far 
are not overlapped when a new triangular mesh arrives. 
Specifically, once the last view has been integrated, the 
algorithm detects the possible overlap between every 
exterior edge and its nearby triangles from the exploration 
model. In order to do that, the distance between the cen- 
troid of the current exterior triangle (the triangle that 
contains the exterior edge) and the centroids of all the 
other triangles from the model are compared. Two trian- 
gles are candidate to be overlapped if the previous 
distance is below a certain threshold. This threshold is 
twice the sum of the radius of both triangles, with the 
radius of a triangle being the distance between its centroid 
and one of its vertices. 

As all triangles of the exploration model are oriented 
counter-clockwise, there is an implicit ordering of the ver- 
tices of all exterior edges. Thus, an edge can be identified 
by its first vertex. Since a large exterior edge may be over- 
lapped along a small section of its extent-that leads to 
partial occlusion edges-and that situation must be 
detected, a small number of equidistant points over each 
exterior edge are selected. These points (seven in the cur- 
rent implementation), jointly with the first edge vertex, 
constitute the exterior points of the exterior edge. Each 
exterior point is tested for overlap against its nearby 
triangles. 

Each exterior point has an associated normal vector 
corresponding to the triangle to which the exterior edge 
belongs. Therefore, the detection of overlap between an 
edge and a triangle finally becomes the detection of over- 
lap between a 3D point (with its corresponding normal) 
and a triangle. There are two special cases in which no 
overlap is decided in considering that the point and the tri- 
angle belong to separate surfaces. First, when the normal 
associated with the point has an angle of more than 90 
degrees with respect to the normal of the triangle. Second, 
when the distance between the point and the triangle's 
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upper overlap polytope 

Figure 2: 2D illustration of the determination of overlap between a 
point (with associated normal) and a triangle. Overlap polytopes 
are shown in dark. Points A and B are overlapped while points C, 
D and E are not. 

plane is above a certain threshold (in the implementation, 
half the average length of the edges of the triangle). 

If the previous conditions are not satisfied, the point 
will be considered overlapped with the triangle if it 
belongs to either the upper or lower overlap polytopes of 
the triangle. The upper overlap polytope of a triangle is 
defined as the intersection between the positive half-space 
supported by the triangle's plane and the positive half- 
spaces supported by three upper overlap planes associated 
with the edges of the triangle. Given an edge E of a trian- 
gle T, the upper overlap plane associated with E is the 
plane that contains E and is orthogonal to the plane of the 
triangle TE adjacent to T along E,  if that neighbor exists, 
or orthogonal to the plane of T if it does not or if triangles 
TE and T form a non-convex surface. Conversely, the 
lower overlap polytope is the symmetry of the upper over- 
lap polytope with respect to the plane defined by 
triangle T. 

Fig. 2 illustrates the concept of overlap polytopes and 
overlap detection considering a 2D section of three trian- 
gles shown with a thickened polyline. In that example, 
points A and B are considered overlapped with the central 
triangle T while points C, D and E are not. Points D and E 
do not pass the normal orientation test whereas point C is 
outside the upper and lower overlap polytopes of T. 

Those exterior points that are not overlapped with any 
nearby triangles will be considered to be occlusion points. 
An exterior edge whose exterior points are overlapped is 
relabeled as an interior edge and not considered for fur- 
ther overlaps. Exterior edges that contain occlusion points 
are considered to be occlusion edges. 

2.3 Spherical Discretization Maps (SDMs) 

As pointed out in the initial description of the algorithm 
at the beginning of Section 2, orientation histograms are 
utilized throughout the process. Orientation histograms 
require a discretization of the unitary sphere into cells of 
uniform area, with each cell representing a set of orienta- 
tions in space (a solid angle). The simplest technique for 
dividing a sphere defines parallels and meridians [1][7]. 
However, the obtained cells do not have uniform area. To 

have uniform cells, geodesic domes and tessellations 
based on regular polyhedra have been proposed [7], but 
the problem then becomes how to map orientations to 
their corresponding cells efficiently. 

We propose spherical discretization maps (SDMs) as a 
simple representation that allows a relatively uniform dis- 
cretization of a sphere with a simple way of mapping 
orientations to cells. SDMs are obtained by dividing the 
sphere into a fixed number P of strips. Each strip is asso- 
ciated with a parallel of the sphere and is divided into a 
number of cells that is proportional to the area covered by 
the strip. The aim is that the equator has the maximum 
number of cells while the poles have a single cell. 

SDMs are defined by a certain number of cells CE 
along the equator, with CE being a multiple of four. From 
it, P + 1 parallels are defined with P = C E / 2  . Given a 
certain parallel p ,  its corresponding elevation angle is 
cp = n /2  ( 4 p / C E  - 1)  . The number of cells that belong 
to a parallel p is defined as GP = 1 if cos (9,) = 0 (i.e., 
p is a pole equal to 0 or P )  and l,, = LCE cos ( c p p )  1 oth- 
erwise. It is easy to show that cos (qP) is the ratio 
between the length of circumference of the parallel at ele- 
vation ' pp  and the length of circumference of the equator. 
Then, the orientation angle of a given cell c that belongs 
to a parallel p is obtained as e,, 

Conversely, given an elevation angle c p ,  
- n / 2  I cp I n/2,  and an orientation angle 8, 0 I 8 < 2n,  
the corresponding parallel p is obtained as 
p ,  = L ( c p  + 7 ~ 1 2 )  P / n J  , whereas the cell inside p is cal- 
culated as cq,.e = 11; (p , )  8/2n]. 

The resolution at which the sphere is discretized only 
depends on the number of cells along the equator. In the 
proposed implementation, SDMs are defined with 20 cells 
along the equator ( CE = 20 ). This leads to a discretiza- 
tion of the whole sphere into 11 parallels and a total of 
126 cells. 

P 

= 2n c / $  . 

2.4 Normal and Tangent Voting 

Two orientation histograms represented as SDMs (see 
Section 2.3) are considered now, one for normals (normal 
histogram) and another for tangents (tangent histogram). 
Those histograms are the basis for a voting process 
intended to highlight predominant orientations of the 
occlusion points as summarized below. 

For each occlusion point (see Section 2.2), two unitary 
vectors are obtained. First, the normal of the triangle to 
which the occlusion point belongs. Second, a tangent vec- 
tor obtained as the cross product between the previous 
normal and the corresponding occlusion edge. That tan- 
gent is pointing out of the surface. 

Each tangent vector obtained above contributes with a 
vote to the tangent histogram and each normal vector with 
another vote to the normal histogram. Besides keeping a 
number of votes, every cell of the normal histogram also 

Lx] the greatest integral value less than or equal to x.  
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only small holes due to self-occlusion are left. The objec- 
tive then becomes the determination of the next view that 
closes the largest hole. 

The algorithm proceeds by segmenting all found occlu- 
sion edges into isolated components through a k-nearest 
neighbors classifier which is fed with the central 3D coor- 
dinates of each occlusion edge. The class with the largest 
number of occlusion edges is chosen as the target hole. A 
centroid for that hole is computed by averaging the cen- 
ters of its occlusion edges. A hole’s normal is also 
determined by adding the normals of the triangles that 
contain the hole’s occlusion edges. 

The objective now is to find out all non-visited cells of 
the observation sphere from where the largest amount of 
occlusion edges are visible. The sensor position associ- 
ated with each non-visited cell is computed. From each 
position a ray (straight line) is sent to the extremes of the 
target occlusion edges. This ray is tested for intersection 
against all the triangles from the exploration model whose 
normals have an angle lower than 80 degrees with respect 
to the hole’s normal and whose vertex coordinates are 
above the hole’s centroid in the direction of the hole’s nor- 
mal (this is a culling process applied to the triangles of the 
model in order to increase efficiency). 

The next point of view is computed from the cell from 
where the largest number of occlusion edges is visible and 
whose associated viewing direction forms an angle with 
the hole’s normal closer to 180 degrees. 

It is important to realize that it is not necessary to fill up 
each hole in a single view. After the next view is acquired, 
the hole is guaranteed to become smaller, if not to disap- 
pear. Then the algorithm is started over, and will proceed 
with the remaining holes until the termination conditions 
(pointed out at the initial description in Section 2) are 
satisfied. 

3 Experimental Results 

The proposed algorithm has been tested with ranges 
images obtained from a simulation tool developed for this 
project. This tool allows the set-up of 3D scenes with arbi- 
trary objects imported from CAD (VRML and Robmod) 
and from real range images. The system allows the defini- 
tion of sensor positions over an observation sphere and 
the computation of dense range images. The simulator 
also provides the necessary transformation matrices 
between the local coordinate frames attached to the sensor 
and a unique global frame attached to the scene. 

The first example corresponds to a scene containing 
two separate rock-like objects. Fig. 3 shows a partial 
sequence of the updated exploration model of the scene 
from the first view to the last one. The whole sequence 
consists of 19 views. The first 16 views were obtained by 
applying the voting scheme. From them, 10 views were 
obtained as a result of maxima at the normal histogram 
and 5 views of maxima at the tangent histogram. 

The result after the voting scheme, shown at the bot- 
tom-left image in Fig. 3, contained 4 separate holes that 
were closed in three more views. Fig. 4(left) shows a 
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Figure 3: Sequence of the exploration of a scene containing two 
rock-like objects. The whole sequence consists of 19 views, from 
which the last 3 views correspond to the hole filling stage. The 
result after the voting stage is shown at the bottom-left image. 

Figure 4: Application of the hole filling stage (le#) Exploration 
model after the voting stage. (right) Exploration model after the 
largest hole is closed in one more view. 

detail of the largest hole left by the voting scheme. That 
hole is closed in just one view leading to the result shown 
in Fig. 4(right). The CPU time to compute the 19 views 
was 150 sec. on a SGI Indigo I1 with a 175MHz R10000. 
Fig. 5 shows the initial view and the result of the explora- 
tion of a RX-90 robot. 36 views are necessary from which 
29 correspond to the voting stage and the others to the 
hole filling stage that closes 16 holes. 

4 Conclusions and Future Lines 

A two-stage technique has been presented for comput- 
ing a small set of views necessary to obtain all the 
surfaces of a 3D scene from range images. The first stage 
determines the next view based on a voting scheme that 
takes into account the orientation of occlusion edges. The 
second stage determines holes left by the first stage and 
applies visibility analysis to determine the views neces- 
sary to close them. Spherical discretization maps have 
been introduced as an efficient tool for implementing ori- 
entation histograms. Future work will consist of the 

Figure 5: Exploration of a RX-90 arm. (left) Exploration model 
after the first view. (right) Exploration model at the end of the 
process in 36 views. 

introduction of constraints in the exploration process, 
such as unreachable viewpoints [9]. 
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