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Abstract

This paper presents a novel method to increase the accu-
racy of linear fitting of implicit polynomials. The proposed
method is based on the 3L algorithm philosophy. The nov-
elty lies on the relaxation of the additional constraints, al-
ready imposed by the 3L algorithm. Hence, the accuracy of
the final solution is increased due to the proper adjustment
of the expected values in the aforementioned additional con-
straints. Although iterative, the proposed approach solves
the fitting problem within a linear framework, which is inde-
pendent of the threshold tuning. Experimental results, both
in 2D and 3D, showing improvements in the accuracy of the
fitting are presented. Comparisons with both state of the art
algorithms and a geometric based one (non-linear fitting),
which is used as a ground truth, are provided.

1. Introduction

Implicit polynomials (IPs) have shown to be useful in

different computer vision applications. Their capability to

describe complicated boundaries through their coefficient

vector, and the nonexistence of parametrization, has been

exploited in fields such as: pose estimation [6], [12], shape

description [7], position invariant object recognition [8], 3D

image segmentation [14] and registration [13], to mention a

few.

According to the metric used for measuring the accuracy

of the approximation, classical approaches of IPs fitting can

be divided into two categories: (i) orthogonal or geometric
distance based (e.g. [1], [2], [4], [11]) and (ii) algebraic
distance based (e.g. [3], [5]), each one of them has its own

advantage and disadvantage. In short, orthogonal distance

based approaches reach more accurate results while alge-

braic ones are more efficient computationally. Although the

current work is focussed on this second category the accu-

racy of the obtained result can be compared with the orthog-

onal based approaches.

This paper has two main contributions. On the one hand,

the proposed framework allows to relax the additional con-

straints of the 3L so that a more accurate result can be

reached even using such a kind of algebraic approach. On

the other hand, it does not require an accurate initial guess

for the thresholds needed by the 3L algorithm. The rest

of the paper is organized as follows. Section 2 describes

the problem of fitting implicit polynomials and briefly in-

troduces the 3L algorithm. The proposed technique is pre-

sented in section 3. Section 4 gives experimental results and

comparisons.

2. Problem formulation and background
2.1. Implicit polynomial fitting

Implicit polynomial fitting aims at finding the best poly-

nomial that describes a given set of points by means of its

zero set. In other words, the value of the polynomial should

reach zero at the location of the given data points. Let f(x)
be an implicit polynomial of degree d represented as:

f(x) =
∑

(i+j+k)�d

{i,j,k}�0

ai,j,k · xi · yj · zk = 0, (1)

or, in a vector form:

f(x) = mTa = 0, (2)

where m is the column vector of monomials and a is the

polynomial coefficient vector; the fitting problem consists

in first defining a criterion—or residual error—to measure

the closeness of the zero set to the given data set, and then

minimizing this criterion to find the best coefficient vector

a. Let Γ0 be the set of given data points with coordinates

x (picked up from object boundaries in 2D or surfaces in

3D). Since IPs are chosen to describe the data, their value

deviation from zero in each point could be considered as a

residual error:

E =
∑
x∈Γ0

f2(x), (3)
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Figure 1. (a) Level sets: original data (Γ0), outer offset (Γ−δ) and inner offset (Γ+δ). (b) A 3D illustration of the original 3L algorithm.

(c) The best fitting polynomial obtained by [1], showing that the values in the inner and outer sets should be relaxed.

or, in vector form:

E = aTMT
Γ0
MΓ0

a. (4)

where MΓ0
is the matrix containing monomial vectors cal-

culated in each data point. This residual error is referred in

the literature as algebraic distance.

2.2. Overview of the 3L algorithm

The simplest fitting approach is the Least Squares

method (LS), which minimizes the algebraic distance pre-

sented above. Unfortunately, there is not a clear geometric

interpretation of (4) since it does not measure the orthog-

onal distance from the data points to the polynomial zero

set. Furthermore, solutions obtained by the least squares

method, although faster, are very unstable.

In order to compensate the lack of geometric meaning,

and to solve the instability problem in the classical alge-

braic methods (4), the authors in [3] have proposed the 3L

algorithm, which consists in generating two additional level
sets: Γ−δ and Γ+δ from the original data set Γ0. These two

additional data sets are generated so that one is internal and

the other is external. These sets are placed at a distance

±δ from the original data along a direction that is locally

perpendicular to the given data set. In the current imple-

mentation a PCA based approach, in a local neighborhood

for every point, has been used for estimating this direction.

Hence, the 3L algorithm incorporates a control for a local

continuity resulting in a more stable solution. Figure 1(a)
depicts the original data with the two additional level sets;

the corresponding 3D illustration is presented in Fig. 1(b).
The 3L fitting algorithm is then formalized as a linear

least squares explicit polynomial fitting problem. Consid-

ering the three level sets: {Γ−δ,Γ0,Γ+δ} the equation (2)

is now defined by using a block matrix M3L and a block

column vector b:

M3L =

⎡
⎣ MΓ−δ

MΓ0

MΓ+δ

⎤
⎦ , b =

⎡
⎣ −c

0
+c

⎤
⎦ , (5)

where MΓ0
, MΓ+δ

, MΓ−δ
are matrices of monomials cal-

culated in the original, inner and outer set respectively; ±c

are the corresponding expected values in the inner and outer

level sets. Then, the least squares solution for a is obtained:

a = M†
3Lb = (MT

3LM3L)
−1MT

3Lb, (6)

where M†
3L denotes the pseudoinverse of M3L.

A crucial aspect of the 3L algorithm is the generation of

the two additional level sets. According to [3], the value

of δ could be specified as a percentage of the object size.

However there is not a general rule for tuning this value;

it depends on the nature of the problem (i.e., shape of the

contour/surface, density of points, degree of the IP to be fit-

ted). Figure 2 illustrates different results obtained with the

3L algorithm by setting δ as a: 1, 3, 6, 10, and 25 percent

of the object size. It should be mentioned that the best fit-

ting corresponds to δ = 4 percent of the object size, see Fig.

8(a). Through the whole paper the accumulated fitting er-

ror, hereinafter AFE, is used to measure the accuracy of the

obtained result. The AFE is computed over the original data

set and it corresponds to the shortest distance between each

point and the fitted IP (usually referred in the literature as

Euclidean or orthogonal distance).

Other algebraic works have been proposed in order to in-

crease the stability of the least square solution. In [10] the

authors exploit geometric information of the data related to

their orientation. In other words, they approximate the nor-

mal orientation of the data set in each point, and try to find

a polynomial having gradient vectors similar to these nor-

mal vectors. To define the problem in a single unified least

squares form, they force the gradients to have a unit length;

the algorithm is referred as Gradient-One algorithm. This

method has been later improved in [5] in order to have a

more stable solution. Firstly, the stability of the zero set

with respect to small changes in the coefficient vector is for-

mulated. Then, two different approaches, named Min-Max

and Min-Var, are proposed to find the solution. In the first

approach an upper bound of the error function is minimized,

while in the second one the minimization is focussed on the

variance of that error function.

The ridge regression technique has been applied in [9]



Figure 2. Fifth degree fitting results obtained with the 3L algorithm by setting δ as a 1, 3, 6, 10, and 25 percent of the object size (the best

results correspond to δ = 4 percent of the object size, see Fig. 8(a)).

to tackle the instability problem of least squares in (6); it

regularizes the least squares formulation through adding a

diagonal matrix to the monomial matrix. The authors of

that work propose some conditions on the diagonal matrix

to maintain the Euclidean invariance while regularizing the

LS solution.

Regardless to the pros and cons of these improvements,

none of them pay attention to the expected values of the

additional data in (5). Indeed, forcing the IP reaching +c
inside and −c outside could lead us to a biased result. How-

ever, changing the value of c will give the same zero set.

What makes the fitting result biased is the constant propor-

tion considered for all the inner and outer additional data

points. Figure 1(c) depicts an illustration where the perfect

result1 would only be obtained after relaxing the expected

values for the inner and outer offsets, while keeping them

to zero for original data. This figure shows the original data

and the expected height for the supplementary offsets; and it

also illustrates how these values change from point to point.

The main contribution of the current work is to estimate

these expected values in order to reach a more accurate fit-

ting.

3. Proposed approach

As mentioned above, the 3L algorithm is based on the

construction of two additional data sets (level sets) that are

determined from the original data set. Although the algo-

rithm produces a result within one pass and no iterative

computations are required, it has three major problems as

detailed below.

First of all, like other algebraic methods, the 3L algo-

rithm has also numerical instability problems. In a recent

work, [9] proposes a statistical approach to increase the

global stability of the 3L algorithm. This method is based

on the ridge regression (RR), which is a way to regularize

the block matrix M3L. RR improves the condition num-

ber of the block matrix by adding a diagonal matrix D to

MT
3LM3L:

1This result corresponds to the fitting of the given data points computed

with [1] (see Section 4), inner and outer data sets are not considered.

a = (MT
3LM3L + κD)−1MT

3Lb. (7)

Moreover, in [9] a diagonal matrix is introduced such that

the Euclidean invariant property is maintained. Unfortu-

nately, this method leads us to a coarser fitting result than

the original 3L algorithm, although more stable.

Second, the accuracy of the fitting result depends on the

δ value used for computing the two additional level sets. In

the original paper [3] the authors propose to define these

offsets as a percentage of the object size; however there is

no rule for setting the right value. Actually, in [3] the au-

thors present some experiments showing the variability of

the results depending on that value (varying these offsets

from 0.5 percent till 20 percent of the object size).

Third, it should be noticed that the whole set of points

contained in the three level sets {Γ−δ,Γ0,Γ+δ} defining

the block matrix M3L are equally considered when the least

squares solution is obtained (6). On the other hand, the ini-

tially given problem only contains the level set Γ0. Hence, it

is easy to conclude that the constraints added for stabilizing

the fitting solution could affect the accuracy of the result.

In the current work the last two problems mentioned

above are tackled looking for a more accurate result. A

strategy for relaxing the additional constraints is proposed

to decrease the fitting error while maintaining the structural

shape of the object. The proposed approach consists of two

stages as detailed below.

3.1. Relaxing additional constrains

As mentioned earlier, the 3L algorithm tries to encode

the geometric information of the data by adding two sup-

plementary sets supporting the original one. In the original

work [3], it is suggested to have an equal value for the whole

inner and outer offsets. However, as shown in Fig. 1(c), the

perfect fitting result could be only reached by means of dif-

ferent values for each point in the inner and outer data sets.

In other words, the right hand values in (5) (constant vectors

±c) should be relaxed in order to obtain the most accurate

fitting result. In the current work a novel idea to adjust these

values for offsets, based on the position of the point and the

approximated IP at the current iteration, is proposed.
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Figure 3. (a) Coarse approximation used as an initialization of

the proposed approach (δ = 10 percent of the object size, AFE=

0.1989). (b) Fitting result obtained with the proposed approach

(four iterations, AFE=0.1288).

Lets f(x) be the IP at the current iteration; pi = (xi, yi)
a given data point2; si and ti its inner and outer offset re-

spectively. As mentioned above these two points are ob-

tained along the unit normal ni = (nx
i , n

y
i ) from the local

PCA based approximation. Moving on the surface from si
to ti can be parameterized as follow:

g(t) = f(xi + nx
i t, yi + ny

i t), (8)

where f shows the value of the fitted IP (see (2)). The ex-

pected value for g(0) = f(xi, yi) is zero, but its value in si
and ti must be estimated.

Based on the above definition, g(δ) and g(−δ) show the

value of the IP achieved in si and ti respectively. Consid-

ering the function g at these two points a fair proportion for

next iteration could be obtained, instead of using the fixed

values ±c in (5). For this purpose a first order Taylor ap-

proximation, around t = 0, of (8) could be computed as:

g(±δ) ≈ [nx
i fx(xi, yi) + ny

i fy(xi, yi)]δ. (9)

However, this value could be approximated again by con-

sidering ni ≈ ∇f(pi) = (fx(xi, yi), fy(xi, yi))
T :

g(±δ) ≈ ±‖∇f(pi)‖2δ, (10)

so the next expected value for the given point should be

[0, g(δ), g(−δ)] for the original set and the inner and outer

one respectively. This process is applied for every given

point and then vector b in (5) updated. Then, the least

squares method (6) is used for computing the new IP co-

efficients. Note that this least squares solution is obtained

just after a matrix multiplication, since the pseudoinverse

matrix in (6) is computed only once, at the beginning. The

whole procedure is iterated till convergence is reached as

explained in the next section.

2Without loss of generality, and only to make clear its understanding,

this discussion is presented for the 2D case, but it could be extended to the

3D case.
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Figure 4. Orthogonal distance from a given point p computed by

means of the iterative approach [1].

3.2. Convergence criteria

Stoping the above iteration represents a key point. On

the one hand it should be something easier to compute; on

the other hand it should be robust enough to be used with

different geometries.

In the proposed method, a coarse fitting from the 3L al-

gorithm is chosen as an initialization, and in each iteration

the total angle between the gradient vector at each data and

its approximated unit normal ni, from local PCA (see Sec-

tion 2.2), is measured. It should be mentioned that the ap-

proximated normal is already calculated when computing

the two additional level sets. So the only required computa-

tion is regarding to the angle estimation:

θi = cos−1( ni.∇f(pi)
‖∇f(pi)‖ ), (11)

additionally, since cos−1|[0,1]→[0,pi/2] is monotonic, just the

absolute value of the inner expression, without calculating

the cosine inverse, is considered. Therefore the criterion

used for measuring the goodness of the current fitting result

is:

ξ(a) =

N∑
i=1

1− | ni.∇f(pi)
‖∇f(pi)‖ |, (12)

where N is the number of points in the original data set.

The process iterates while (12) decreases.

Finally, it should be mentioned that in spite of the it-

erative nature of the proposed approach, it is more related

to algebraic approaches than to the Euclidean based ones,

where at every iteration the shortest distance between every

single point and the current fitted IP should be computed

[4]. Figure 3(a) shows the coarse fifth degree fitting from

the 3L algorithm used as an initialization of the proposed

approach; the final fitting result is obtained after four itera-

tions (Fig. 3(b)).

4. Experimental results
This section presents experimental results obtained with

the proposed approach as well as comparisons with both

the state of the art algorithms and the original 3L formula-

tion. Additionally, an orthogonal distance based approach
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Figure 5. (a) Results from the 3L algorithm. (b) Results from the

proposed approach. (c) Results from [1] used as ground truths.

has been implemented in order to be used as a ground truth;

it is briefly introduced next.

Ground truth. In [1] an orthogonal distance based fit-

ting is proposed, which for every single point p searches

the corresponding foot-point, p̂, on the surface satisfying

f(p̂) = 0. Furthermore, the line connecting the data point

with the foot-point must be parallel to the ∇f at the foot-

point, where ∇ is the gradient operator. In other words, we

must have ∇f×(p̂−p) = 0. Merging these two conditions,

the following system of equations must be solved:

(
f

∇f × (p̂− p)

)
= 0. (13)

This equation could be solved by the Newton method for

non-linear system of equation. Figure 4 shows an illustra-

tion of this iterative approach leading to the approximated

foot-point for a given point. In each iteration, the point

moves to a lower level curve till reaching the zero level

curve. Simultaneously, the gradient direction at each iter-

ation is adapted to be parallel to the connecting line. Once

the foot-point for every single point is found the total square

distance is minimized through a non-linear method (e.g.,

Levenberg-Marquardt).

Proposed
fitting

truth
Ground

3L
fitting

Figure 6. Non-uniform synthetic noisy data from an ellipsoid (127

points), fitted with the 3L algorithm (δ = 10%, AFE=4.3376), the

proposed approach (AFE=3.1234) and [1] (AFE=3.2441).

−5

−5

Figure 7. 3D data points obtained with a structured light cam-

era from a sphere; outer mesh correspond to the result obtained

with the 3L algorithm (AFE=242.6154) while inner spheres show

the results from the proposed approach (AFE=85.1591) and the

ground truth (AFE=85.4815).

This approach has been implemented just to be used as

a ground truth and measure the accuracy of the results ob-

tained with the proposed approach.

2D and 3D data sets. Several data sets have been fitted with

the proposed approach and compared with the best results

obtained with the 3L algorithm. Furthermore, the results

obtained with [1] are provided. Figure 5 shows 2D contours

fitted by sixth degree IPs using the 3L algorithm (Fig. 5(a)),
the proposed approach (Fig. 5(b)) and a non-linear orthogo-

nal distance based approach [1] (Fig. 5(c)). In all the cases

the accuracy obtained with the proposed approach improves

considerable the one obtained with the 3L algorithm (see

Table 1); moreover, it is comparable to the results obtained

when the non-linear approach is used. Although out of the

scope of the current work, it should be mentioned that the

proposed approach is about ten times faster than [1].

Figure 6 depicts the fitting results obtained with the three

approaches when 3D data points are considered; note that

although similar AFEs are obtained the geometry computed

with proposed approach is more similar to the ground truth
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Figure 8. (a) Best result from the 3L algorithm obtained by setting

δ = 4 percent of the object size (AFE=0.1285). Results after incor-

porating: (b) two positional constraints (AFE=0.1179); (c) three

positional constraints (AFE=0.1068); and (d) four positional con-

straints (AFE=0.1105).

than the one obtained with the 3L. Finally, Fig. 7 presents

results obtained after fitting a set of real data points corre-

sponding to a partial view of a sphere. In this case not only

qualitative better results are obtained with the proposed ap-

proach but also quantitatively.

Zero set. In order to force that the fitted IP pass through par-

ticular data points, known as positional control points, [3]

proposes to incorporate additional linear constraints. Figure

8(a) shows the best fitting result obtained with the 3L algo-

rithm. It has been achieved after trying different δ values

and it corresponds to a δ = 4 percent of the object size. Fig-

ure 8(b), (c) and (d) depict results from the 3L algorithm af-

ter incorporating additional constraints, as proposed in [3],

to force that two, three and four points respectively belong

to the zero set. It can be concluded that increasing the num-

ber of positional constraint does not result in a reduction

of the AFE. The result of the proposed approach (see Fig.

3(b))(AFE=0.1288) is quite similar to the values obtained

after manually tuning δ in the 3L algorithm or after adding

positional control points.

Non-uniform sampling and open boundaries. Two par-

ticular challenges for fitting algorithms arise when data

points are non-uniformly distributed or when they corre-

spond to an open contour/surface. Figure 9 presents two

illustrations obtained when the 3L algorithm, the proposed

approach and [1] were used. Note that the results obtained

with the proposed approach (AFE) are quite similar to the

Figure 9. Non-uniform sampling and open boundary cases: (top)
Results from the 3L algorithm; (middle) Results from the pro-

posed approach; (bottom) Results from an orthogonal distance

based approach [1], non-linear fitting.

ones obtained by using [1] (see Table 1), but they were gen-

erated almost ten times faster. A fourth degree IP was fitted

in the open contour case (Fig. 9(right)) while a fifth de-

gree IP was considered for the non-uniform point distribu-

tion case (Fig. 9(left)).

Quantitative Comparisons. Table 1 shows the AFE for

five different methods as well as the proposed one. It should

be noticed that the last column corresponds to [1] that is ob-

tained by solving a nonlinear optimization, and needs more

computation. As mentioned above it is used as a ground

truth. All other methods belong to the algebraic category,

which are solved by a simple least squares method. The pro-

posed algorithm has obtained similar results to the geomet-

ric one, while is much faster. The Min-Max and Min-Var

methods [5] are similar to the Gradient-One algorithm [10],

which incorporates orientation in the optimization frame-

work. All these methods try to obtain more stable fitting re-

sults while neglecting the accuracy. Fig. 10 shows how the

Gradient-One algorithm fails to describe the corners. Even

though the normal directions are preserved, but the zero set

is away from the original data.



Table 1. Accumulated fitting errors to compare the results obtained by different approaches (3L: the 3L algorithm; GO: the Gradient One;

MM: Min-Max; MV: Min-Var; PA: Proposed Approach; GA: Geometric Approach).

3L[3] GO[10] MM[5] MV[5] PA GA[1]

Fig. 5-(1st row) 5.70 13.24 13.76 13.75 1.59 0.84

Fig. 5-(2nd row) 4.82 13.96 3.91 10.48 1.65 0.96

Fig. 5-(3rd row) 8.36 16.50 10.96 15.82 4.11 3.75

Fig. 5-(4th row) 7.98 10.04 5.91 8.04 2.74 3.95

Fig. 9-(left col) 13.70 30.13 8.76 22.71 1.22 0.55

Fig. 9-(right col) 3.40 10.33 5.47 8.80 0.73 0.84

(a) (b)

Figure 10. (a) The result obtained by the Gradient-One algorithm

[10]. (b) An enlargement showing how the fitting algorithm ig-

nores the positional constraint, the gradient vectors have a similar

length and orientation though.

5. Conclusions
This paper presents a method for relaxing additional con-

straints of the 3L algorithm. In this way the accuracy of the

fitting is increased as well as there is no need for a fine tun-

ing of the two additional level sets. Experimental results

fitting different IPs are provided showing the advantages of

the proposed approach. Comparisons with the 3L and state

of the art algorithms, as well as with a non-linear orthogonal

distance based approach used as a ground truth, are given.

Acknowledgments
This work has been partially supported by the Span-

ish Government under project TRA2007-62526/AUT; re-

search programme Consolider-Ingenio 2010: MIPRCV

(CSD2007-00018); and Catalan Government under project

CTP-2008ITT00001.

References
[1] S. Ahn, W. Rauh, H. Cho, and H. Warnecke. Orthogonal

distance fitting of implicit curves and surfaces. IEEE Trans.
on Pattern Analysis and Machine Intelligence, 24(5):620–

638, May 2002. 1, 2, 3, 4, 5, 6, 7

[2] M. Aigner and B. Jutler. Gauss-newton-type technique for

robustly fitting implicit defined curves and surfaces to un-

organized data points. IEEE International Conference on
Shape Modelling and Application, pages p 121–130, 2008. 1

[3] M. Blane, Z. Lei, H. Civil, and D. Cooper. The 3L algorithm

for fitting implicit polynomials curves and surface to data.

IEEE Trans. on Pattern Analysis and Machine Intelligence,

22(3):p 298–313, March 2000. 1, 2, 3, 6, 7

[4] P. Faber and R. Fisher. Pros and cons of euclidean fitting.

In Proceedings of the 23rd DAGM-Symposium on Pattern
Recognition, pages 414–420, London, UK, 2001. Springer-

Verlag. 1, 4

[5] A. Helzer and M. Barzohar. Stable fitting of 2d curves and

3d surfaces by implicit polynomials. IEEE Trans. Pattern
Anal. Mach. Intell., 26(10):1283–1294, 2004. Fellow-Malah,

David. 1, 2, 6, 7

[6] G. Marola. A technique for finding the symmetry axes of im-

plicit polynomial curves under perspective projection. IEEE
Trans. Pattern Anal. Mach. Intell., 27(3):465–470, 2005. 1

[7] F. Mokhtarian and A. Mackworth. A theory of multiscale,

curvature-based shape representation for planar curves.

IEEE Trans. Pattern Anal. Mach. Intell., 14(8):789–805,

1992. 1

[8] C. Oden, A. Ercil, and B. Buke. Combining implicit polyno-

mials and geometric features for hand recognition. Pattern
Recogn. Lett., 24(13):2145–2152, 2003. 1

[9] T. Sahin and M. Unel. Fitting globally stabilized algebraic

surfaces to range data. In ICCV ’05: Proceedings of the
Tenth IEEE International Conference on Computer Vision,

pages 1083–1088, Washington, DC, USA, 2005. IEEE Com-

puter Society. 2, 3

[10] T. Tasdizen, J. Tarel, and D. Cooper. Improving the stability

of algebraic curves for applications. IEEE Transactions on
Image Processing, 9(3):405–416, 2000. 2, 6, 7

[11] G. Taubin. Estimation of planar curves, surfaces, and non-

planar space curves defined by implicit equations with appli-

cations to edge and range image segmentation. IEEE Trans.
on Pattern Analysis and Machine Intelligence, 13(11):1115–

1138, 1991. 1

[12] C. Unsalan. A model based approach for pose estimation

and rotation invariant object matching. Pattern Recogn. Lett.,
28(1):49–57, 2007. 1

[13] B. Zheng, R. Ishikawa, T. Oishi, J. Takamatsu, and

K. Ikeuchi. A fast registration method using ip and its ap-

plication to ultrasound image registration. In IPSJ Transac-
tions on Computer Vision and Applications, pages 209–219,

September 2009. 1

[14] B. Zheng, J. Takamatsu, and K. Ikeuchi. 3d model segmen-

tation and representation with implicit polynomials. IEICE
Transactions, 91-D(4):1149–1158, 2008. 1


