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Abstract—Multimodal image fusion allows the combination
of information from different modalities, which is useful for
tasks such as object detection, edge detection, and tracking,
to name a few. Using the fused representation for applications
results in better task performance. There are several image
fusion approaches, which have been summarized in surveys.
However, the existing surveys focus on image fusion approaches
where the application on the loop of multimodal image fusion is
not considered. On the contrary, this study summarizes deep
learning-based multimodal image fusion for computer vision
(e.g., object detection ) and image processing applications (e.g.,
semantic segmentation), that is, approaches where the application
module leverages the multimodal fusion process to enhance the
final result. Firstly, we introduce image fusion and the existing
general frameworks for image fusion tasks such as multifocus,
multiexposure and multimodal. Then, we describe the multimodal
image fusion approaches. Next, we review the state-of-the-art
deep learning multimodal image fusion approaches for vision
applications. Finally, we conclude our survey with the trends of
task-driven multimodal image fusion.

Index Terms—multimodal, fusion, deep learning, task-driven

I. INTRODUCTION

Nowadays, several sensors generate data allowing the ac-
quisition of a large amount of rich multimodal images; some
examples are Visible (VIS), Infrared (IR), Positron Emission
Tomography (PET), Magnetic Resonance Imaging (MRI),
Panchromatic (PAN), and Light Detection And Ranging (Li-
DAR), just to mention a few. These multimodal images may
be fused in order to get all the information they provide in
a single representation. Thus, multimodal image fusion refers
to extracting relevant information from two or more images
from different modalities and effectively combining them by
a fusion strategy in order to reconstruct an enhanced image
with richer and complementary information. Fused images are
widely used in areas such as photography, medical science
[1], remote sensing [2], semantic segmentation [3], [4], and
computer vision.

Due to the traditional image fusion focus on mathematical
transformation, which requires manual analysis and design of
the fusion rules [5], several researchers have focused on deep
learning techniques for multimodal image fusion. These meth-
ods can extract features and learn a fusion strategy by using
a loss function that is designed for better extraction, fusion,
and reconstruction. Deep learning techniques use variations of
network architectures such as Convolutional Neural Networks
(CNN), Generative Adversarial Networks (GAN), Autoen-
coders, and Transformers. [6]–[11] explore deep-learning solu-
tions with multiple architectures. For instance, U2fusion [6] is
an unsupervised image fusion network using DenseNet, a type
of convolutional neural network. Vs et al. [7] propose a model
based on transformers (IFT). It uses an encoder to extract
multi-scale deep features from the input images, followed by a
Spatio-Transformer (ST) fusion strategy and a nested decoder
network. The general framework for multimodal image fusion
consists of three main processes: feature extraction, feature
fusion strategy, and feature reconstruction. Deep learning
techniques are applied to one or all of these sub-processes
of image fusion.

Since image fusion is intended to improve a further applica-
tion, deep-learning approaches using multimodal image fusion
on the loop of computer vision tasks and image processing
applications have been proposed. Mees et al. [12] propose a
method based on convolutional neural network experts using
RGB, depth, and motion data for detecting objects in dynamic
environments. In [13], the authors propose a model consisting
of two networks: the first generates the 3D object proposal
using a bird’s eye view representation of point cloud while
the second one is used for multi-view feature fusion. Liang
et al. [14] propose an architecture that joins point-wise and
ROI-wise feature fusion using LiDAR and camera data. Chen
et al. [15] propose a salient object detector that embeds
multimodal image pair (i.e., RGB-depth pair) into a modal
agnostic structural representation and modal-specific content979-8-3503-3337-4/23/$31.00 ©2023 IEEE
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space using encoders. Several surveys summarize approaches
for image fusion based on deep learning [1], [3]. Besides, there
exist surveys that describe applications that use multimodal
image fusion [16], [17]. However, a review that summarizes
deep learning-based multimodal image fusion in applications
of computer vision or image processing is lacking. Thus, we
propose a brief survey of multimodal image fusion using deep
learning architectures in tasks such as object detection, salient
object detection, semantic segmentation, etc. Since they have
diverse applications such as autonomous vehicle navigation,
surveillance, land cover classification, and robotics, to name a
few [13], [14], [18]. Besides, we include recent studies about
the use of application information in the loop of multimodal
image fusion.

Furthermore, most image fusion approaches, including mul-
timodal approaches, aim to achieve a better visual quality of a
scene and higher metrics. However, they forget to consider
whether the fused images are adequate to really improve
the performance of specific computer vision tasks such as
object detection, object tracking, edge detection, segmentation,
etc. We analyze how existing approaches include multimodal
image fusion in their frameworks since previous studies [19]
demonstrate that considering only visual quality and quantita-
tive metrics does not reflect the facilitation of applications.
Thus, the existing deep learning-based approaches can be
improved, including the feedback on the learning process
between the fusion strategy and the application’s performance.

The remainder of this paper is organized as follows, section
II describes the addressed problem by introducing image
fusion and general frameworks for image fusion tasks such
as multifocus, multiexposure, and multimodal. Section III
presents multimodal image fusion and the existing approaches.
Section IV describes representative works done for deep
learning-based multimodal image fusion in tasks such as object
detection, semantic segmentation, and salient object detection;
including the application on the loop approaches. Finally,
section V presents the conclusions and trends about deep
learning-based multimodal image fusion in vision applications.

II. PROBLEM FORMULATION: IMAGE FUSION

In this section, we present fundamental definitions involved
in the image fusion problem.

A. Image Fusion

Image fusion refers to the integration of features from
multiple images of the same scene to a single representation
with more comprehensive information [20]. The main image
fusion tasks are:

• Multi-focus image fusion consists on fusing several
single-modality partially focused images to get an all-
in-focus image.

• Multimodal image fusion consists on fusing several im-
ages from multiple modalities to generate a representation
with richer information.

• Multi-exposure image fusion refers to fusing single-
modality images with multiple exposure levels to generate
a high-quality full-exposure image.

B. Image Fusion Categories

Most image fusion approaches can be classified according
to the fusion strategy used or the fusion stage. The fusion stage
refers to the phase within the framework pipeline where the
fusion is performed. For instance, feature-level fusion is done
after the feature extraction module (see Fig. 1). Kaur et al.
[5] classify the image fusion strategies into spatial, frequency,
and deep learning techniques. The spatial techniques work
with the pixels by applying rules such as max-min, maxi-
mum, minimum, simple average, etc. Frequency techniques
decompose the multiscale coefficients from the images. In this
domain, there are methods such as Discrete Transform Fusion,
Discrete Cosine Transform, Laplacian Pyramid Fusion, and so
on. Finally, deep learning techniques use variations of network
architectures such as Convolutional Neural Networks (CNN),
Generative Adversarial Networks (GAN), Autoencoders, and
Transformers.

In addition, according to the stage at which data is fused, im-
age fusion techniques can be classified as Pixel Level, Feature
level, and Decision Level [4]. Pixel-level fusion techniques
combine the source images directly before feature extraction,
that is, the input images are transformed into a signal, then
a fusion of the transformed coefficients is performed, and an
inverse transformation is done where the fused coefficients
are transformed into the fused image. Feature-level techniques
obtain refined characteristics from source images before fusing
them. Besides, Zhang et al. [21] refer to feature-level fusion as
deep fusion since it can use cross-modal information. Finally,
Decision level techniques refer to dealing with information that
is already been generated to represent some determination of
a task [22].

Machine learning techniques are used for data fusion in
the aforementioned levels. For instance, [23] proposes multi-
sensor data fusion using SVM for fault detection (pixel-level).
For feature-level fusion, Xu et al. [6] proposes an unsupervised
image fusion network using feature extraction and information
measurement. Besides, [24] proposes a fusion model based
on SVM and Naive Bayes to fuse LIDAR and optical remote
sensing data for land cover classification. Most recently, many
machine learning techniques focus on feature-level fusion
since it is not straightforward to extract the appropriate fea-
tures from each modality in a traditional approach due to
the resulting fusion image can involve redundant information.
Specifically, deep learning methods have been proposed to
overcome the drawbacks of traditional methods. [6]–[11]. Fig.
1 summarizes the classification of image fusion approaches.

C. General Frameworks for Image Fusion

There exist end-to-end general frameworks for image fusion
tasks such as multi-focus, multi-modal, and multi-exposure.
For instance, U2fusion [6] is an unsupervised image fusion
network that preserves the adaptive similarity between the
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Fig. 1. Image fusion categories.

source images and the fusion result; that is, the method
depends on the information preservation degree. In [20], the
authors propose IFCNN, an end-to-end image fusion network
that consists of three modules based on a CNN: feature extrac-
tion, feature fusion, and image reconstruction module. In this
network, the feature extraction is done by two convolutional
layers. Then, a fusion rule (elementwise-max, elementwise-
min, elementwise-mean) is applied for fusing the features
according to the type of source images. Although this network
was trained for multi-focus images, authors mentioned that it
could be used to fuse other multi-modal images without a
finetuning procedure.

WaveFuse [25] combines multiscale discrete wavelet trans-
form and a deep learning approach. This network architecture
is based on an encoder-decoder where the encoder is used
for feature extraction and consists of convolutional blocks.
Then, the DWT-based module allows the transformation of the
feature maps into the wavelet domain. The decoder obtains the
fused image. In all the aforementioned general frameworks,
the input consists of two or more images from one modality
in the task of multifocus and multiexposure and from multiple
modalities in the case of multimodal fusion. Then, the three
main processes of image fusion (i.e., feature extraction, feature
fusion, and feature reconstruction) are performed using deep
learning architectures. These frameworks aim to be useful for
several image tasks as a unified framework. However, the task
is not considered in the fusion loop.

III. MULTIMODAL IMAGE FUSION

Multimodal image fusion aims to generate an image that
keeps the best features from each modality. Thus, learning
from multimodal images facilitates the possibility of capturing
a richer representation from modalities. This representation
can improve applications (e.g., security, object detection, re-
mote sensing classification, semantic segmentation) because it
takes advantage of the features of each modality. For instance,
visible images can provide texture information as well as
geometric details on the edges, while infrared images can
provide thermal radiation information making it easy to detect

the salient objects under low contrast or insufficient light.
Besides, sometimes by fusing images, it is possible to obtain
information that is not present if each modality is considered
separately. The multimodal image fusion techniques proposed
in the literature go from classical computer vision to machine
learning-based techniques, including deep learning architec-
tures. Most recently, researchers are proposing deep learning
methods based on CNN [6], [8], [20], [26]–[29], GANs [30],
and Transformers [7], [31], [32]. Multimodal image fusion
follows the pipeline presented above for unimodal image fu-
sion: feature extraction, in this case, from multiple modalities,
feature fusion strategy to keep the best of each modality, and
feature reconstruction to generate a single image.

There exist several modalities such as VIS, IR, NIR, LiDAR,
and HSI, MS, PAN, to name a few. These modalities are
generally fused in pairs to generate a representation with more
comprehensive and complementary information. The most
common fused modalities are VIS-IR; however, RGB-LiDAR,
RGB-T, RGB-D, PAN-MS are some examples of other modal-
ities pairs. Multiple approaches have been proposed based
on deep learning techniques. Liu et al. [33] propose defining
flexible priors and constraints depending on the features of
the multi-modality images and then combining them into a
bilevel optimization strategy and adaptive integration mechan-
ics. Firstly, an edge-preserving module is applied to decom-
pose the source images into base and detail layers. Then, the
decomposed images are passed by the bilevel paradigm with
adaptive integration. Similarly, [27] proposes using priors in an
unsupervised image fusion method. Specifically, they use deep
image priors (DIP) to exploit the ability of CNN to synthesize
the prior in the source images.

In addition, RFNet [26] is a method that performs multi-
modal image registration and fusion. This method is based
on a mutually reinforcing framework. The registration is
performed in a coarse-to-fine fashion. The model consists of
an image translation network (TransNet), an affine network
(AffineNet), and a mutually reinforcing Fine Registration and
Fusion Model (F2M). TransNet learns an image translation
function to transfer multi-modal images into the same domain.
AffineNet generates the affine transformation parameters. F2M
performs texture-focused image fusion. Furthermore, there
exist specific techniques for infrared and visible image fusion.
RFN-Nest [10] is based on a residual fusion network (RFN),
which contains an encoder, residual fusion network, and a
decoder. This network is trained by a two-stage strategy, so
the encoder and decoder are trained as an autoencoder based
on Dense Fuse to extract multi-scale deep features, then the
residual network is trained to fuse the features extracted at
each scale for reconstructing the salient features.

Yang et al. [30] propose a model based on a texture
conditional generative adversarial network (TC-GAN) for VIS-
IR fusion. This network generates a combined texture map,
that is, it generates a fused result with high-contrast infor-
mation. The generator design is based on a codec structure
with a SE-Net [34] attention module to improve the feature
extraction by using the correlation between features. Moreover,
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the discriminator uses convolution blocks to classify images
at a pixel level. Besides, it can determine whether the texture
distribution of the generated image is consistent with the
visible image.

Current approaches are designed to achieve better visual
quality and higher quantitative metrics of the fused image.
Nevertheless, it can limit the use of the fused image to
facilitate a specific computer vision application because each
application may need the fusion of different features from each
modality. The multimodal image fusion without a task-driven
approach may not be efficient because this process would
be separated from the application, and it is not guaranteed
that application can achieve better performance. Despite this,
several approaches have been proposed with a comparative
performance. However, a better result can be achieved if the
application is included in the loop of multimodal image fusion.
Tang et al. [19] show the need for high-level vision tasks such
as semantic segmentation on the loop of multimodal image
fusion.

IV. APPLICATION OF MULTIMODAL IMAGE FUSION IN
COMPUTER VISION AND IMAGE PROCESSING

In this section, we present state-of-the-art deep learning ap-
proaches using multimodal image fusion within the application
frameworks and datasets.

The resulting image from multimodal image fusion contains
more information to be used in tasks such as object detection,
semantic segmentation, object tracking, edge detection, med-
ical diagnosis, and so on [16]. Multimodal image fusion can
be performed in an early or late fusion scheme. Early fusion
is basically feature-level fusion; thus, the data is fused before
being passed to the application module. While late fusion is
decision-level fusion; thus, the decisions of the application
for each modality are combined, which enables an easier
decision fusion. Fig. 2 shows the pipelines of the classical
fusion schemes.

Fig. 2. Classical Fusion Schemes: (a) Early fusion; (b) Late fusion.

As shown in Fig. 2, the multimodal image fusion module is
part of the application approach. However, the fusion process
is performed before or after the application without consider-
ing the result of the application to improve the fusion or vice

versa; that is, in the classical schemes, the modules (fusion
and application) are separately and sequentially performed. On
the contrary, recent studies based on deep learning techniques
demonstrate that including feedback between networks for
fusion and application can achieve better performance since
these frameworks perform task-driven multimodal image fu-
sion. Thus, deep learning-based vision applications on the loop
of multimodal image fusion focus on including feedback in
the learning process between the fusion and the application
module to guarantee high-level task-driven multimodal image
fusion. There are just a few approaches using the scheme of
application on the loop of the fusion process, which mainly
perform an early fusion. Fig. 3 shows the overall framework
for vision applications on the loop of multimodal image fusion
by using early fusion.

Fig. 3. Pipeline of task-driven multimodal image fusion.

In the following subsections, we describe representative
approaches of multimodal image fusion within the application
frameworks following classical and task-driven schemes of
fusion.

A. 3D Object Detection

Since object detection is a fundamental task in computer
vision and has diverse applications such as autonomous vehicle
navigation, surveillance, and robotics, to name a few [13],
[14], [18], it is currently a research focus. 3D object detection
methods aim to identify an object as a class member. Most
traditional object detection methods focus on detecting objects
in RGB images. However, fusing different modalities such as
RGB, depth, and LiDAR can improve object detection because
each modality provides complementary scene information.

Several studies propose using multimodal image fusion
within vision application frameworks to achieve end-to-end
approaches based on deep learning techniques. Chen et al.
[13] propose a Multi-View 3D object detection network using
LiDAR point cloud and RGB images in order to predict 3D
bounding boxes. This network consists of two parts: a 3D
Proposal Network and a Region-based Fusion Network. In
the 3D Proposal Network, the bird’s eye view map is used
to make the 3D location prediction. The network generates
3D box proposals and the fusion network combines multi-
view features hierarchically. In addition, Sindagi et al. [35]
propose an early fusion approach with PointFusion and a
later fusion strategy with VoxelFusion; besides, this method
extends VoxelNet architecture for multimodal inputs. In the
PointFusion, LiDAR points are projected onto the plane then
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image feature extraction is performed, while in VoxelFusion
features are extracted from each voxel in the image using a
pre-trained VGG-16.

Additionally, Gao et al. [9] propose a method for vehicle
detection at nighttime that fuses infrared and visible images.
The network is based on a GAN architecture. Thus, the
generator fuses the features extracted from input images. The
method consists of a visible branch, an infrared branch, and
a self-attention fusion model. The fusion result is sent to the
detection model. The detection model is based on RetinaNet.
FusionPainting proposed by [36] consists of three modules:
a multi-modal semantic segmentation module, an adaptive
attention-based semantic fusion module, and a 3D object
detector. Center fusion is proposed by [37]. This method uses
a center point object detection network that generates a heat
map for every object category. The extracted features for each
modality are mapped to the center of the corresponding object
on the image. A frustum association method is proposed that
uses a 2D bounding box, estimated depth, and size in order
to create a Region of Interest (ROI) frustum for the object in
the 3D Space. Then, it maps the radar detection to the center
of objects in the image.

In [38], a fusion framework with semantic understanding is
proposed to assist the fusion process and enhance the depth es-
timation and object detection since it can improve the visibility
of far and small objects in a scene. The method consists of
cross-modal depth estimation and object detection framework.
Besides, Lee et al. [38] propose Semantic-Guided Radar-
Vision Fusion for Depth Estimation and Object Detection.
This method proposes to integrate monocular RGB images,
semantic information, and sparse radar point clouds. The
method proposed by [31] is a Multi-Modal Fusion Transformer
for End-to-End Autonomous Driving. This method uses the
self-attention mechanism of transformers for the fusion of
intermediate feature maps between modalities. The network
receives as input a single-view RGB image and LiDAR
representation.

In [39], authors propose a network using infrared, visible,
and polarization images for detecting defects in circuit boards.
The backbone of the network is based on Convolutional Block
Attention. It has three branches with downsampling for feature
extraction, one branch for each modality. Besides, a modality-
select attention module is implemented for image fusion. Then,
the fused features are passed into a channel attention-path ag-
gregation, which consists of a two-path pyramid structure with
the subsequent attention structure to enhance features.Finally,
YOLO architecture is used for defect classification

Recently, task-driven approaches have been proposed to
include the application in the loop of multimodal image fusion
since it is more beneficial to generate fused images that
can enhance the performance of high-level vision tasks in
real scenarios. DetFusion [40] is a recent detection-driven
multimodal image fusion method that uses VIS-IR images. In
this framework, a detection loss is used to guide and optimize
the image fusion network; that is, it uses the object detection
networks to guide the fusion. This framework comprises a

shared attention-guided fusion network, a visible detection
network, and an infrared detection network. An object-aware
content loss is presented to guide the fusion network to
learn information about contrast and texture from VIS and IR
images. Furthermore, a shared attention module is proposed to
learn object-specific information from the detection network.
The architecture of the detection network uses Faster R-CNN.
On the other hand, the feature extraction network uses ResNet-
FPN.

Remarks: Most existing object detection approaches with
multimodal image fusion use the classical fusion schemes, that
is, early or late fusion, even hybrid fusion scheme that includes
layers for early fusion followed by late fusion or a combination
of them. These approaches perform the fusion before or after
the application module. Thus, only pixel or feature information
is used during fusion. However, recent studies demonstrate that
object-related information used in multimodal image fusion is
more helpful for object detection. Hence, leveraging applica-
tion information in the fusion process allows for improving
the performance of detection.

The trend of object detection approaches is to use detection-
driven multimodal image fusion; that is, to create a connection
between the learning process of the fusion module and the
object detection module. On the other hand, the existing
task-driven approaches for object detection only fuse VIS-
IR modalities; therefore, using other modalities in detection-
driven multimodal image fusion is still a research topic to be
explored.

B. Semantic Segmentation

Semantic segmentation aims to semantically label each
pixel of an image in order to have a better understanding
of a scene [3]. The evolution of deep learning and image
fusion promotes the improvement of semantic segmentation.
Thus, deep learning-based approaches using multimodal image
fusion for semantic segmentation have been proposed. Liu
et al. [28] propose the use of contrastive losses in order to
prevent only focusing on strong modalities instead, that is, the
method ensures that the modality synergy and weak modalities
(negative samples) are not ignored during fusion. This method
is evaluated for semantic segmentation achieving comparable
performance.

The network proposed in [41] fuses intramodality and
intermodality features from LiDAR and RGB images to learn
cross-modal interdependencies and contextual information.
The encoder network consists of two branches one for RBG
and another for LiDAR, besides, it receives intramodal features
such as intensity, slope angle infrared-green-red bands data,
normalized difference vegetation index, and so on. Moreover,
the decoder network contains upsampling residual units to get
feature maps. Additionally, the model contains multimodal
attention fusion blocks, which focus on intramodal features
fusion and intermodal features fusion. On the other hand,
since remote sensing images have multiple scales, authors
use cascade dilation convolution in a pyramid structure. In
addition, Pfeuffer et al. [42] propose a network for semantic
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segmentation in adverse weather conditions. This network is
based on ICNet and uses Cascade Feature Fusion layers.

The approaches mentioned above follow classical fusion
schemes; thus, they do not have a connection between the
fusion and the semantic segmentation task. On the contrary,
following the task-driven fusion scheme, Tang et al. [19]
propose a framework where the image fusion network and the
semantic segmentation network are concatenated and use the
semantic loss to guide the fusion, which allows learning high-
level semantic information. This study is the first approach to
connect the application to multimodal image fusion through
loss functions. The network is based on gradient residual dense
block to extract fine-grained features.

Remarks: The more recent approaches for semantic seg-
mentation with multimodal image fusion pay attention to
putting the semantic loss in the loop of the fusion in or-
der to enhance the segmentation result. Hence, semantic
segmentation-driven multimodal image fusion is also an open
research topic like detection-driven approaches. Furthermore,
the existing framework is limited for VIS-IR image fusion;
which motivates future works to attempt frameworks for other
modalities such as LiDAR, Depth, and so on.

C. Salient Object Detection

Salient Object Detection (SOD) aims to distinguish the most
visually attractive objects in an image. Although traditional
methods have succeeded in the last years, they can fail when
the background resembles the object. Thus, multimodal image
fusion for SOD is a research focus because it comprehen-
sively represents a scene when fusing multiple modalities. For
instance, RGB images provide appearance features such as
texture, while LiDAR point cloud provides information for
depth estimation.

Duan et al. [43] propose a triple-diversity fusion network
(TDSM), a diversity fusion model (DFM), and a dense
decoder. For extracting features, the encoder is based on
SwinTransformer since it is useful for locating salient objects
due to it can define long-range intra-class dependencies of
features. TDSM consists of three branches: RGB, Depth,
and cross-modal branches. RGB and Depth branches generate
saliency maps to reflect the most important regions of each
modality; then, the features are integrated by a bi-directional
interactive strategy. The cross-modal generates an edge map.
These maps are integrated by DFM, identifying which regions
need attention. Finally, DSD predicts saliency results.

Huang et al. [44] propose integrating features in a middle-
level one time instead of multiple times using a fusion
module that explores the mutual relation between modalities
and utilizes the total, shared, and differential information
of each modality during fusion. Moreover, Chen et al. [15]
propose a cross-modal disentanglement framework that allows
adaptive feature fusion and determines the complementary
RGB and Depth features for saliency detection. This method
uses encoders for extracting features, a fusion block, and a
prediction layer.

Remarks: Although several approaches for salient object
detection have been proposed using multimodal image fusion,
approaches that follow a task-driven fusion scheme still need
to be developed. Therefore, there is a significant opportunity
to study the new fusion scheme (task-driven) for salient object
detection.

D. Other Applications

Prakash et al. [31] propose Multi-Modal Fusion Transformer
for End-to-End Autonomous Driving. This method uses the
self-attention mechanism of transformers for the fusion of
intermediate feature maps between modalities. The network re-
ceives as input a single-view RGB image and LiDAR represen-
tation Li et al. [39] present a network using infrared, visible,
and polarization images for detecting defects in circuit boards.
The backbone of the network is based on Convolutional Block
Attention. It has three branches with downsampling for feature
extraction, one branch for each modality. This process is
improved by Mobilenetv3. Besides, a modality-select attention
module is implemented for image fusion. Then, the fused
features are passed into a channel attention-path aggregation,
which consists of a two-path pyramid structure with the
subsequent attention structure to enhance features. FusAtNet
proposed by [8] performs pixel-based classification for land-
cover classification by using a cross-attention framework that
uses attention from one modality to highlight features in
another modality. It consists of a spectral and spatial attention
module in order to take advantage of the spectral-spatial
information of the Hyperspectral image (HSI) and spatial-
elevation information of LiDAR.

Samal et al. [45] present a task-driven image fusion for
object tracking and path planning. This approach uses RGB-
LiDAR images by controlling the use of LiDAR images to
detect the spatial and temporal regions from LiDAR where
RGB fails. The network follows a decision-level fusion and
consists of RGB object detector and LiDAR object detector.
RGB object detector is based on Faster R-CNN and ResNet,
while the LiDAR object detector is based on PointRCNN.

Remarks: Besides the applications mentioned above (object
detection, semantic segmentation, and salient object detection),
other computer vision tasks and image processing applications
are focused on following the ”application on the loop of
multimodal image fusion”, such as object tracking. Therefore,
connecting the application information to the fusion process
is a trend to be used in any vision application due to the
improvements the task-driven fusion scheme offers.

E. Datasets

There are different datasets with multiple modalities con-
taining registered images from the same scene. Despite of
several datasets have initially been used only for multimodal
fusion approaches. Nowadays, datasets are oriented toward
applications, demonstrating that multimodal image fusion is
required to enhance vision applications. Table I summarizes
the datasets.
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TABLE I
DATASETS FOR MULTIMODAL IMAGE FUSION

Dataset Modalities Year Images Application

People Unihall [46] RGB-Depth 2011 3000 frames 3D Object Detection

KITTI [18] RGB-LiDAR 2012 400 images - 11 classes 2D/3D Object Detection

NYUDv2 [47] VIS-Depth 2012 1449 images Semantic Segmentation

MUUFL Gulfport [48] HSI, LiDAR 2013 53687 pixels - 11 classes Land Cover Classification

NLPR [46] RGB-Depth 2014 1000 images Object Detection

MS COCO [49] VIS-IR 2014 330K images - 80 classes VIS-IR fusion

TNO [50] VIS-NIR-LWR 2014 60 images VIS-IR fusion

Vaihingen [51] VHR - LiDAR 2014 33 images - 6 classes Semantic Segmentation

SUN RGB-D [52] RGB-Depth 2015 10K images 3D Object Detection

Cityscapes [53] RGB-Depth 2015 5k images - 30 classes 3D Object Detection

KAIST [54] VIS-IR 2015 1.6K images VIS-IR fusion

SUN RGB-D [52] RGB-Depth 2015 10K images 3D Object Detection

nuScenes [55] RGB-LiDAR 2019 1000 scenes - 23 classes 2D Object Detection

RoadScene [56] VIS-IR 2020 221 images VIS-IR fusion

Aligned FLIR [57] VIS-IR 2020 5142 images - 3 classes 2D Object Detection

LLVIP [58] VIS-IR 2021 15488 images - 1 class 2D Object Detection

V. CONCLUSION

Multimodal image fusion is valuable in computer vision
tasks and image processing applications since it generates a
rich informative image from multiple modalities. Recently,
deep learning approaches have been proposed for enhanc-
ing the fusion task. In this study, we review state-of-the-art
multimodal image fusion approaches based on deep learning
techniques for vision applications. These approaches follow
a classical and recently task-driven fusion scheme. In the
classical approaches, the fusion network is before or after the
application, but it is an independent module within the appli-
cation framework. On the other hand, task-driven approaches
include the application in the loop of the multimodal image
fusion module by using connections through loss functions
to reinforce the application information in the fusion, which
allows the improvement of the final result of the application.
This demonstrates the potential of connecting low-level vision
tasks with high-level vision tasks. Therefore, the trend of
multimodal image fusion approaches based on deep learning
techniques is to provide a connection between image fusion
and vision tasks in order to provide information contained in
the application to the multimodal image fusion network.
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A. Zurhorst, “Isprs benchmark for multi-platform photogrammetry,”
ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Infor-
mation Sciences, 2015.

[52] S. Song, S. P. Lichtenberg, and J. Xiao, “Sun rgb-d: A rgb-d scene under-
standing benchmark suite,” Computer Vision and Pattern Recognition,
pp. 567–576, 2015.

[53] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benen-
son, U. Franke, S. Roth, and B. Schiele, “The Cityscapes Dataset for
Semantic Urban Scene Understanding,” Computer Vision and Pattern
Recognition, vol. 2016-December, pp. 3213–3223, 4 2016.

[54] S. Hwang, J. Park, N. Kim, Y. Choi, and I. S. Kweon, “Multispectral
Pedestrian Detection: Benchmark Dataset and Baseline,” 2015. [Online].
Available: http://rcv.kaist.ac.kr/multispectral-pedestrian/

[55] H. Caesar, V. Bankiti, A. H. Lang, S. Vora, V. E. Liong, Q. Xu,
A. Krishnan, Y. Pan, G. Baldan, and O. Beijbom, “Nuscenes: A mul-
timodal dataset for autonomous driving,” Computer Vision and Pattern
Recognition, pp. 11 618–11 628, 2020.

[56] H. Xu, J. Ma, Z. Le, J. Jiang, and X. Guo, “FusionDN: A Unified
Densely Connected Network for Image Fusion,” AAAI Conference on
Artificial Intelligence, vol. 34, no. 07, pp. 12 484–12 491, 4 2020.

[57] H. Zhang, E. Fromont, S. Lefevre, and B. Avignon, “Multispectral
Fusion for Object Detection with Cyclic Fuse-and-Refine Blocks,” Int.
Conf. on Image Processing, vol. 2020-October, pp. 276–280, 9 2020.

[58] X. Jia, C. Zhu, M. Li, W. Tang, and W. Zhou, “LLVIP: A Visible-infrared
Paired Dataset for Low-light Vision,” IEEE Int. Conf. on Computer
Vision, vol. 2021-October, pp. 3489–3497, 8 2021.

Authorized licensed use limited to: ESCUELA POLITECNICA DEL LITORAL (ESPOL). Downloaded on August 17,2023 at 13:18:49 UTC from IEEE Xplore.  Restrictions apply. 


