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Abstract 

 
The current paper proposes a new parametric local 

color correction technique. Initially, several color transfer 
functions are computed from the output of the mean shift 
color segmentation algorithm. Secondly, color influence 
maps are calculated. Finally, the contribution of every 
color transfer function is merged using the weights from 
the color influence maps. The proposed approach is 
compared with both global and local color correction 
approaches. Results show that our method outperforms 
the technique ranked first in a recent performance 
evaluation on this topic. Moreover, the proposed 
approach is computed in about one tenth of the time. 
 

1. Introduction 
Recent years have proven the importance of image 

mosaicing. This area of research and other similar 
variations such as image compositing and stitching have 
found a vast field of applications ranging from satellite or 
aerial imagery [1] to medical imaging [2], street view 
maps [3], city 3D modeling [4], super-resolution [5] or 
texture synthesis [6], to name a few. 

In general, whenever merging two or more images of the 
same scene is required for comparison or integration 
purposes, the correspondence problem should be faced. 
The final result of correspondence between images, known 
as the mosaic, is a couple of images that are as similar as 
possible, both geometrically and photometrically [7]. 

The geometric correspondence is usually referred to as 
image registration: “the process of overlaying two or more 
images of the same scene taken at different times, from 
different viewpoints, and/or by different sensors. It 
geometrically aligns two images—the reference and 
sensed images” [8]. This problem has been extensively 
studied and is out of the scope of the current paper. In 
other words we assume that the given images are coarsely 
registered. On the other hand, the photometrical 
correspondence between a pair of images is still an open 
problem, which has attracted less attention from the 

research community. In general, image mosaicing uses sets 
of images taken with the same lighting conditions and with 
a single camera, or similar ones. In this way, the colors 
present on both images are very similar and the problem of 
photometric correspondence is overlooked.  

Just to show one of the motivations of the current work 
we can mention that recently Google launched the Street 
View feature of Google Maps, which provides an interface 
that can display street-level images in a natural way that 
enables convenient navigation between images without 
losing the map context [3]. The street maps where 
captured using a six camera spherical vision system 
onboard the company’s vehicles. Registration provides the 
final mosaic we see in street view. What if one could use 
publicly available pictures of the streets on the web, 
instead of having to go onsite to photograph? Automatic 
image registration methods already provide the means of 
aligning images. In fact, publicly available images have 
already been coarsely registered on internet sites [10]. The 
missing piece is photometric correspondence: how to 
balance the color of one picture to match the color of 
another. This operation is referred to as color correction. 

In the current paper we propose a new technique to 
perform unsupervised color correction between two 
coarsely registered images. It is completely automatic and 
obtains better results than current state of the art color 
correction techniques. It is robust to coarsely registered 
images, which are usually available in public domains 
(e.g., Google [9], Flickr [10]). 

The remainder of this paper is organized as follows. 
Section 2 describes previous work on color correction. 
Section 3 presents the proposed technique. Qualitative and 
quantitative results are provided in Section 4. Finally, 
conclusions and future work are given in Section 5. 

2. Related work 
Several color correction methods have been proposed in 

literature. They can be divided into model-based 
parametric approaches [11][12][13] and modeless non 
parametric approaches [15]. Usually, parametric appro-
aches outperform their non-parametric counterparts [16]. 
Parametric approaches are based on [14], where a simple 
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statistical framework to perform color correction of a 
given image (denoted as target image) using the colors of 
another image (the model image) was proposed. The color 
correction is performed in the lαβ color space. Cross 
channel correlation is present on most color spaces, like 
RGB. The lαβ color space is used because it minimizes 
correlation between channels for many natural scenes, 
which enables the application of different operations in 
different color channels with some confidence that 
undesirable cross channel artifacts won’t occur [14]. In 
[14], the authors use the mean and standard deviation of 
both the model and target image to recover the value of the 
color correction. The original colors are corrected by 
scaling and offsetting according to the mean and standard 
deviation of the target image [15]. The correction is 
performed on each channel independently, by the color 
transfer function defined bellow: 

 ( ) ( )( ), ,new m
t m t t

t

c i j c i j
σ

µ µ
σ

= + − , (1) 

where ( ),new
tc i j  and ( ),tc i j are the resulting and original 

values of the three color channels from the target image 
pixel (i, j), respectively. The statistical measures μ and σ 
represent the mean and standard deviation of both the 
target and model images for all three channels. Figure 1 
shows the model and target image pair used as a case study 
in the current paper. The objective is to correct the color 
components of the target image so that it would result in a 
more similar image to the model.  

Figure 2 (left) shows the color corrected target image 
using the global color correction defined in (1), notice that 
after color correction white portions of the image are 
bluish since blue is the dominant color. 

There is a major limitation from the technique presented 
in [14], since it uses the entire image to collect statistical 
informationi.e., assumes a constant color correction 
function. In complex scenes this assumption does not hold 
due to differing optics, sensor characteristics, and 
hardware processing employed by video cameras [15]. 
Although there are several color correction methods to 
deal with this problem, most involve strong assumptions, 
such as constant illumination, which are in general, 
difficult to fulfill in complex environments. Hence, some 
authors propose to use learning approaches or non-linear 

techniques (e.g., neural networks) to find an appropriate 
color transfer function for color correction. However, 
learning approaches have the limitation of requiring a 
specific training for different setups. Offline learned 
techniques won’t be enough to solve the general problem. 

A recent survey of color correction algorithms has 
compared nine color correction methods [16]. The aproach 
presented in [17] outperformed all others and is 
reccomended as the first option to try for a general image 
and video stitching aplication in pratice [16]. It consists of 
segmenting both the target and model images into several 
regions using an expectation maximization algorithm 
(local EM based color correction). Then, regions from the 
target image are matched to the model image. This is done 
by projecting each target image region onto the model 
image in order to assess the highest overlaping region in 
the model image. The match of regions from the target and 
the model image provides the statistical parameters 
required in (1). In addition to the segmented regions, the 
local EM based color correction algorithm also computes a 
weight mask for each region. These weight values indicate 
the probability that a given pixel belongs to that region. 
The final pixel color is obtained by adding up the 
contributions of each region’s color transfer function 
weighted by its corresponding weight. 
Although it was the best performing algorithm in the 
evaluation done in [16], we believe the local EM based 
color correction algorithm can be improved in two major 
aspects. First, the expectation maximization segmentation 
stage is computationally demanding: authors state that this 
step takes four minutes to converge while segmenting a 
512x512 image. Since the local EM based color correction 
must segment both the target and model image, the 
segmentation can take about 8 minutes. Second, the 
expectation maximization stage requires a parameter to 
define the desired number of regions: this is not interesting 
if unsupervised color correction is required. Figure 2 
(right) shows the color corrected target image using this 
local EM based approach. Our proposed color correction 
approach addresses both aspects allowing unsupervised 
applications and lower computation times. Up to our 
knowledge, [17] is best algorithm published in the 

  
 

  
 

Figure 2. (left) Target image with global color correction [14]; 
after color correction white portions of the image are bluish 
since blue is the dominant color. (right) Result from local EM 
based color correction [17].  

Figure 1. (left) Model image. (right) Target image. 
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literature, hence we have used it to quantitatively and 
qualitatively evaluate the performance of our proposal (a 
Matlab implementation available in [16] has been used). 

3. Proposed Approach 
The proposed approach consists of four different stages 

applied consecutively. Initially, the target image is 
segmented into a set of regions according to their color 
information. In the current version the well known mean 
shift algorithm has been used [18]. Secondly, a color 
transfer function is computed for every region. It is 
obtained using color information from the given region 
and its corresponding pixels in the model image. The 
correspondence between regions and model image pixels 
results from the given coarse registration, which is out of 
the scope of current work. Thirdly, a color influence map 
is computed for every region [21] in order to mix the 
previously computed local color transfer functions and 
generate a smoother result. Finally, the color from the 
current image is corrected using the local transfer 
functions weighted by the color influence maps. Each one 
of these stages is detailed bellow. 

3.1. Image segmentation 
In order to segment the target image into a set of similar 

colored regions the mean shift algorithm [19] is usedin 
particular the implementation provided by [20]. The mean 
shift algorithm automatically segments the target image 
into a set of regions. Some care must be taken while tuning 
the mean shift parameters: very large regions may include 
a large set of different colors and could result in very 
similar results for local color correction to its global 
counterpart; on the other hand, very small regions are 
sensitive to the lack of accuracy in image registration. All 
in all, the mean shift algorithm’s output should reasonably 
represent the different colors present in the image. 
Nonetheless, we have employed the same mean shift 
parameters for all the images tested with good results 
(except for the minimum region size parameter which is a 

function of the image’s size). This shows the robustness to 
the color segmentation stage of the proposed local color 
correction techniques. Figure 3 (left) shows the result of 
the mean shift algorithm applied to the target image 
presented in Fig. 1 (right). It should be mentioned that in 
[17] the number of colors (regions) in the image is an input 
parameter, while meanshift automatically estimates this 
value. Therefore, it seems feasible to assume that in 
meanshift the input parameters are less sensitive than the 
ones required by [17]. A more detailed analysis is certainly 
required, but is out of the scope of this paper. 

3.2. Local Color transfer Functions 
The outcome of the previous stage is a set of regions 

where each one of them represent a different color; the 
objective now is to define a local color transfer function 
for each one of these regions. Let k be a given region from 
the target image; a pixel from that region will be denoted 
as ( )k

t
i, j . The whole set of pixels defining that region ( )k

t
i, j  

is used for calculating the target mean and standard 
deviation measures, k

tµ  and k
tσ  respectivelly. The 

corresponding region in the model image is obtained by 
projecting the pixels from the region of the target image 
onto the model image. 
 ( ) ( ), ,k k

m ti j i j= T , (2) 
where T is the target to model transformation matrix 
obtained after the registration procedure. Using the 
projected pixels the model’s mean and standard deviation 
for region k ( k

mµ  and k
mσ  respectivelly) are computed, 

Thus, a local color correction function can be easily 
formulated by adapting (1) to the local case: 

 ( ) ( )( ), ,
k

new k km
t m t tk

t

c i j c i j
σ

µ µ
σ

= + − . (3) 

The color transfer function, be it global or local, can be 
expressed generically as a function of several parameters: 

 ( ) ( ), , , , ,fnew m
t t m t

t

c i j c i j
σ

µ µ
σ

 
=  

 
. (4) 

A global color transfer function will have the first three 
parameters constant for the whole image, while the local 
approach maintains those parameters constant merely for 
every color segmented region. The initial hypothesis of 
this paper was that due to different surface reflective 
properties and non uniform illumination, the global image 
color statistics would generate only a rough approximation 
of all the color transfer functions. 

Figure 4 plots the global and local function parameters 
for three channels of the lαβ target and model images 
corresponding to Fig. 1. Dashed lines represent the global 
color transfer function parameters for each channel of the 
lαβ space. Dots represent the parameters of local color 

  
 Figure 3. (left) Result from meanshift color segmentation 

(notice that one of the windows and the white bands of the pink 
building have been included onto other regions). Four regions 
are highlighted and numbered for future references. (right) 
Result from the proposed color correction technique.  
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transfer functions computed from Fig. 3 (left). As 
expected, the parameters from the local color correction 
functions (dots in Fig. 4) are different for every region. It 
is also possible to observe that local color transfer 
functions sometime have differences to the global 
parameters of over 0.2 (20%, since the offset values are 
normalized from 0 to1 on all image channels). Hence, it is 
possible to conclude that using a single global color 
transfer function as done in [14] is merely a rough 
approximation of the real color transfer functions. 

Another conclusion can be drawn by noting the larger 
size of the red ellipsoid when compared to the other two: 
luminance has higher standard deviations than the αβ 
channels. This indicates that luminance is the channel with 
highest variability which reinforces the initial hypothesis 
that assuming a constant illuminant is not feasible for 
complex environments 

3.3. Color Influence Map 
Although the importance of using multiple local color 

transfer functions has been established, the application of 
the color transfer functions to each pixel must be 
addressed in order to achieve natural color transition 
across regions. Hence, in this section we propose a 
methodology for combining the different local color 
transfer functions. It is based on the use of Color Influence 
Maps (CIM), which are computed for every region. The 
CIM [21] is a weight mask that measures the similarity 
between each color pixel and the mean color of that 
particular region. Since in the lαβ color space the different 
channels are uncorrelated, the color similarity can be 
computed as an Euclidian distance. 
 ( ) ( )( ), f ,k k

t ti j c i j µ= −CIMCIM , (5) 

where fCIM is an arbitrary response function; in the current 
work the function proposed in [21] has been used: 
 ( ) 23f xx e−=CIM . (6) 

Figure 5 shows the CIMs computed for the four regions 
highlighted in Fig. 3 (left). In these illustrations pixels with 
a color similar to the mean color value of the considered 
region are represented with a high value (i.e., white), even 
though they may not belong to the same region. 

3.4. Weighted Color Correction 
Finally, in order to merge the different CIMs and get a 

single color correction value for every pixel we propose a 
weighted color correction scheme. The final color for a 
given pixel is obtained by adding the contributions of 
every color transfer function, weighted by the 
corresponding CIM: 

 
( )( ) ( )

( )

1

1

, ,
( , )

,

kN
k k ks
s t tk

k tnew
t N

k

k

c i j i j
c i j

i j

σ
µ µ

σ=

=

  
+ − ×     =

∑

∑

CIM

CIM

, (7) 

where N is the total number of segmented regions of the 
target image. The final color corrected target image is 
shown on Fig. 3 (right).  

Figure 6 shows the mosaics obtained by merging the 
model and target images using the following corrections: 
(top-left) non-corrected image; (top-right) global color 
correction; (bottom-left) local EM based color correction 
strategy; (bottom-right) proposed local color correction. 

4. Results 
The proposed approach has been applied to a set of 

images and compared with both a global approach [14] 
and the best local color correction approach [17] in the 
literature [16]. In all the examples the proposed approach 

 
Figure 4. Dashed lines represent the global color transfer 
function parameters for each channel. Dots represent the 
parameters of local color transfer functions. Ellipsoids are 
centered at the average of the mean color of all regions; their 
size corresponds to one σ in every direction.  

 

Figure 5. Color Influence Maps for the regions in Fig. 3 (left). 
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obtains the best results. The color correction ground truth 
for the target image is computed by assuming a perfect 
target to model image registration. Hence, the ground truth 
image borrows the color from the corresponding pixel in 
the model image. Then, the ground truth image is built 
using the pixel projection from (2): 
 ( ) ( ), ,gt t mc i j c i j=  , (8) 
where cgt is the ground truth image, (i, j)t is the target 
image pixel and (i, j)m the corresponding pixel in the 
model image. The ground truth image, although obtained 
using a sub optimal registration, has many differences to 
the original target image. In fact, if the ground truth image 
would be equal to the target image but with its colors 
replaced by the model’s colors, the problem of color 
correction for registered cameras would be a simple matter 
of replacing the color of each pixel in the target image by 
the color of the corresponding pixel in the model image. 
This is not the case since registration is never optimal. 
Nonetheless, we use this ground truth image to evaluate 
quantitatively the results from the proposed approach; 
comparisons with [14] and [17] are also provided. 

In order to evaluate the results of color correction 
techniques [16] proposes to measure both structure and 
color similarity. In the current paper, structure similarity 
cannot be measured due to the inaccurate registrations that 
exist for the tested image pairs. Therefore, we propose a 
color similarity criterion inspired in the one presented in 
[16]. The proposed Color Similarity (CS) criterion is 
defined as the three channel Euclidian distance between 
the color corrected image and the ground truth image. 
 ( ) ( ), ,new

gt tCS c i j c i j= − . (9) 

Then, the color similarity between the original target 
image and the ground truth image denoted as CSbase is 

computed. This value represents the initial situation that 
any color correction algorithm should improve. We define 
color correction improvement ratio (CCg: for global; 
CCEM: for local EM based approach; and CCPA: for the 
proposed approach) as the improvement in CS obtained by 
a color correction algorithm over the CSbase: 

 100base method
method

base

CS CS
CC

CS
−

= × . (10) 

The metric presented in (10) has been used for 
evaluating the performance using different images. Table 1 
shows comparisons of the color correction improvement 
ratio both for local and global methods. It shows that both 
local methods obtain better results than the global 
approach. It also shows that our method outperforms the 
local EM based color correction method, which is the best 
reported approach in the literature [16]. Two reasons can 
be mentioned to explain this improvement. First the mean 
shift algorithm performs better at segmenting the regions. 
Second, the local EM based is more sensitive to 
registration inaccuracies, because it matches the blobs 
based on maximum region overlap, while in our approach 
we do not segment the model image but collect statistics 
directly from the projection of every region in the target 
image to the model image.  

Figures 7 and 8 show the images corresponding to the 
results presented in Table 1. Mosaics are shown without 
color correction, with global color correction, with local 
EM based color correction and with the approach 
proposed in the current paper. It is visible that local 
approaches obtain better results, especially in images 
where there is a great variety of colors. The Astro Clock 
(Fig. 7, 3rd col) is a special case because the clock is in a 
different position; it was included to try to assert how a 
small area that has an evident miss registration is handled 
by the algorithms. In [17], the blue region is not moved 
while in the proposed approach the blue is somewhat 
transferred to the left portion of the clock, where it should 

 

Table 1. Comparisons on the improvement of Color Similarity 
(CS). The improvements over the original target image are 
shown for global color correction (CCg) [14], local EM based 
color correction (CCEM) [17], and the proposed approach 
(CCPA). CCPA always gets the best result. 
 

Image Pair CCg  CCEM CCPA 
Santorini, Greece (Figure 1) 48.9 60.0 66.0 
Westminster Abbey, London (Figure 7) 8.6 13.7 26.2 
Golden Gate, San Francisco (Figure 7) 52.1 55.9 69.9 
Astronomical Clock, Prague (Figure 7) 1.9 4.9 6.4 
Big Ben, London (Figure 7) 44.6 65.9 69.0 
Sagrada Familia, Barcelona (Figure 8) 71.4 73.3 73.3 
Ponte Vecchio, Firenze (Figure 8) 14.6 21.6 30.2 
Times Square, New York (Figure 8) 25.8 31.2 31.4 

 

  
 

  
 Figure 6. Model image with the target image using the following 

corrections: (top-left) non-corrected image; (top-right) global 
color correction; (bottom-left) local EM based color correction; 
(bottom-right) proposed local color correction. 



 

206 

be. Regarding Ponte Vecchio (Fig. 8, 2nd col.), the 
proposed approach was able to correct the yellow houses 
on both sides of the bridge. In [17], both houses are 
painted white, which is a clear color correction failure. In 
Times Square (Fig. 8, 3rd col.) although the sky seems 
better using [17], the reflection of the yellow beer bottle on 
the left is supposed to disappear on the corrected image. In 
this detail, the proposed approach clearly does a better job 
than [17]. In Sagrada Familia (Fig. 8, 1st col.), a single 
global color correction obtains the same results as the local 
techniques, because the target image has a low variety of 
colors. This can be also appreciated in the quantitative 
evaluation presented in Table 1. In Big Ben (Fig. 7, 4th 
col.), the daylight from the target to night in the model is 
very hard to handle by the global approach.  

Finally, although out of the scope of the comparisons, 
we can mention that the proposed approach requires on 
average 60 sec. to obtain the result, while the local EM 
based algorithm requires, on average, over 10 min. 

5. Conclusions 
This paper presents a new parametric method for local 

color correction of two coarsely registered images. The 
method uses the well known mean shift algorithm and 
builds weight masks using color influence maps. Results 
show that the proposed approach overtakes the current 
state of the art. Furthermore, it is computed in about one 
tenth of the time of the local EM based algorithm. 

Future work will include the problem of how to infer 
color transfer functions when the target image is not 
entirely contained by the model image. In these cases, the 
overlapping region must provide information that must be 
extrapolated to the rest of the image. 
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 Figure 7. Mosaics for some of the test images mentioned in Table 1. (from left to right) Westminster Abbey, London; Golden Gate, 
San Francisco; Astronomical Clock, Prague; Big Ben, London. (from top to bottom): 1st row, original model image (the objective 
is to have an image very similar to this one after mosaicing with the target image); 2nd row, mosaic with the original non color 
corrected target image; 3rd row, mosaic with the global color correction [14]; 4th row, mosaic with the local EM based color 
correction [17]; 5th row, mosaic with the proposed local color correction technique. 
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 Figure 8. Mosaics for some of the test images mentioned in Table 1. (from left to right) Sagrada Familia, Barcelona; Ponte 

Vecchio, Firenze; Times Square, New York. (from top to bottom): 1st row, original model image (the objective is to have an 
image very similar to this one after mosaicing with the target image); 2nd row, mosaic with the original non color corrected 
target image; 3rd row, mosaic with the global color correction [14]; 4th row, mosaic with the local EM based color correction 
[17]; 5th row, mosaic with the proposed local color correction technique. 


