
Autonomous robot navigation with a global and asymptotic convergence

Hugo Berti, Angel D. Sappa and Osvaldo E. Agamennoni

Abstract— This paper presents improvements over the Dy-
namics Window Approach (I-DWA), used for computing in real
time autonomous robot navigation. A novel objective function
that includes Lyapunov stability criteria is proposed. It allows
to guarantee a global and asymptotic convergence to the
goal, resulting in a more simple and self-contained approach.
Experimental results with simulated and real environments are
presented to validate the capability of the proposed approach.

I. INTRODUCTION

Autonomous robot navigation involves the real time
achievement of user defined goal/s. The autonomy degree
of a given robotic system fix or define both the capability of
adaptation to environment changes and the abstraction level
in which a given goal can be represented. For example, the
achievement of a given goal in a static and known environ-
ment can be tackled with a global planning strategy. On the
contrary, unknown or partially known environments, as well
as dynamic environments, should be tackled by means of
reactive navigation strategies. These reactive strategies allow
solving unexpected events in real time, by means of the use
of sensors in order to capture the surrounding environment.

Several autonomous robot navigation approaches were
proposed during the last decades. Earlier techniques were
based on the use of artificial potential field (e.g., [1], [2]).
An attractive force produced by the goal drives the robot
to the objective, while at the same time, repulsive forces
produced by the obstacles keep the robot away from them.
Since then, several improvements were introduced giving rise
to more evolved techniques such as: Virtual Field Histogram
(VFH) [3], Curvature-Velocity Method (CVM) [4] and
Dynamic Window Approach (DWA) [5]. The CVM [4] and
DWA [5] are the two more widely used approaches since
a high speed navigation can be reached. They search for
control commands (v, w) directly in the velocity space.
Similarly, in [6] a trajectory space is used for searching the
control commands (steering angle and velocity). In these
cases, control commands are selected by maximizing an
objective function, which includes criteria such as: speed,
goal-directedness and safety. Constraints from robot and
obstacles are incorporated in the velocity space. In spite of
these advantages, a hard constraint of these techniques is that

This work has been partially supported by the Spanish Ministry of
Education and Science under project TRA2004-06702/AUT. The second
author was supported by The Ramón y Cajal Program.

H. Berti is with Facultad de Ingenierı́a, UNLPam, 6360 Gral. Pico,
ARGENTINA hberti@ing.unlpam.edu.ar

A. D. Sappa is with Centro de Visión por Computador, 08193 Bellaterra,
Barcelona, ESPAÑA angel.sappa@cvc.uab.es

O. E. Agamennoni is with Dto. de Ing. Eléc. y de Comp, Univ. Nac. del
Sur, 8000 B. Blanca, ARGENTINA oagamen@uns.edu.ar

they ignore the way in which the robot approaches the goal,
so convergence criteria are not considered.

Extensions to the original DWA have been proposed
in [7], [8], [9] and [10], to mention a few. Reference [7]
presents a Global-DWA to avoid the local minima problems
by using connectivity information about the free space.
However this global feature is never shown [10]. A Reduced-
DWA, to speed up the translational velocity selection, is
proposed by [8]. As a result a dynamic line is obtained,
which requires less processing power. However, this velocity
selection is not appropriate when the robot orientation to
the goal is high (e.g., > 90 degrees). A more elaborated
method, which integrates three different approaches (DWA,
elastic band and NF1), is introduced in [9]. This integration
mitigates the drawbacks of DWA. Finally, [10] also com-
bines different elements from the original DWA to guarantee
convergence. Although [9] and [10] guarantee convergence
to the goal, none of them improve the original DWA, they
add others approaches for compensating DWA’s drawbacks.
It gives as a result a more expensive and complex strategy.

Having in mind the aforementioned problems we propose
a new compact autonomous navigation strategy as an im-
provement of the DWA. It is based on the velocity space and
proposes an oriented to the goal, safe and efficient navigation.
The incorporation of Lyapunov stability criteria, inside the
kernel of DWA, is the novelty of our approach. Hence,
a simple and self-contained approach is obtained. Stability
criteria permit to evaluate the convergence to the goal.

The paper is organized as follow. Next section briefly
describes the DWA, as well as its mathematical formalism.
Section III presents the proposed navigation technique: I-
DWA. Then, experimental results with both simulated and
real environments are presented; at the same time, additional
constraints required for extending the I-DWA to deal with
differential drive robots are also introduced in Section IV.
Finally, conclusions and future works are given in Section V.

II. DYNAMIC WINDOW APPROACH

As mentioned above, the proposed technique is based on
the Dynamic Window Approach (DWA). Therefore, in this
section a summary of DWA is given; more details about it
can be found in [5].

The main distinctive feature of DWA is based on the fact
that control commands (v, w) are directly selected in the
velocity space. This space is bounded by constraints directly
affecting the robot’s behavior; some of those constraints
are imposed by the environment (obstacle’s configuration),
while others are from robot’s physical limitations (maximum
velocity and acceleration).

2007 IEEE International Conference on
Robotics and Automation
Roma, Italy, 10-14 April 2007

ThC10.4

1-4244-0602-1/07/$20.00 ©2007 IEEE. 2712

E F

B C

Corridor

Goal

a

Circular trayectories
of forward movements

A

D

Circular trayectories
of backward movements

I-DWA

DWA

References

Fig. 1. Illustration of a robot navigation environment.

It is assumed that the robot moves with a constant velocity
(v, w) during each control loop (e.g., [7], [11]). In other
words, assuming a null acceleration the robot only moves
with circular trajectories —with a constant curvature c =
w/v, see illustration in Fig. 1—.

Obstacles near to the robot impose constraints over trans-
lational and rotational velocities —referred to as admissible
velocities—. The maximum admissible velocity, over a given
curvature, depends on the distance to the next obstacle
over that curvature. The set of admissible velocities (Va)
is computed by means of a function Dist that evaluates the
distance to the nearest obstacle for a given curvature. This
can be expressed as:

Dist (v, w) = min
obs∈OBS

dist (v, w, obs) , (1)

where obs is an element from the set of obstacles OBS. The
set Va can be expressed as:

Va =

{
(v, w)|

v ≤
√

2 ·Dist (v, w) · v̇max,

w ≤
√

2 ·Dist (v, w) · ẇmax

c

}
, (2)

where, v̇max and ẇmax are the maximum translational and
rotational accelerations respectively.

On the other hand, a set of velocities, referred to as
reachable velocities, indicates those velocities that the robot
can achieve during a control loop —velocities defining a
dynamic window Vd—. The set of Vd is expressed as:

Vd =
{

(v, w)|
v−vc

∆t ∈ [−v̇max, v̇max] ,
w−wc

∆t ∈ [−ẇmax, ẇmax]

}
, (3)

where, vc and wc are the current translational and rotational
velocities, and ∆t is the duration of the control loop.

Summarizing, the search space of the control commands is
reduced to three kinds of constraints: (i) circular trajectories,
(ii) admissible velocities, and (iii) reachable velocities.
From the constraints imposed over the robot’s velocities, a
resulting search space (Vr) can be defined as:

Vr = Vp ∩ Va ∩ Vd, (4)

where Vp represents the whole space of possible velocities
for the robot. It is defined by:

Vp = { (v, w)| v ∈ [0, vmax] , w ∈ [−wmax, wmax]} , (5)

note that v, in the originally proposed DWA, is only defined
for positive values, hence the robot cannot move backward.

w
c

v
c

Dynamic
window

C

E

F

B
Corridor

Left
frontal
door

Right
frontal
door

w

v

w
max

-w
max

v
max

Admissible and
reachable
velocities

Non-admissible
velocities

Admissible
velocities

References

Fig. 2. Velocity map corresponding to the illustration presented in Fig. 1.

Fig. 1 illustrates an example where the robot first goes
through a corridor, then it has to cross a door in order
to finally reach a user-defined goal. Fig. 2 presents the
velocities involved in the computation of control actions for
the situation presented in Fig. 1.

Finally, from the resulting search space (Vr), DWA selects
the couple of velocities that maximize an objective function
—different functions have been proposed in the literature [8],
[11], among others—. The objective function includes terms
that trade-off driving the robot at a high speed, oriented to the
goal and far away from obstacles: speed, goal-directedness
and safety. Therefore, the objective function is defined as:

G (v, w) = µ1 ·Speed (v)+µ2 ·Goal (w)+µ3 ·Dist (v, w) ,
(6)

where, µi > 0, i = 1, 2, 3, and
∑

i µi = 1 are weighting
factors for each one of those terms. The Speed function is
used to enforce a high speed navigation. It is defined as:

Speed (v) = v/vmax. (7)

Nevertheless, the use of this function could suppose tak-
ing a wrong action under some particular conditions. For
example, it happens when the robot’s orientation has a high
discrepancy with the goal (α > 90◦); in this case the robot
will move at a high speed away from the goal. On the other
hand, the Speed function does not take into account the
closeness to the goal, thus when the robot is near the goal
this function will promote a wrong action: fast navigation.

The Goal function measures the alignment of the robot
orientation with respect to the goal, defined with the pa-
rameter (α) (Fig. 3(left)). It computes an orientation error,
assuming that the robot moves with a constant velocity w
during the interval of time of the control loop ∆t. This
function could be defined as (e.g., [4], [7], [8]):

Goal (w) = 1− |α− w ·∆t| /π. (8)

Note that it does not include the angular closeness due to
translational velocity; this drawback is emphasized in those
cases where the robot is near the goal but with a wrong
orientation (high α).

The Dist function, presented in (1), represents the dis-
tance to the nearest obstacle over a circular trajectory with
a curvature given by the velocities (v, w).

Reference [4] represents each term of the objective func-
tion as a piece-wise linear function, where the maximum

ThC10.4

2713

Goal

q

a

y

x

xr

yr

r

v

w

xg

yg

vleft

vright

v

ICC

w

L

Castor

wheel

Drive wheels

Fig. 3. (left) Robot’s representation in Cartesian and Polar coordinate
systems. (right) Kinematics characteristics of PIONEER 1 (differential drive
robot).

value of (6) is computed by linear programming methods.
On the contrary, in [5], [7] and [8], non-linear functions are
adopted and the maximum value is computed by looking in
a discrete space. Alternatively, [9] proposes the selective use
of a precalculated lookup table; this allows to control any-
shaped robot contours and a fast search for the maximum.

It has been proved that methods based on control com-
mands space are appropriated to implement navigation strate-
gies (e.g., [6], [7], [8], [9], [10]). They include the envi-
ronment constraints (2) and the robot dynamics constraints,
(3) and (5). Additionally, they state an objective function
that imposes suitable behaviors: speed, goal-directedness and
safety. However, other convergence criteria need also to be
considered in order to evaluate the arrival to the goal.

III. PROPOSED METHOD (I-DWA)
In this section the proposed control strategy, which guar-

antees and characterizes the arrival to the goal, is presented.
In addition, further improvements to the original DWA are
introduced to avoid the inconveniences found in the terms of
the objective function that impose a fast (7) and oriented to
the goal (8) navigation. Next, kinematics equations used to
model the robot’s motion are introduced. Then, the proposed
control law based on Lyapunov stability criteria is presented.
Finally, a new objective function is given.

A. Kinematics Equation
Assuming the robot is represented by a point, its kinemat-

ics equations, in a Cartesian space, can be expressed as:

ẋ = v · cos (θ) ,

ẏ = v · sin (θ) , (9)
θ̇ = w,

where θ defines the robot’s orientation according to a global
coordinate system(Fig. 3(left)). These equations can be ex-
pressed in a polar coordinate system associated with the goal:

ρ̇ = −v · cos (α) ,

α̇ = −w + v · sin (α) /ρ, (10)
θ̇ = −α̇.

Although the robot has been represented as a point, this
model can be extended to different kinds of robots, for
instance synchronous drive robots or differential drive (see
Section IV). In these cases, a direct implementation could be
to represent the robot rotation center as the reference together
with its minimum robot’s bounding circle.

B. Convergence analysis

This section presents an ideal control law (vi, wi) that
allows driving the robot to the goal guaranteeing a global
convergence. In order to do that we propose a candidate
Lyapunov law involving two state variables (ρ, α) in a polar
coordinate system:

V (ρ, α) = V1 + V2 = ρ2/2 + α2/2. (11)

The time derivation of (11), over the trajectories defined
by the set of kinematics equations (10), is expressed as:

V̇ (ρ, α)= V̇1 + V̇2 = ρ̇ · ρ + α̇ · α (12)
=−vi · cos (α) · ρ + (−wi + vi · sin (α) /ρ) · α.

The sought convergence is reached by using a control
law where the terms of V̇ (ρ, α) are always negative defined.
Additionally, both velocity values should not be bigger than
the maximum values. Thus, we propose a modification in the
term related to a fast navigation (7) of the objective function:

vi := kv · vmax · cos (α) · tanh (ρ/kρ) , (13)

where, the function tanh (ρ/kρ) → 1 if ρ → ∞, therefore
a limit for the translation velocity is defined by vmax; kρ

is a weighting factor that works when the robot approaches
the goal, smoothing its speed reduction. Consequently, the
selected velocity will increase according to the value of ρ,
but it will be asymptotically bounded. An interesting point
of the proposed function is that cos(α) permits to consider
the robot orientation according to the goal. Thus, the selected
speed will be high when the robot orients to goal. At the same
time, cos(α) allows even backward movements (α > 90).

Otherwise, the rotation velocity selection must evaluate
the relative closeness originated by the translation velocity.
In that sense, the following law is defined for selecting the
correct rotation velocity:

wi := kα · α + vi · sin(α)/ρ = (14)
= kα · α + kv · vmax · tanh (ρ/kρ) · sin(2 · α)/ (2 · ρ) ,

where, tanh(ρ/kρ)
ρ → 1/kρ if ρ → 0, therefore the rotation

velocity is bounded; kα and kv are positive weighting
factors intended for obtaining the required robot behavior:
kα works over the angular error whereas kv works over the
distance error. From (14), the following relationship between
these factors and maximum robot’s velocities is obtained:
kα ≤ (|wmax| − |kv · vmax/(2 · kρ)|)/π.

The next expression is obtained after including the control
laws (13) and (14) in (12):

V̇ (ρ, α)=−ρ · vmax · tanh (k1 · ρ) · cos2 (α)− kα · α2,

V̇ (ρ, α)≤0. (15)

ThC10.4

2714

Hence, the proposed Lyapunov function (11) is always
non-incremental in time, as we were looking for. Addition-
ally, this kind of function guarantees a global and asymptot-
ical convergence to the goal (see [12]); numerically it can
be expressed as:

V̇ (ρ, α) = V̇1 + V̇2 ⇒
{

ρ (t)
α (t) → 0, if t →∞ . (16)

This function is only valid when there are not obstacles
in the environment and when the robot does not present
acceleration limitations. The latter condition appears in the
initial point when the robot needs to start the motion and
reach the velocities stated in (13) and (14). These velocities
take into account only the robot’s position and orientation
discrepancies with the given goal (ρ, α). Therefore, addi-
tional constraints, to avoid choosing unreachable veloci-
ties, should be imposed. Unreachable velocities are due to
physical limitations in the robot’s accelerations; in addition
velocities that involve some collision risk should be also
avoided. Next, both drawbacks are considered.

C. Navigation function

The proposed navigation function used to drive the robot
to the goal, by avoiding collisions and taking into account
robot dynamics constraints (maximum accelerations and ve-
locities), is presented in this section.

Dynamics constraints imposed by the robot and obstacles
are considered by using the search space defined in (4).
As in previous works, a dynamic window, which contains
the current set of reachable and admissible velocities, is
computed. Then, an improved objective function G∗(v, w)
is proposed to replace (6). The domain of that objective
function is defined by a dynamic window and contains the
following terms:

G∗ (v, w) =
λ1 · (1− |v − vi| / (2 · vmax))+
λ2 · (1− |w − wi| / (2 · wmax))+
λ3 ·Dist (v, w) ,

(17)

where, λi > 0, i = 1, 2, 3, and
∑

i λi = 1, represent
weighting factors. The variables vi and wi are defined by
the proposed (13) and (14) and they are the responsible for
driving efficiently the robot to the goal. The chosen set of
velocities are those that maximize the objective function (17).

The first two terms of (17) favor choosing velocities that
drive the robot to the goal, the third term implements the
collision avoidance strategy. Therefore, the values adopted
by the weighting factors will be reflected in the robot
behavior. High λ1 and λ2 values will result in a goal oriented
behavior, while a high λ3 value will result in a highly reactive
behavior that favor the collision avoidance part. Actually, the
tuning of these parameters is defined by characteristics such
as: the environment’s structure (number and distribution of
obstacles), the required robot behavior (level of reaction),
and the degree of knowledge of the environment.

IV. EXPERIMENTAL RESULTS

Experimental results obtained with both simulated and
real environments are presented. In both cases a PIONEER 1
robot was used (see Fig. 3(right)). It presents a maximum
translation velocity of 600 mm/s, a maximum rotation
velocity of about 2.5 rad/s, and a distance between drive
wheels of 325 mm. Before going into details about the
obtained experimental results the required extension of I-
DWA to tackle differential drive robots is presented.

A. Differential drive robots

This section presents an extension of the I-DWA algorithm
in order to be able to tackle differential drive locomotion
problems. Kinematics equations, together with the corre-
sponding transformations in the velocity space, to handle this
kind of robots are also introduced.

A differential drive robot uses a simple locomotion system
composed of two drive wheels and a passive rear wheel.
Drive wheels are independently controlled while the passive
rear wheel is only used as an additional leaning point to keep
the robot’s balance. The rear wheel is automatically oriented
according to the robot motion. The robot’s displacement
is achieved by means of a separated control of each drive
wheel. An instantaneous center of curvature (ICC), defined
by the intersection of the drive wheels’ axis with the passive
wheel’s axis, is automatically defined according to the robot’s
displacement (see Fig. 3(right)).

Kinematics equations define the interaction between con-
trol commands and the corresponding space state. Thus, in
a differential drive locomotion robot, these equations will
reflect the robot’s position (x, y, θ) when the velocity of each
drive wheels is controlled (vright, vleft). Therefore, from (9),
translational and rotational velocities can be expressed by
means of the drive wheel’s velocities:

v = (vright + vleft) /2, w = (vright − vleft) /L, (18)

where L is the length of the drive wheels’ axis
(Fig. 3(right)). A clockwise displacement (w > 0) is per-
formed when vright > vleft, otherwise a counter-clockwise
displacement will be executed. From (18) the kinematics
equations of a differential drive robot can be expressed as:

ẋ = ((vright + vleft) /2) · cos (θ) ,

ẏ = ((vright + vleft) /2) · sin (θ) , (19)

θ̇ = ((vright − vleft) /L) .

Equation (18) can be depicted by means of a matrix as:
[

v
w

]
=

[
1/2 1/2
1/L −1/L

]
·
[

vright

vleft

]
(20)

hence, its inverse representation can be easily expressed as:
[

vright

vleft

]
=

[
1 L/2
1 −L/2

]
·
[

v
w

]
(21)

The (20) and (21) equations allow the representation of
the robot’s velocities (assuming the robot is represented by a
point) together with the drive wheels’ velocities. After adding

ThC10.4

2715

F

E

C

B
Corridor

Left
frontal
door

Right
frontal
door

w

v

w
max

-w
max

v
max

w
c

v
c

Dynamic
window

B

Left rear
door

Right rear
door

E

A D

-v
max

Admissible and
reachable
velocities

Non-admissible
velocities

Admissible
velocities

References

Fig. 4. Velocity map corresponding to the illustration presented in Fig. 1.

admissible and reachable velocities a representation such as
the one presented in Fig. 4 is obtained. This representation
is used to define the corresponding dynamic window and
select the appropriate control action for the next control loop
(17). Experimental results with a differential drive robot are
presented in the next section.

B. Simulated environments

Simulated environments were considered to test the pro-
posed technique. They are useful to study the robustness of
the technique and the performance of the robot when differ-
ent values are used for tuning the parameters. A simulated
environment consists of known obstacles and a set of known
goals. The model defined in (9) is used to estimate the robot
trajectory, the distance to the obstacles and the distance to
the next goal. The use of these predefined scenarios allows
to do a fair evaluation of the performance of the proposed
technique, avoiding problems related to the perception of a
real environment (e.g., obstacle and goal recognition, poor
perception, robot position errors).

Fig. 5 shows one of the proposed scenarios to evaluate
the robot’s behavior. Goals are indicated with flags while
the robot’ trajectories through that scenario are illustrated by
means of small icons. Note that the robot is plotted by regular
intervals of one second, which allows to infer the robot ve-
locities. Each obstacle has associated two concentric circles.
The inner circle corresponds to an obstacle’s enlargement
according to the robot’s radius (robot’s minimum bounding
circle). The outer circle represents the influence limit; in
other words, when the robot reaches the area defined by
that outer circle it should start with the collision avoidance
strategy. The set of trajectories performed by the robot to
reach each one of the proposed goals shows the efficiency
of the proposed approach. Note that I-DWA correctly drives
the robot along narrow passages, such as the <e> trajectory
that goes through the 5 and 6 obstacles. High speeds were
reached even in presence of obstacles.

Table I shows the robot average speed in every trajectory.
In all the cases the average translation velocity is higher than

1

2

3

4

5
6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

a

b

c

d

e

f

1 m

Start Goals Pioneer 1 # Obstacles

x
y

Fig. 5. Trajectories in a simulated environment performed during the test
of the proposed approach.

2 4 6 8 10 12 14 15

-200

0

200

400

600

a
b

c d
e f

Time (s)

T
ra

sl
a
ti
o
n
a
l
V

el
o
ci

ty
(m

m
/
s)

2 4 6 8 10 12 14 15

-1.5

-1.0

-0.5

0

0.5

1.0

1.5

a

b

c

d

e f

Time (s)

R
o
ta

ti
o
n
a
l
V

el
o
ci

ty
(r

a
d
/
s)

Fig. 6. Velocities corresponding to the trajectories presented in Fig. 5.

half the maximum speed. Moreover, that maximum speed is
also reached in every trajectory (see Fig. 6).

Fig. 6 shows a plot of the velocities reached by the robot
in its way to the goal. This figure demonstrates that the
movements are smooth with few oscillations on the robot’s
orientation. It is also observable that the robot first tries
to orientate towards the goal, in some cases by moving
backward, and then, it advances trying to reach the highest
speed in absence of obstacles. This behavior is regulated
with the factors kρ, kα and kv from ideal control law, (13)
and (14); as well as the weighting factors of the objective
function (λ1, λ2, λ3), (17). In the current implementation
they were defined as: kρ = r−1

r ' 3 [m−1]; kα = 0.59 [s−1];
kv = 1; λ1 = 3/13; λ2 = 3/13; and λ3 = 7/13.

These values were experimentally selected by using test-
bed environments. As mentioned above, since a simulated
environment is used, several experiments can be performed
keeping away from risky situations. Simulated environments
make it easier and faster the parameter’s tuning. The used
strategy is as follow. Firstly, a free-obstacles environment is
considered until the sought robot behavior is obtained —i.e.,
efficient and successful movements to the goal—. Finally,
a fine tuning is preformed by using a highly populated

ThC10.4

2716

1

2

3

4
5

6

1

2

3

4

5

1 mx

y

Fig. 7. Real navigation environment used for testing I-DWA with the
PIONEER 1.

0 10 20 30 40 50 60
-200

0

200

400

600

0 10 20 30 40 50 60
-2

-1

0

1

2

Time (s)

T
ra

sl
a
ti
o
n
a
l
V

el
o
ci

ty
(m

m
/
s)

Time (s)

R
o
ta

ti
o
n
a
l
V

el
o
ci

ty
(r

a
d
/
s)

1
2

3
4 5

1
2 3 4 5

Fig. 8. Velocities corresponding to the trajectories presented in Fig. 7.

environment, where a safe collision avoidance is reached.

C. Real environments

Finally, the proposed technique was validated in real
environments (about 4x5 m) with a PIONEER 1 robot. The
I-DWA parameters were tuned with the same values than
the selected in the simulated environments. I-DWA was
implemented off-board, in the framework Aria/Saphira, us-
ing a master/slave architecture. Obstacles in the scene were
detected by the PIONEER 1 robot ultrasonic sensors. Robot
odometer was used to estimate the current position and the
distance to the next goal.

Fig. 7 presents a scene with six unknown obstacles and a
sequence of five user-defined static goals. Obstacles and ro-
bot are represented as in the simulated environment (Fig. 5).
As it was expected, in all the cases the robot reaches the goals
with smooth and safe trajectories. Fig. 8 depicts the velocities
corresponding to every trajectory, solid line shows the sent

TABLE I
SPEED AND TIME FOR EACH TRAJECTORY.

Trajectory Average Speed Time

< a > 442.95 [mm/s] 14.8 [s]

< b > 466.30 [mm/s] 11.8 [s]

< c > 450.85 [mm/s] 11.0 [s]

< d > 463.00 [mm/s] 13.0 [s]

< e > 370.60 [mm/s] 10.5 [s]

< f > 453.75 [mm/s] 13.4 [s]

velocities from off-board computer and dot line shows the
velocities reached by the robot. Equally than in the simulated
scenario, efficient movements, with few oscillations on the
robot’s orientation, are performed. Note that the robot stops
when reaches a goal; in some cases it goes backward in order
to quickly orientate to the next goal. The maximum speed
has been reduced up to 400 mm/s to avoid localization
problems related to the odometry.

V. CONCLUSIONS

This paper presents a novel and compact approach (I-
DWA) for autonomous robot navigation. It improves the
original technique by incorporating Lyapunov stability cri-
teria inside the kernel of DWA. Therefore, an arrival to the
goal with a global and asymptotic convergence is guaranteed.
As a result, a more simple and self-contained approach is
obtained. Different robot behavior can be reached by tuning
a set of control law parameters.

Simulated and real experimental results validate the pro-
posed technique when different environments’ configura-
tion are used. It should be noticed that with the proposed
approach the convergence drawbacks of DWA are solved.
At the same time, the capability of I-DWA to regulate
different behaviors can be easily appreciated. Further work
will address the current odometry problems; hence larger real
environments could be considered.

REFERENCES

[1] O. Khatib. Real-time obstacle avoidance for manipulators and mobile
robots. The Int. Journal of Robotics Research, 5(1):90–98, 1986.

[2] J. Borenstein and Y. Koren. Real-time obstacle avoidance for fast
mobile robots. IEEE Transactions on Systems, Man, and Cybernetics,
19(5):1179–1187, Sep/Oct 1989.

[3] J. Borenstein and Y. Koren. The vector field histogram - fast obstacle
avoidance for mobile robots. IEEE Transactions on Robotics and
Automation, 7(3):278–288, June 1991.

[4] R. Simmons. The curvature-velocity method for local obstacle avoid-
ance. In IEEE International Conference on Robotics and Automation
(ICRA’96), pages 3375–3382, Los Alamitos, CA, USA, April 1996.

[5] Dieter Fox, Wolfram Burgard, and Sebastian Thrun. The dynamic win-
dow approach to collision avoidance. IEEE Robotics and Automation
Magazine, 4(1):23–33, March 1997.

[6] S. Shimoda, Y. Kuroda, and K. Iagnemma. Potential field navigation
of high speed unmanned ground vehicles on uneven terrain. In IEEE
International Conference on Robotics and Automation (ICRA’05),
pages 2839–2844, Barcelona, Spain, April 2005.

[7] O. Brock and O. Khatib. High-speed navigation using the global
dynamic window approach. In IEEE International Conference on
Robotics and Automation (ICRA’99), pages 341–346, 1999.

[8] K. O. Arras, J. Persson, N. Tomatis, and R. Siegwart. Real-time
obstacle avoidance for polygonal robots with a reduced dynamic win-
dow. In IEEE International Conference on Robotics and Automation
(ICRA’02), pages 3050–3055, May 2002.

[9] R. Philippsen and R. Siegwart. Smooth and efficient obstacle avoid-
ance for a tour guide robot. In IEEE International Conference on
Robotics and Automation (ICRA’03), pages 446–451, 2003.

[10] P. Ögren and N. E. Leonard. A convergent dynamic window approach
to obstacle avoidance. IEEE Transactions on Robotics and Automation,
21(2):188–195, April 2005.

[11] O. A. A. Orqueda, H. Berti, and O. E. Agamennoni. A strategy for
safe goal-directed autonomous navigation. In International Symposium
on Intelligent Components and Instruments for Control Applications
(SICICA 2000), pages 135–140, Buenos Aires, Argentina, 2000.

[12] H. Secchi, R. Carelli, and V. Mut. Design of stable algorithms for
mobile robot control with obstacle avoidance. In 14th IFAC World
Congress on Automatic Control (IFAC’99), pages 185–190, July 1999.

ThC10.4

2717

