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Abstract

This paper presents a full pipeline to classify sample

sets of corn kernels. The proposed approach follows a

segmentation-classification scheme. The image segmenta-

tion is performed through a well known deep learning-

based approach, the Mask R-CNN architecture, while the

classification is performed through a novel-lightweight net-

work specially designed for this task—good corn kernel,

defective corn kernel and impurity categories are consid-

ered. As a second contribution, a carefully annotated multi-

touching corn kernel dataset has been generated. This

dataset has been used for training the segmentation and the

classification modules. Quantitative evaluations have been

performed and comparisons with other approaches are pro-

vided showing improvements with the proposed pipeline.

1. Introduction

Cereal production, both for human and animal consump-

tion, is one of the bases of the food pyramid industry.

The agriculture industry is the primary sector in the econ-

omy of several countries, in some cases representing near

10% of their Gross Domestic Product (GDP). One of the

most important and demanded grains for both humans and

livestock nutrition and the raw material for agribusiness is

maize. It has the largest production of all cereals all over

the world1. To reach the highest quality standard, according

to the worldwide commercial protocol that establishes the

type and quality of grains, recently some approaches have

1http://www.fao.org/in-action/inpho/crop-compendium/cereals-

grains/en

. ∗Authors contributed equally.

been proposed trying to do the kernel inspection rigorously

and automatically (e.g., [12], [15], [3]).

In the particular case of automatic corn kernel assess-

ment for the post-harvest process, there is also a large in-

terest from the research community. In general, corn ker-

nel assessment evaluates constituent features (e.g., mois-

ture, crude protein, fiber, etc.) as well as visual features

such as impurity, shape (including perimeter, area, elonga-

tion, among others), color, etc. Constituent measurements

are obtained using tools and machines especially devoted

to such tasks, while visual features are manually extracted

employing trained operators. This manual process is a time-

consuming operation and cannot ensure consistency due to

the difference in operator’s evaluation ability [14] [8].

Before evaluating the shape or color features that charac-

terize a given sample set, elements in that sample set should

be classified into some of the following categories: defec-

tive kernels (including broken or rotten kernels), impurities

and good kernels. As mentioned above this classification is

generally performed by trained operators, who have to in-

spect samples of about 200g of kernels and then getting a

table of percentages of impurities, rotten and defective ker-

nels. This time-consuming task is prone to subjectivity of

the inspectors.

Recently, with the increase in computing power that al-

lows processing a large amount of information in a short

time, some computer vision solutions have been proposed in

the literature (e.g., [13], [11]). In [13] the authors present a

computer vision-based corn classification system. Interest-

ing results are obtained while corn kernels are not touching

each other. The authors also present an ad-hoc approach

to segment groups of touching kernels. Different off-the-

shelf CNN based classification models are evaluated (e.g.,

ResNet [7], VGG [21] and AlexNet [10]), concluding the
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best option for their dataset is ResNet. The main draw-

back of this approach lies in the way corn kernels should

be placed; ideally, they should not be touching or in case of

touching a maximum of dual-touching kernels are allowed,

leading to the need of a system for separating them. The

same drawback is present in the solution proposed in [11];

in this approach, although focusing on the corn classifica-

tion problem, the authors do an effort to segment groups

of touching corns by proposing a novel profile segmenta-

tion algorithm. Also based on machine learning approaches,

some innovative products are already on the market, such as

the product offered by Cgrain2, although an accurate solu-

tion is obtained, it is also a quite time-consuming solution

since every single element (grain or impurity) should be in-

dependently inspected.

Finally, trying to speed up this pre-processing stage, as

well as to reach more robust solutions able to tackle chal-

lenging sample set distributions, solutions based on the us-

age of multispectral and hyperspectral imaging have been

proposed. For instance, in [23] hyperspectral images, cov-

ering a range from 400 nm to 1000 nm, were considered to

classify different maize varieties; actually, the authors show

the proposed approach can be used effectively for seed iden-

tification and classification. Trying to find the best wave-

band for sample set classification in [22] the authors pro-

pose a combination of five wavebands in the range from

400nm to 900nm. Finally, another hyperspectral imaging-

based approach, but in this case spanning the near infrared

(NIR) spectral band, has been presented in [20]. NIR hyper-

spectral imaging helps to identify a variety of cereal proper-

ties, which could replace conventional chemical microbial

or physical tests, with a single and automated image acqui-

sition.

In the current work, a novel computer vision-based ap-

proach is proposed for corn kernel detection and classifi-

cation; it works just using images from the visible spec-

trum. The proposed pipeline consists of firstly segment-

ing elements from the given sample set into single entities

that later on are classified by a lightweight network. The

whole approach is robust to the distribution of elements in

the given sample set; in other words, close objects of var-

ious kinds (defective kernels, impurities and good kernels)

do not affect the final result. Object segmentation is based

on the usage of Mask R-CNN [6], while classification is

performed by a novel and compact CNN based architecture

CK-CNN. The main contributions in the paper are summa-

rized as follow:

• A dataset with both, carefully corn kernel’s contour an-

notations and four individual category labeling (defec-

tive kernels, including broken or rotten kernels, impu-

rities and good kernels), has been generated and re-

2https://www.cgrain.se

leased to the community—CORN-KERNEL3.

• A lightweight CNN architecture for corn kernel clas-

sification is designed, referred to as CK-CNN. The

model is trained from scratch, without pre-trained

weights.

The manuscript is organized as follows. Section 2

presents related works to the segmentation and classifica-

tion problems, which serve as the basis for the approach

of the main modules of the proposed pipeline. Section 3

presents the approach proposed for detecting and classify-

ing elements (defective kernels, impurities and good ker-

nels) from the given sample set, together with a summary

of the dataset generated for the current work. Experimental

results and comparisons with different approaches are given

in Section 4. Finally, conclusions are presented in Section

5.

2. Related Works

As mentioned above, in the current work the corn kernel

detection and classification problem is tackled following the

classic detection-classification pipeline. Hence, this section

reviews the most relevant works on these topics highlight-

ing the main characteristics of state-of-the-art approaches.

Firstly, the state of the art segmentation techniques, gen-

erally used in the detection phase, are reviewed; secondly,

classification approaches including both, classical and re-

cent deep learning techniques, are summarized.

2.1. Segmentation techniques

Although image segmentation is an old and well-studied

problem in the computer vision literature, the cereal kernel

segmentation, in a general scenario, is a challenging and

open problem. Recent publications, some of them for the

corn kernel problem, have proposed ad-hoc solutions that

could reach acceptable result in some cases (e.g., [11], [13],

[3]). Trying to develop a robust and general solution, that

work in unconstrained scenarios, no matter the number of

corns kernel touching, the state of the art techniques are re-

viewed and evaluated to propose a possible solution.

Firstly, the watershed transform has been considered for

the cereal kernel segmentation; it is a traditional segmenta-

tion approach widely used. The main idea of this technique

comes from geography, where a grayscale image could be

seen as a topographic surface in which the high-intensity

values are the peaks (local maximum) and the lowest values

are the valleys (local minimum). At the beginning of the

process, each valley can be filled in with a different color.

Then, the algorithm continues filling in valleys till regions

start touching and the region’s boundary is defined; this wa-

tershed process continues till the highest peaks are reached;

3The dataset is available at http://www.cidis.espol.edu.ec/es/dataset



as a result, all regions in the given image are segmented [18]

[16]. Despite all the features offered by this algorithm, there

are several problems when applying it to real-world images.

For instance, results would depend on the variation of inten-

sity levels in the given image, as well as on the texture and

morphology of the objects to be segmented; these condi-

tions generate an over-segmentation of the regions [16]. In

the particular case of corn kernel segmentation, the kernel

touching problem is a challenging situation that most of the

time cannot be solved with this approach.

With the success of CNN, principally because of its re-

sult in [10], different approaches have been proposed to

tackle problems that are difficult to solve by traditional

computer vision techniques. One of these areas is image

segmentation where different architectures have been pro-

posed improving the state of the art results. Among the

different proposals, the U-Net model [19] has been intro-

duced for the semantic segmentation of biomedical images.

The main characteristic of this architecture is that it needs

very few annotated images for training, in the seminal work

approximately 30 images have been considered. Another

architecture proposed for instance segmentation has been

presented in Mask R-CNN [6]. It is a powerful tool ([9],

[25]) that follows the philosophy of Fast R-CNN and im-

proves some characteristics by adding a new branch at the

end of the model, in this way the task of segmentation, lo-

cation and detection of objects work in parallel. In gen-

eral terms, Mask R-CNN consists of three phases, first, the

backbone network (ResNet-50 or ResNet-101) extracts the

feature maps of the input images, then these maps are sent

to the Region Proposal Network (RPN), where the ROIs are

generated. In the third phase, these ROIs are mapped to ex-

tract the corresponding target features, which are sent to the

Fully Connected Layers (FC) and the mask branch, where

the classification and instance segmentation are performed

respectively. The process described above generates clas-

sification scores, bounding boxes and segmentation masks

[25] [6].

2.2. Classification techniques

In recent years, several machine vision-based grain clas-

sification approaches have been proposed in the literature.

For instance, in [2] the authors propose a pattern recogni-

tion based technique to extract the external characteristics

of kernels, whether they be the shape, color or geometry

from the given images; the main limitation lies on the fact

that kernels should not touch each other [2]. The kernels

are classified using a backward propagation neural network

(BPNN) to identify the class to which they belong.

In [17] a three-way image classification model, based on

HSV color space, is presented. The approach extracts tex-

tual local binary pattern (LBP) information, for the classi-

fication of healthy or rotten grains. Also, to improve the

Figure 1. Illustration of the data acquisition system.

recognition rate of maize varieties, [26] proposes a multi-

kernel maize varieties classification extracting the charac-

teristics of maize grain to distinguish maize varieties. Sim-

ilarly, Effendi et al. [4] present a corn quality identification

system based on color and texture features to identify the

quality of corns.

On the contrary to previous approaches, in [11], the au-

thors propose a deep learning-based technique to discrimi-

nate different defective types of corns; firstly, a segmenta-

tion method is used to separate a group of touching corns.

Then, 12 color features and 5 shape features are extracted

for each corn object. Finally, a maximum likelihood esti-

mator is trained to classify normal and defective corns. In

the same way, in [13] the authors propose the use of very

deep convolutional networks, such as VGG [21] and Resid-

ual Network (ResNet) [7], which outperforms the task of

classification on dual touching kernels. The given images

are firstly segmented using image processing techniques

and then each element resulting from the segmentation is

classified as a good or defective kernel.

VGG [21] is a ConvNet model with a very deep convo-

lutional architecture (16-19 weight layers) and very small

convolutional filters (3X3) for large scale image classifica-

tion. This model has been designed for well-performing on

large dataset images. The objective was to prove that deeper

networks overcome state-of-art accuracy in this kind of vi-

sual representations. VGG has been originally trained on

the ImageNet challenge dataset but demonstrated to do a

good matching and generalization to a wide range of tasks

and datasets. On the other hand, ResNet [7], is a residual

learning framework that is substantially deeper than previ-

ously mentioned (8x times deeper than VGG net) with an

architecture up to 152 layers; same as VGG it was trained

for ISLRVC 2015 classification task and got the first place.

The main characteristic of ResNet is the introduction of a

so-called “identity shortcut connection” that skips one or

more layers (identity maps) to fit a residual mapping instead

of letting them directly fit the desired underlying mapping.

The resulting architecture performs better.



Figure 2. (1st col) Example of a corn kernel cluster image. (2nd col) Mask from the annotated contours used as a ground truth. (3rd col)

Example of individual corn kernels. (4th col) Individual corn kernels split up into grid cells.

3. Proposed Approach

The proposed approach consists of two stages, firstly the

elements in the given image are segmented and then they

are classified into some of the following categories: good

corn, defective corn (including rotten and broken corns)

and impurities. Since both stages are based on learning ap-

proaches, the success of the whole pipeline would depend

on the quality of the ground truth, both corn kernel’s con-

tour annotation and labeled images. Before presenting the

proposed approach the dataset generated in the current work

is detailed.

3.1. Dataset Generation

This section details the process carried out for data ac-

quisition, corn kernel’s contour annotation and image la-

beling. Corn kernels have been acquired in a controlled

environment using a visible spectrum camera (Basler ACE

acA645-100gc), with a resolution of 1280×1024 pixels, to-

gether with two LED lamps of 18 watts each, placed on

top. The camera has been placed orthogonal to the plane

containing the corn kernels; a white cardboard has been

used to define a background standard for further applica-

tions. Figure 1 shows an illustration of the acquisition sys-

tem. With this acquisition system, two sets of images have

been recorded: i) clusters of corn kernels and ii) single corn

kernels. The first set contains images of clusters of corn

kernels to be used during the segmentation stage (see Fig.

2 (1st and 2nd columns)). The second set consists of im-

ages of a regular grid containing a single corn kernel per

cell (see Fig. 2 (3rd and 4th columns)). With this setup a

total of 523 images have been acquired; some of them have

been used for corn kernel’s contour annotation and the re-

maining for image annotation. Table 1 presents a summary

of the acquired images and their usage.

Once the two datasets have been generated, the contours

of every element (corn kernels and impurity) in the first

dataset are carefully annotated using a crowdsourcing tool

(Labelbox4). These carefully annotated contours are used

4https://labelbox.com/

Type Used for Category Images

Cluster Segmentation Cluster 23

Individual Classification Good corn 100

Individual Classification Defective corn 120

Individual Classification Impurity 60

Total 303

Table 1. Distribution of the generated dataset. Defective corn in-

cludes rotten and broken corns.

as ground truths for training and validating the segmenta-

tion stage. Figure 2 (2nd col) shows the binary masks, cor-

responding to the contours, obtained for each element from

the Labelbox annotation.

3.2. Image Segmentation

After the datasets have been generated, the next step is

to develop an approachable to segment the elements in the

given image for a further classification. For this task, the

first dataset (cluster of corn kernels) is considered and a

deep learning-based approach, the Mask R-CNN network

[6], is trained. The training process is performed by using

16 images from the corn kernel’s boundary annotated set;

4 images have been used for validation and the remaining 3

images for testing (note that on average each image contains

about 200 elements, mainly corn kernels). Table 2 presents

a detailed description of the cluster set used for training

the image segmentation algorithm. A data augmentation

process, consisting of horizontal and vertical flips, together

with 90-degree rotations and Gaussian blur has been con-

sidered to increase the number of images for the training

process.

The code from [1] of the Mask R-CNN network [6] has

been used to perform the image segmentation. This archi-

tecture generates bounding boxes and segmentation masks

for each instance of the corn kernel and impurity present in

the given image. This implementation is based on ResNet-

101 as a backbone and pre-trained COCO weight; to retrain

this network images from the corn kernel data set have been

resized up to 512×512, to reduce the computational cost of



Dataset Images Good Defective Impurity

kernel kernel instances

instances instances

Training 16 2835 466 84

Validation 4 673 83 23

Testing 3 547 59 7

Total 23 4055 608 114

Table 2. Dataset distribution in segmentation stage.

the training process. Figure 3 shows the Mask R-CNN ar-

chitecture used for corn kernel instance segmentation (note

that classification module is not considered, more details are

given in Section 4).

3.3. Classification

Regarding the classification, in the current work, a novel-

lightweight architecture is proposed to classify a given ele-

ment into some of the following classes: good corn, defec-

tive corn (including broken and rotten corns) and impurity.

The usage of deep networks, such as VGG [21] or ResNet

[7], as previous work (see Section 2.2), has been considered.

However, after evaluating the obtained results (comparisons

are presented in the next section) the design of a more spe-

cific architecture has been considered. The proposed archi-

tecture (see Fig. 4), referred to as CK-CNN, receives as

an input a single element from the segmentation algorithm

and consists of five layers: three convolutional layers de-

fined with a 3×3 size kernels and two fully connected lay-

ers. The model uses a cross-entropy loss function to mea-

sure the performance of the classification model. Also, the

model includes a RELU activation function after each con-

volution and a max pool layer to summarize the results of

the convolution operation. The last two layers are fully con-

nected, the first one receives the output of the last convolu-

tional layer, which allows all the outputs of the convolution

operation to be connected, as was done in the multilayer

perceptron (MLP) technique. The last fully-connected layer

enables the class score using the softmax activation func-

tion, to obtain the probability distribution that corresponds

to each class type.

The proposed model supports the n-class classification

problem. In our case, this model has been used for a 2-class

classification (good or defective corn kernels) and for a 3-

class classification (good corn kernels, defective corn ker-

nels and impurity). The CK-CNN network has been trained

from scratch using Nesterov ADAM (NADAM) optimizer

with a learning rate of 0.0002, which provides a faster con-

vergence and generalization of the model.

4. Experimental Results

This section presents the experimental results obtained

with the proposed pipeline. Evaluations on the two stages:

segmentation and classification are provided showing the

performance of each one of them in comparison with the

state of the art approaches.

4.1. Image Segmentation

As mentioned above, the image segmentation has been

performed using the Mask R-CNN network, which has been

trained using 16 images from the cluster of corn kernel set.

The contour of each corn kernel in the image has been care-

fully annotated and used for training the Mask R-CNN. Ta-

ble 2 shows the distribution of the dataset used in the train-

ing, validation and testing phases; it can be also appreci-

ated the number of instances (corn kernels and impurities)

present on each set. As mentioned in Section 3.2 a data aug-

mentation process (i.e., horizontal flips, vertical flips and

90-degree rotations and Gaussian blur) has been applied to

increase the number of images for the training.

After Mask R-CNN has been trained, a set of 3 images

has been used for validating the obtained results as well

as to compare with other approaches. Figure 5 shows the

ground truth for these three images together with the re-

sults from the Mask R-CNN approach used in the current

work. Additionally, results from watershed and U-Net are

provided; these two approaches have been selected based

on the state-of-the-art corn kernel segmentation. The out-

put of U-Net are edges that need to be post-processed to

extract single elements. This post-processing has been per-

formed using also watershed. In all the cases brown areas

correspond to overlap between regions predicted by a given

algorithm and ground truth; green color is used to highlight

missed regions while red regions correspond to wrong de-

tected areas. More details on these two comparisons are

provided below.

Regarding the two implementations used to compare the

results from Mask R-CNN, firstly, the classical watershed

algorithm has been considered. Results are presented in

Fig. 5 (2nd col). The algorithm did not generate the ex-

pected results, several corn kernels have more than one local

maximum; this fact corresponds to the kernel morphology

and the light conditions in which the images have been ac-

quired. In other words, the algorithm generates regions that

do not exist and a large number of corn kernels are missed,

almost half of them in the illustration of the first row.

The U-Net architecture [19] has been the second ap-

proach used to compare the results obtained with Mask R-

CNN. The framework presented in [24] has been consid-

ered. It consists of a ResNet-34 as the backbone and a pre-

trained ImageNet. The framework has been trained with the

training set of the cluster of corn kernel set presented above.

To speed up the training process, the images were resized to

512×512. Since the result of this network is a binary mask

and it is necessary to determine the instances of each ele-

ment from the given image watershed post-processing has



Figure 3. Mask R-CNN architecture [6] used for corn kernel instance segmentation (classification module is not used).
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Figure 4. Proposed corn kernel classification network (CK-CNN).

been performed. This post-processing stage uses as an input

the binary mask from U-Net and determines each element

in the image. Figure 5 (3rd col) depicts results obtained

from this two-stage approach. Although better results are

obtained, they are not as good as the ones obtained with

Mask R-CNN (see Fig. 5 (4rd col)).

In addition to the qualitative results presented above,

quantitative evaluations have been performed using the in-

tersection over union (IoU) as an evaluation metric of the

obtained results; IoU is generally used to evaluate instance

segmentation approaches (e.g., [25] and [5]). Table 3

presents the mean IoU values for the three approaches eval-

uated in this section computed using the three testing im-

ages presented in Fig. 5. Two IoU values are presented;

the first one (middle column) corresponds to the IoU com-

puted by considering the ground truth and segmentation re-

sult as a whole; in other words, the computed binary mask

is evaluated over the ground truth, as a kind of global as-

sessment. This evaluation does not take into account the

accuracy of computed instances; hence, a second evalua-

tion is performed element by element (note an element can

Experiment Mean IoU Mean IoU

binary mask per instances

Watershed 0.751 0.553

U-Net+Watershed 0.767 0.705

Mask R-CNN 0.903 0.890

Table 3. Results of segmentation stage.

Network Good corn Defective corn Avg.Acc # of Net.

Param.

Mask R-CNN 0.962 0.644 0.803 63738 K

VGG16 0.950 0.917 0.933 134268 k

ResNet50 0.906 0.917 0.911 23591 K

CK-CNN 0.956 0.933 0.945 3306 K

Table 4. Results of classification stage for 2-classes.

be a corn kernel or an impurity). This second evaluation is

presented in Table 3 (right column). As can be appreciated,

in both cases results from Mask R-CNN reach the highest

performance.



Figure 5. The total number of instances shown in each image represents the sum of good corn kernels, defective corn kernels and impurities.

(1st col) Annotated image mask used as ground truth. (2nd col) Segmentation result obtained from watershed algorithm. (3rd col)

Segmentation result from U-Net and watershed. (4th col) Segmentation result from Mask R-CNN.

Network Good Def. Impurity Avg. # of Net.

corn corn Acc Param.

Mask R-CNN 0.960 0.695 0.286 0.647 63738 K

VGG16 0.974 0.876 0.819 0.890 134272 k

ResNet50 0.986 0.860 0.931 0.925 23593 K

CK-CNN 0.979 0.900 0.973 0.956 3306 K

Table 5. Results of classification stage for 3-classes.

4.2. Classification

This section presents results obtained with the approach

proposed for classifying the instances obtained with the pre-

vious segmentation process. As mentioned in Section 3.3,

the 2-class (good corn and defective corn) and 3-class (good

corn, defective corn and impurity) classification problems

have been considered in the current work. Additionally, the

fine-tuning of three architectures (i.e., VGG16, ResNet50

and Mask R-CNN) have been considered for quantitative

comparisons.

For the 3-class classification, the proposed approach has

been trained using 3600 images (1440 of good corns, 1440

of defective corns and 720 of impurities) and validated with

900 images (360 of good corns, 360 defective corns and

180 of impurities). Resulting in a total of 4500 images.

This original set has been enlarged through a data augmen-

tation process, which expands the given set by five times its

size (i.e., vertical and horizontal flips, random rotations and

width/height shift operations). Additionally, a set of 2100

images (700 images per each category) was kept aside for

the testing stage. The above-mentioned dataset has been

used for tackling the 2-class classification problem; in this

case, 2310 images have been used for the training stage

(1155 of good corns and 1155 of defective corns) and 990

images for the validation. The same data augmentation pro-

cess has been considered, resulting in a total of 16500 la-

beled images. In the 2-class classification problem, 360 im-

ages have been considered for the testing stage. The train-

ing processes for the 3-class and 2-class problems have been

performed through 300 epochs and 40 steps per epoch, both

for our proposed model and the other architectures. The re-

sults obtained with the proposed novel lightweight network



Figure 6. Comparisons of ROC curves for the 3-class-classification, CK-CNN vs other architectures (just an enlargement of the top left

area of ROC curves is depicted).

CK-CNN are presented in Table 4 and Table 5, 2-class and

3-class respectively.

Regarding the comparisons, the first approach was the

Mask R-CNN model, which has been used during the seg-

mentation stage. The Mask R-CNN has been selected since

it provides instance segmentation and classification at once.

Unfortunately, although good results have been obtained in

both cases, 2-class and 3-class problems, for the good corn

category, it was not the case for the other categories. This

low accuracy values in most of the classes are mainly due

to the fact of the unbalance of classes present in the cluster

set used for the training. For instance, looking at Table 2

we can appreciate the defective kernel and impurity classes

have just a few instances in comparison with the good corn

kernel category. This imbalance results in the poor discrim-

inant capability of the network for these categories.

The other approaches used for comparisons are VGG16

and ResNet50 (see Section 2.2 for more details). In both

cases, a pre-trained network has been considered and a fine-

tuning process performed with the images from the cur-

rent work. In more detail, in the case of VGG16, the first

14 layers have been maintained, while the last two layers

have been retrained. In the case of ResNet50, all the net-

work’s parameters have been fine-tuned by using the dataset

of the current work. On the contrary to the previous com-

parisons, in these cases, good results have been obtained in

the two cases (2-class and 3-class classification problems),

although the proposed approach reaches the best average

performance in both of them. Just in the good corn cate-

gory, for the 3-class classification, the ResNet50 architec-

ture reaches a slightly better result (a 0.7% of improvement

in accuracy). It should be highlighted that the number of

parameters of ResNet50 is more than 7 times the number

of parameters of CK-CNN; this difference is even bigger

in the case of VGG16, in this case, the number of param-

eters is more than 40 times the number of parameters of

CK-CNN. These results demonstrate that too deep learning

models do not necessarily give us the best results in the par-

ticular case of kernel classification. The reduced number

of parameters allows a fast convergence during the training

process. To conclude these comparisonsFig. 6 present the

ROC curves of the proposed approach (CK-CNN) together

with the other three architectures (due to space limitations

just the top left of ROC curves are depicted). It can be ap-

preciated that the proposed CK-CNN architecture has not

only the best quantitative results, with the lowest number of

parameters (see Table 5) but also it has the best behavior.

5. Conclusions

This paper proposes a novel framework to classify ele-

ments from a given corn kernel sample set. The proposed

approach is robust enough that no additional requirements

are imposed on the way samples are distributed (i.e., no

matter whether corn kernels are touching or separated). The

proposed scheme consists of two phases; the first one is

focused on the object segmentation, which is performed

through the Mask R-CNN network. During the first phase

instances on the given samples are extracted. During the

second phase, each instance is classified using a lightweight

network specially designed for this task. Experimental re-

sults are provided showing both the robustness of the pro-

posed approach as well as the improvements on global clas-

sification performance with the proposed network architec-

ture. As a second contribution of this work, a dataset has

been generated and carefully annotated (single contour of

corn kernels and class labels).
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