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Abstract—This paper proposes a novel approach to generate
thermal-like representations from RGB images by using the
corresponding depth map as an additional constraint. The given
RGB images are converted to the HSV color space and the
brightness channel is used as input together with the spatial
information provided by the depth map of the given scene.
This depth map is used as prior information by the generative
network. By training a generative model with paired input
images and their corresponding depth maps, the model learns the
mapping from the RGB images to thermal-like representations.
Experimental results demonstrate that the method outperforms
state-of-the-art approaches, producing superior-quality thermal
images with improved shape and sharpness, attributed to using
depth maps as complement information.

Index Terms—thermal-like representations, conditioned gener-
ative models, depth maps

I. INTRODUCTION

Thermal imaging plays a crucial role across diverse sectors,
including security, healthcare, and environmental monitoring
[1]. However, conventional thermal imaging techniques are of-
ten constrained by factors such as equipment costs and weather
conditions. In response to these challenges, the synthesis of
thermal images from standard RGB images can be considered
a real alternative, offering the potential to increase visual data
and facilitate applications where traditional thermal images
are not possible to acquire by high costs or lack of data
sources. The evolution of thermal imaging from its military
origins to widespread applications in industrial inspection and
medical diagnostics has spurred the development of synthetic
thermal image generation. Overcoming challenges such as cost
and accessibility in acquiring real thermal imagery, this field
merges computer vision, machine learning, and physics-based
modeling to simulate thermal radiation and produce images
for training machine learning models and testing algorithms.

Key challenges in this domain include precise material prop-
erties estimation, incorporating atmospheric effects, and vali-
dating synthetic images against real-world data. Despite these
obstacles, synthetic thermal image generation presents exciting
opportunities for applications such as training autonomous
vehicles in challenging weather conditions, biomedical di-
agnosing, and enhancing security systems through improved
thermal surveillance capabilities like security screening (e.g.,
[2], [3], [4]).

In recent years, research efforts have focused on leveraging
advanced computational techniques to synthesize thermal-like

images from RGB inputs. These efforts have led to the devel-
opment of various methodologies, including generative mod-
els based on deep learning architectures such as Generative
Adversarial Networks (GANs) and Variational Autoencoders
(VAEs). By learning the underlying patterns and characteris-
tics of thermal imagery from large datasets of paired RGB
and thermal images, these models can generate convincing
thermal-like representations from RGB inputs (e.g., [5], [6]).
Lately, conditional synthetic thermal image generation has
emerged as a transformative field, offering innovative solutions
to challenges in acquiring real thermal imagery [7]. Taking
advantage of numerical modeling of heat transfer and ad-
vanced technologies such as generative adversarial networks,
researchers are pioneering novel approaches to create synthetic
thermal images for various applications.

The current work presents a novel methodology for gener-
ating thermal images conditioned on the depth information of
the given scene. These depth maps provide valuable spatial
information about a scene, enriching the generation process
with improved shape and sharpness. The model also converts
the RGB input images to the HSV color space, from which just
the brightness channel (H) is used to facilitate the convergence
of the model to the thermal domain enhanced with the informa-
tion extracted from the depth maps. Our approach seamlessly
integrates depth cues into the generation process, resulting in
thermal-like images that closely approximate authentic thermal
images.

The proposed methodology involves training a paired GAN
generative model, which learns to generate thermal representa-
tions from RGB images while considering the provided depth
information as a conditioning to the generative process. This
integration allows the model to generate thermal images with
improved shape and sharpness, very similar to real thermal
images. The manuscript is organized as follows. Section II
provides a comprehensive review of related work in the fields
of thermal image synthesis using deep learning with or without
prior information. Section III presents the approach proposed
for conditional generative thermal-like image generation using
depth maps as prior. Experimental results and comparisons
with different approaches are given in Section IV. Finally,
conclusions are presented in Section V.

II. RELATED WORK

In this section, the existing literature on thermal image
synthesis with deep learning-based techniques such as con-979-8-3503-7565-7/24/$31.00 ©2024 IEEE
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ditional generative GAN networks using prior information or
any other type of convolutional networks is reviewed. By
examining the different strategies and techniques employed in
these approaches, we seek to gain insight into advances and
challenges in the field and lay the foundation for our proposed
methodology.

In the field of thermal imaging, high-quality image synthesis
using convolutional networks such as conditional generative
adversarial networks or deep learning-based architectures us-
ing complementary information as priors has emerged as
a promising approach. Researchers have explored various
methodologies to leverage conditional GANs along with prior
information to generate realistic and visually appealing ther-
mal images. By conditioning GANs to specific antecedents,
such as semantic information, distances or physical character-
istics of the scene, in different research work authors manage
to improve synthetic thermal images so that they are not
only visually pleasing but also semantically better defined. In
[8], a method for detecting pedestrians in thermal images is
proposed, addressing the limitations of infrared cameras, such
as low contrast and blurred details. The proposed architecture,
TE-GAN, is a thermal enhancement model based on generative
adversarial networks. This architecture consists of two impor-
tant modules: contrast enhancement and denoising, followed
by a post-processing step for edge restoration to improve the
overall image quality. Following a similar strategy to synthe-
size thermal faces, Zhang et al. [9] propose a GAN-based
multi-stream feature-level fusion technique. This involves us-
ing a generator sub-network, which is built using an encoder-
decoder network with dense residual blocks. Additionally, a
multi-scale discriminator sub-network is employed. Another
approach to facial recognition is the one proposed by [10],
where a method for generating thermal images from visible
spectrum has been implemented to perform facial emotion
recognition. This technique leverages facial thermal imaging
as an efficient modality for recognizing emotions. The process
involves using CycleGAN, a type of GAN, to translate images
from the visible spectrum to thermal images, enhancing the
capabilities of facial emotion recognition systems.

On the contrary to previous approaches, in [11] the authors
propose a generic framework to generate thermal images of
any scenario from the corresponding RGB image. The authors
propose an unpaired cyclic adversarial generative model, to
obtain the synthetic representation of thermal images from vis-
ible images. The model allows simulation of the temperature
information of the objects in the scene.

The domain translation problem has been also studied in a
generic framework by the remote sensing community, where
the development of models capable of translating co-aligned
images between different modalities (e.g., RGB-IR, Synthetic
Aperture Radar (SAR) - Electro-Optical (EO), SAR-IR, SAR-
RGB) has been tackled. This challenge has motivated the
research community to set-up competitions in different forums
to evaluate the performance of different contribution. One ex-
ample of these competitions is the one held annually within the
framework of the PBVS-CVPR workshop [12]. In summary,

domain translation has recently become an active research
topic of interest in various communities. According to the
state-of-the-art, all proposed techniques focus on generating a
representation in different domain from the given one by using
some generative approach. However, none of the approaches
reviewed in the literature make use of additional information
that could facilitate or improve the results. In the current work,
thermal image generation uses depth information to enhance
the obtained results.

III. PROPOSED APPROACH

This section presents the approach proposed for generating
thermal-like images by means of a CycleGAN architecture.
The proposed approach takes advantage of the inherent char-
acteristics of the HSV color space, specifically focusing on
the brightness channel, to facilitate a more homogeneous
translation to the thermal domain. Also, thermal imaging pri-
marily captures heat intensity rather than the visible spectrum
colors. In the HSV model, the ’Value’ component aligns
directly with brightness or intensity, which acts as a proxy for
thermal radiation in synthetic imaging. This allows the model
to prioritize intensity variations, much like thermal cameras,
which focus more on heat emitted by objects rather than their
color. Furthermore, depth information is used as an additional
input to improve the quality and sharpness of the generated
thermal images. It should be noted that the input is just an
RGB image, which is converted to the HSV color space, depth
information is estimated by means of the approach proposed in
[13]. By combining intensity information, the V channel, with
spatial cues, our approach offers a comprehensive solution
to produce high-fidelity pseudothermal images with greater
structural coherence, contextual relevance, and representation
of temperatures as close as possible to real thermal images.

By incorporating depth-aware constraints, our model learns
to preserve depth-related characteristics across image trans-
lations, ensuring that the thermal features align with the
spatial arrangement of objects within the scene. This results in
pseudo-thermal images that not only exhibit enhanced visual
fidelity but also convey a deeper understanding of the scene’s
composition and spatial relationships. Depth maps provide
information about the 3D structure of the scene (e.g., surface
orientation). This knowledge can be used to infer thermal
gradients, occlusions, and object boundaries in the thermal
images, allowing for more accurate synthesis, especially in
cases where visible spectrum data alone might not provide
enough information.

Building upon the Cycled GAN framework introduced by
Zhu et al. [14], and inspired by [11], our architecture facilitates
domain transfer between paired image domains, enabling the
synthesis of thermal-like images. To ensure accurate transla-
tion of pixel intensities to the far infrared spectrum, we inte-
grate the contrastive loss function presented in [15], focusing
on learning the relationship between input embeddings from
nearby regions, thereby enhancing image quality by predicting
missing information based on environmental context.
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Fig. 1. Proposed Cycle GAN architecture.

Overall, the choice of color space is an important consid-
eration in image processing, and the experiments with the
proposed approach demonstrate the significant impact that this
choice can have on the quality and accuracy of the resulting
output. In the case of obtaining synthetic thermal images, the
use of the brightness channel, from HSV representation, was
found to be highly effective and should be considered a key
factor in the design of similar models in the future.

In the current work the Least square GAN loss is incorpo-
rated, in place of the traditional GAN loss suggested by [16].
This leads to better training of the GAN, and consequently,
more accurate synthetic thermal images. The use of the least
square GAN loss in our architecture offers several advantages
over the standard GAN loss providing more stability and help-
ing synthesize better similarity of textures and temperatures of
the images. The definition of the least square loss for both the
generator and discriminator components can be expressed as
follows:

LLS-GAN
D = 1

2Ey∼P[(D(y) − 1)2] + 1
2Ex∼Q[D(x)2] (1)

LLS-GAN
G = 1

2Ex∼Q[(D(x) − 1)2], (2)

where x represents a real thermal from the real data distribu-
tion, x represents a generated (fake) thermal from the gener-
ator, D(y) represents the discriminator’s output (probability)
for a real thermal y, and D(x) represents the discriminator’s
output (probability) for a generated synthesize thermal x. To
enhance the synthesis of thermal images, instance normaliza-
tion is employed, which adjusts the features of each synthetic
image individually. Applying this normalization process ef-
fectively reduces style differences between the generated and
real-synthetic thermal samples, leading to improved overall
quality and realism in the synthesized depth maps.

The contrastive loss has been implemented in our archi-
tecture to enable the model to be trained by learning the
similarities between the latent space generated by the network.
As outlined in [17], contrastive learning methods require only
a definition of the similarity distribution to sample a positive
input x+ ∼ p+(· | x), and data distribution for a negative input
x− ∼ p−(· | x), for a given input image x. The authors in [17]

argue that the shape of the tensor Vl ∈ RSl×Dl is determined
by the architecture of the network, where Sl denotes the num-
ber of spatial locations of the tensor. The notation vs

l ∈ RDl

is used to refer to the Dl-dimensional feature vector at the sth

spatial location. Additionally, v̄s
l ∈ R(Sl−1)×Dl is defined as

the collection of feature vectors at all other spatial locations
except s. Also, v̂s

l is the predicted feature vector at spatial
location s and layer l, derived from Ŷ . The primary goal of
training the model is to minimize the difference between the
predicted output Ŷ and the true output Y . By including both,
the loss function explicitly penalizes discrepancies between
these two sets of representations.

Hence, the proposed contrastive loss function is defined as
follows:

Lcontrasive(Ŷ , Y ) =
L∑

l=1

Sl∑
s=1

ℓcontr (v̂s
l , vs

l , v̄s
l ) . (3)

The training process focuses on learning discriminative fea-
tures between images, which can be beneficial in capturing
the most representative differences in temperature patterns.
Therefore, it helps to explicitly model features related to
these important features in a synthetic thermal image. In the
context of paired images, contrast loss can still be beneficial
if there are subtle differences between domains that are not
fully captured by consistent cyclic loss. It helps the model
learn these differences explicitly, potentially leading to more
accurate translations.

To constrain the pixel intensity levels within the bounds
of the target domain during data transformation, the model
incorporates the identity loss function. This implies that the
generative network preserves essential attributes, such as ther-
mal intensity levels and object shapes while ensuring the
stability of the formation model. Specifically, the generative
network aims to maintain G(x) ≈ x and F (y) ≈ y and ensures
minimal deviation in pixel intensity levels from the original
domain during the transformation process. The identity loss
function is defined as follows:

Lidentity (G, F ) = Ex∼pdata(x)[∥G(x) − x∥]
+ Ey∼pdata(y)[∥F (y) − y∥].

(4)
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.
Furthermore, another index used as a reference is the

structural similarity index, proposed in [19]. This index as-
sesses images by considering the sensitivity of the human
visual perception system to alterations in local structure. The
underlying concept of this loss function is to aid the learning
model in generating visually enhanced images. The structural
similarity loss is defined as:

LSSIM(x, y) = 1 − SSIM(x, y), (5)

where SSIM(x, y) is the Structural Similarity Index (see [19],
x represents the output of the neural network that we are trying
to optimize, and y is the reference or ground truth image. It
represents the target image that the model aims to reproduce
or approximate as closely as possible

The final loss function (Lfinal) used in our model combines
the earlier mentioned loss components and it is formulated as
follows:

Lfinal = LLSGAN(G, D, X, Y ) + λXLLcontrative (Gs, F, X) (6)
+λY LLcontrastive(F, G, Y ) + γLIdentity(G,F ) + βLSSIM(x,y),

where λX and λY represent the weights attributed to the con-
trastive loss function for the domains X and Y , respectively.
These values are empirically determined based on experi-
mental outcomes. The contrastive loss component Lcontrastive
evaluates the similarity of the latent spaces generated by the
generator networks G and F within the embedding network
for corresponding input images; γ and β are the weights of
the identity and SSIM loss functions respectively, they are
defined according to the results of the experiments.

IV. EXPERIMENTAL RESULTS

A. Datasets

The M3FD data set [20] has been utilized to train the
proposed model. The data set was captured using a binocular
optical and infrared sensor and consists of 4,500 image pairs
of outdoor scenes. For training, 3,000 image pairs were used
while 890 pairs were used for validation and the remaining
images for testing of the trained model. The images were pre-
processed to generate realistic synthetic far-infrared images
by transferring them to the HSV color space and selecting the
brightness channel for training. To test the model’s robustness,
the FLIR ADAS V2 dataset [21] with 300 pairs has been used.
Also, an additional proprietary data set called Thermal Stereo
[22], which includes 200 pairs of registered visible-thermal
images, was used. The model trained with the M3FD data set
was evaluated and compared against the results obtained from
other experiments.

B. Results and Comparisons

The proposed approach is evaluated by comparing it with
the results from the state-of-the-art models for unpaired image
translation (e.g., [14] and [18]). These models are well-known
for their capability to generate synthetic images from the

visible spectrum to another domain. In this study, the concept
is adapted by introducing modifications to the loss functions
and pre-processing techniques to generate synthetic thermal
images.

This section provides an overview of the quantitative and
qualitative results obtained through the proposed methodol-
ogy. The data set used for training is also detailed and the
preprocessing techniques used on the images are described.
Furthermore, it performs a comparative analysis using similar-
ity metrics and evaluates the PSNR present in the generated
synthetic images.

Table I presents the average results obtained from the model
in [14], the approaches presented in [18], both CUT and
FastCUT, and the approach proposed in the current work.
The evaluation process uses samples from the M3FD, FLIR
ADAS V2 datasets as well as our dataset consisting of out-
door scenes named Thermal Stereo. The SSIM obtained with
each dataset, together with their corresponding PSNR values
are depicted. Visual representations of the synthetic thermal
images generated from these validation sets are depicted in
Fig. 2, Fig. 3, and Fig. 4 respectively. In conclusion, the
proposed approach builds upon the previous state-of-the-art
model, introducing modifications to generate synthetic thermal
images. The evaluation results demonstrate the effectiveness
of the approach in producing high-quality synthetic thermal
images, as evidenced by the quantitative metrics and visual
comparisons.

V. CONCLUSIONS

This paper presents a novel approach for synthesizing
thermal-like images using depth maps as additional informa-
tion. The brightness channel from the HSV representation is
used as input by the generative model. It generates a thermal-
like image representation that closely simulates authentic ther-
mal images while incorporating spatial information provided
by depth cues. Through training a generative model on paired
RGB images and their corresponding depth maps, we enable
the model to learn the mapping from RGB inputs to thermal-
like representations. Experimental results demonstrate that our
model improves state-of-the-art techniques, obtaining synthetic
thermal images with better representation of temperatures and
improved quality.
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Fig. 2. Experimental results from M3FD dataset: (1st. row) Brightness channel from the HSV representation; (2nd. row) Depth map obtained from [13]; (3rd.
row) Thermal representation from [14]; (4th. row) Thermal representation from [18] (FastCUT); (5th. row) Thermal representation from [18] (FastCUT); (6th.
row) Thermal representation from the proposed approach; (7th. row) Ground truth images.
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Fig. 3. Experimental results from Thermal Stereo dataset: (1st. row) Brightness channel from the HSV representation; (2nd. row) Depth map obtained from
[13]; (3rd. row) Thermal representation from [14]; (4th. row) Thermal representation from [18] (CUT); (5th. row) Thermal representation from [18] (FastCUT);
(6th. row) Thermal representation from the proposed approach; (7th. row) Ground truth images.
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Fig. 4. Experimental results from FLIR ADAS V2 dataset: (1st. row) Brightness channel from the HSV representation; (2nd. row) Depth map obtained
from [13]; (3rd. row) Thermal representation from [14]; (4th. row) Thermal representation from [18] (CUT); (5th. row) Thermal representation from [18]
(FastCUT); (6th. row) Thermal representation from the proposed approach; (7th. row) Ground truth images.
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TABLE I
AVERAGE RESULTS FROM THE VALIDATION SETS (M3FD-THERMAL, STEREO, AND FLIR ADAS V2). BEST RESULTS IN BOLD.

Approaches M3FD Thermal Stereo FLIR ADAS V2
PSNR SSIM PSNR SSIM PSNR SSIM

Zhu et al. [14] 12.612 0.492 10.658 0.404 11.163 0.447
CUT [18] 13.178 0.6644 12.152 0.526 11.214 0.509
FastCUT [18] 13.241 0.683 12.581 0.631 12.117 0.605
Proposed Approach 14.799 0.781 17.635 0.751 13.517 0.701
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