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Abstract— In the context of robotics, accurate 3D human pose
estimation is essential for enhancing human-robot collaboration
and interaction. This manuscript introduces a multi-view 2D to
3D lifting optimization-based method designed for video-based
3D human pose estimation, incorporating temporal information.
Our technique addresses key challenges, namely robustness
to 2D joint detection error, occlusions, and varying camera
perspectives. We evaluate the performance of the algorithm
through extensive experiments on the MPI-INF-3DHP dataset.
Our method demonstrates very good robustness up to 25
pixels of 2D joint error and shows resilience in scenarios
involving several occluded joints. Comparative analyses against
existing 2D to 3D lifting and multi-view methods showcase good
performance of our approach.

I. INTRODUCTION

3D human pose estimation is essential for human-robot
collaboration, as it equips robots with the ability to com-
prehend and respond to human movements in a three-
dimensional space. This technology facilitates seamless and
intuitive interactions by enabling robots to interpret gestures,
body language, and spatial relationships. Accurate pose es-
timation ensures precise coordination between humans and
robots, enhancing safety and efficiency in shared workspaces
[1], [2]. It allows robots to adapt their actions based on
human poses, allowing smoother collaboration in diverse
applications such as manufacturing, healthcare, and assistive
robotics [1], [3]. Thus, it forms a fundamental bridge for ef-
fective communication and cooperation between humans and
robots, promoting a productive collaborative environment.

However, despite the advances in 3D human pose estim-
ation, current methods often struggle to handle occluded
joints effectively. Occlusions occur when certain body parts
are temporarily hidden from view, challenging the ability
of the algorithm to predict the complete pose accurately.
Occlusions can be caused by either an object in front of the
human or by the human itself (self-occlusions) when part of
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the body occludes certain joints. In the context of human-
robot collaboration, predicting occlusions becomes crucial.
When robots cannot accurately perceive occluded joints, it
may lead to misinterpretations of human actions, potentially
resulting in errors or accidents. For instance, if a robot fails
to recognise that an arm of the person is temporarily hidden
behind an object, it might misunderstand the intended ac-
tion, impacting the collaborative task. Therefore, developing
robust algorithms that can predict and account for occluded
joints is paramount for enhancing the reliability and safety of
human-robot collaboration scenarios. It ensures that the robot
can adapt appropriately even when parts of the human body
are temporarily occluded, contributing to a more effective
and secure collaborative environment.

To address the limitations of existing methods, this ma-
nuscript introduces a novel approach to 3D human pose
estimation represented in Fig. 1. We employ a 2D to
3D lifting optimization technique, leveraging information
gathered from multiple video frames. Unlike traditional
methods that rely solely on individual frames, our algorithm
considers temporal information to predict occluded joints
more robustly. By analysing a sequence of frames, the
algorithm is able to handle situations where certain joints are
temporarily occluded. Additionally, we also use information
specific to each human skeleton to improve the accuracy of
the 3D estimation and predict the pose of occluded joints.
We evaluate our framework on a representative 3D human
pose estimation dataset, the MPI-INF-3DHP Dataset [4],
and present comparative results with other state-of-the-art
methods. The contributions of this paper can be summarised
as follows:

• to propose a multi-camera video-based 3D human pose
estimation algorithm;

• to predict accurately the position of occluded 3D joints;
• to compare with other 3D human pose estimation state-

of-the-art approaches.

II. RELATED WORK

Human pose estimation refers to the process of determin-
ing the configuration of a human body within a given scene.
This can be achieved through two primary methods: skeleton-
based [5], [6], [7], [1] and mesh-based approaches [8], [9],
[10], [11], [12], [13]. A more simplified representation of
the human body is provided by the skeleton-based method,
which views it as a collection of joints connected by links.
Alternatively, the mesh-based approach approximates the
human body as a triangular mesh, providing a more detailed
albeit more complex representation.
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Fig. 1. Schematic representation of the proposed approach. The main framework is divided into three key components: the reprojection component, the
link length component, and the frame-to-frame component. The reprojection component aims to minimize the distance between the projection of the 3D
joints and their 2D detections. The link length component aims to uniformize the tridimensional link length in all the frames. And the frame-to-frame
component helps predict the position of occluded joints using the position of the same joint in adjacent frames.

In the context of 3D human pose estimation, the goal
is to infer the spatial pose of the human body in three-
dimensional space, typically making use of image data.
Skeleton-based 3D human pose estimation techniques are
commonly categorized into two main methodologies: direct
estimation [1], [14], [15] and 2D to 3D lifting [7], [5],
[16], [17]. Direct estimation techniques aim to predict the
complete 3D pose without leveraging pre-existing 2D pose
information, with the capacity of models to learn the spatial
representation of the human directly from visual cues [18].
On the contrary, 2D to 3D lifting approaches operate under
the assumption of prior knowledge of 2D human poses
captured from one or more viewpoints, focusing exclusively
on the transition from 2D to 3D space [18].

Choi et al. generate multiple 3D pose candidates for each
identical 2D keypoint and use a diffusion-based framework
to effectively sample diverse 3D poses from an off-the-shelf
2D detector (Choi, 2023). The algorithm outputs 3D joint
errors of around 50mm on the Human3.6M dataset [19].
Martinez et al. use a simple deep feedforward network to
lift 2D keypoints to 3D joint positions [16]. Using the 2D
ground-truth joint values, the algorithm outperforms state-of-
the-art methods by 30% on Human3.6M [19], and using off-
the-shelf 2D detectors, the algorithm obtains around 60mm
of 3D joint error. Pavvlo et al. estimate 3D poses in videos
using a fully convolutional model based on dilated temporal
convolutions over 2D keypoints [17], and the authors also
propose a semi-supervised training method that back-projects
the estimated 3D poses back into 2D keypoints. 3D joint
errors round 50mm when testing on the Human3.6M dataset
[19].

Although learning-based methods are predominant in the
human pose estimation field [7], [16], [20], [21], [22], [23],
[24], [25], [26], they can sometimes fall short due to do-
main gaps or varying intrinsic parameters [5]. Optimization
methods usually use a frame-to-frame independent analysis,
which does not allow for understanding the context of the
entire problem and usually cannot achieve the performance
of learning-based methods, but its case-by-case analysis can
be an advantage in understanding scenarios where learn-
ing approaches struggle. Some optimization methods use
A Skinned Multi-Person Linear Model (SMPL) [10] mesh
models as a baseline for optimization [8], [9], [11]. Bogo et
al. fit the SMPL mesh model to the pre-obtained 2D joints by
optimizing the distance between the project 3D model joints
and the previously detected 2D joints [8]. Results presented
on the HumanEva dataset [27] average 80mm of 3D joint
error. Choutas et al. use learned optimization and propose
a method based on the Levenberg-Marquardt algorithm [9].
Results on the 3DPW dataset [28] are around 50mm of 3D
joint error. Müller et al. propose an optimization method
focused on the detection of human self-contact that includes
contact constraints [11]. 3D joint errors are around 100mm
on MPI-INF-3DHP [4] and 85mm on 3DPW [28]. Re-
garding skeleton-based human pose estimation optimization
techniques, Jiang et al. propose a zero-shot diffusion-based
optimization method focused on cross-domain and in-the-
wild 3D human pose estimation also from 2D keypoint
values [5]. 3D joint errors on 3DPW [28] are around 70mm,
on Human3.6M [19] are around 50mm and on MPI-INF-
3DHP [4] are around 70mm.

In conclusion, 3D human pose estimation, as explored
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through various methodologies such as skeleton-based and
mesh-based approaches, faces inherent challenges with errors
typically ranging between 50 and 70 millimetres. Despite
significant progress, there is still room for improvement in
achieving higher accuracy and robustness. The challenge of
occluded joints remains an issue in human posture estim-
ation. Existing solutions, including learning-based methods
and optimization techniques, exhibit limitations in handling
diverse scenarios.

Unlike the previously mentioned optimization methods,
our approach stands out by strategically incorporating tem-
poral information and relying on unique characteristics spe-
cific to each individual human skeleton. By using temporal
patterns and personalised features, our algorithm not only
enhances the precision of 3D pose estimations but is also
successful in predicting the poses of occluded joints. This
is a distinctive feature compared to traditional optimization
methods, which often lack the capacity to adapt to dynamic
temporal changes and handle occlusions effectively.

III. METHOD

The proposed video-based optimization approach uses the
least-squares method to determine the 3D position of each
joint in a predefined skeleton. This approach uses 2D to 3D
lifting, meaning that it assumes that the 2D poses are known
in a certain image (in pixels) and also requires the extrinsic
parameters of the cameras in the system.

Besides the information from the 2D keypoints, our ap-
proach uses temporal information that helps detect occluded
joints while trying to predict the movement of the occluded
joint by extrapolating from frames where that joint was
previously seen. It integrates knowledge from the anatomical
configuration of the human skeleton by aiming to homo-
genize the three-dimensional length of each skeletal link
across all frames. More precisely, the objective is to ensure
uniformity in the three-dimensional length of each link across
the entire sequence of frames.

The optimization problem is solved using a nonlinear least
squares method. This algorithm aims to find the parameter
vector θ that minimises the sum of squared residuals Q(θ) =∑n

i=1 r
2
i , where ri = yi − f(xi, θ) represents the difference

between the observed data yi and the model prediction
f(xi, θ), where xi represents the input features or predictors
used in the model to make predictions. The Jacobian matrix
J is a key component, containing partial derivatives of the
residuals with respect to the parameters: Jij = ∂ri

∂θj
. The NLS

method iteratively updates the parameter estimates using the
linearized system of equations represented by eq. 1

θk+1 = θk − (J⊺J)−1J⊺r , (1)

where J⊺ is the transpose of the Jacobian matrix, and
r is the vector of residuals. This update rule adjusts the
parameter estimates in the direction that reduces the sum of
squared residuals, and the process is repeated iteratively until
convergence is achieved. The final θ represents the optimal
parameter that provides the best fit of the nonlinear model to
the observed data. The optimization is handled as a sparse

problem because the parameters do not influence all of the
residuals, and it is solved with the trust region reflective
algorithm [29], which is a suitable method for large bounded
sparse problems.

A. Objective Function

The objective function is used as a baseline for our
optimization process. This function aims to determine the
3D coordinates, X,Y, Z, for each joint j and each frame
f , where the error is minimum. There are three main error
components in the objective function: the reprojection error,
erp; the link length error, ell; and the frame-to-frame error,
eff . It is defined as:

fobj = argmin
(X,Y,Z)j,f

∑
j

ell +
∑
j

∑
f

(erp + eff ) (2)

The error components are detailed as follows.
1) Reprojection Residuals: The reprojection error is com-

puted between the calculated joint 3D coordinates. It is
defined as:

erp =
∥∥∥proj((X,Y, Z)j,f , λi

)
− dj,f,i

∥∥∥ · cj,f,i , (3)

where (X,Y, Z)j,f , for each joint j, and each frame f ,
projected to the frame in question for each camera image
i, with the intrinsic and extrinsic parameters λi, and the
coordinates 2D detection of that joint, dj,f,i in pixel. The
confidence value for each joint in each frame and camera
cj,f,i is also used as a multiplying factor for the reprojection
residuals, highlighting joints that have high confidence de-
tection values. The confidence value is provided by the 2D
detector.

2) Link Length Residuals: Eq. 4 expresses the error to
be optimized for the link length portion of the objective
function. It is defined as:

ell =

√∑
(lj,f − l)2

F
(4)

The link length residuals calculate the tridimensional length
of the skeleton links for each frame. For each link l, the
average link length l for all the frames needs to be calculated.
The residual for a link equals the standard deviation of that
link, meaning the root square of the sum of the square of
the difference between the link length for each frame and the
average link length for that link divided by the total number
of frames F . This forces all the frames to have the same link
length for a determined link. This should be true because the
links of the human body are rigid and, for the same human,
will not change its tridimensional length.

3) Frame to Frame Residuals: Eq. 5 expresses the frame-
to-frame error. It is defined as:

eff =

{
∥(X,Y, Z)j,f − (X,Y, Z)j,f−1∥ if j occluded

0 otherwise
(5)

where the error for a joint j is the Euclidean distance between
the coordinates of that joint in frame f and the coordinates
of that joint in the previous frame (for all frames but the
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Fig. 2. Representation of the skeleton used in the experiments.

first). This residual is only activated for occluded joints or
when the current distance between joints is bigger than a
given threshold; in this case, we use 150mm since it allows
the baseline of the algorithm to be mainly the reprojection
function, only activating the frame-to-frame residuals when
the prediction of the joint position is very different from
the previous frame. Since the standard value for the 3DPCK
metrics explained in Section IV-A and proposed in [4]
also considers a correctly identified keypoint as a keypoint
within the 150mm threshold, this value also aligns with
that. This residual assumes that in consecutive frames, and
with relatively high frame rates, the position of a given joint
cannot be significantly different.

Adding the frame-to-frame error residual, eff , to the
optimization improves 3D detection quality by ensuring
temporal coherence and spatial continuity. It encourages
smooth transitions of joint positions between frames, helping
maintain the realism of motion and predict occluded joints
based on their last known positions. By combining temporal
and spatial information, the algorithm becomes more robust
to noise and occlusions, leading to more accurate and reliable
3D pose estimations.

IV. EXPERIMENTS AND RESULTS

This section presents the results and experiments de-
veloped to prove the accuracy of our method. We present
comparative results and three separate experiments where
we evalute the impact of the initial 2D detection noise, the
number of occluded joints and the number of cameras.

A. Dataset and Metrics

For all the tests and evaluations presented in this manu-
script, we use a 3D human pose estimation dataset, the MPI-
INF-3DHP dataset [4], which provides several scenarios,
8 cameras with different points of view, and 2D and 3D
ground-truth labels. For the context of the following experi-
ments, we use only 4 out of the 8 available cameras. As the
skeleton model, we use the MPI-INF-3DHP skeleton with 23
joints represented by Fig. 2. To assess the performance of the
algorithm, we use established evaluation metrics commonly
utilized in the field of 3D human pose estimation: MPJPE
(Mean Per Joint Position Error) and 3DPCK (3D Percentage

of Correct Keypoints). The MPJPE is represented by eq. (6),

MPJPE =

F∑
f=0

J∑
j=1

∥Pj,f − Pgt∥

F · J
, (6)

where P = (X,Y, Z). The MPJPE quantifies the average
error per joint position, determined by the Euclidean distance
between the ground truth (Xgt, Ygt, Zgt) and the estimated
joint positions (Xj,f , Yj,f , Zj,f ) for each joint j and frame
f , divided by the total number of frames F and the total
number of joints, J .

The 3DPCK is represented by eq. (7),

3DPCK =
Jcorrect

J
× 100 , (7)

where Jcorrect is the number of correct joints and J is
the total number of joints. The 3DPCK measures the per-
centage of correctly identified 3D keypoints. A detection
is a true positive if the Euclidean distance between the
estimated joint position and its corresponding ground truth
falls within a specified threshold. In alignment with standard
practices from other state-of-the-art approaches, we applied
a threshold value of 150mm like suggested in [4]. These
metrics collectively provide a comprehensive evaluation of
the accuracy of the algorithm in estimating 3D human poses.

B. Comparative Analysis

Table I presents a comparative analysis of the proposed
methodology with other state-of-the-art algorithms on the
MPI-INF-3DHP dataset [4]. The evaluated algorithms in-
clude Bouazizi et al. [22], Bouazizi et al. [23], Kocabas et
al. [24], Jiang et al. [5], Yu et al. [25], and Pavvlo et al. [17]
as benchmark references, which have been discussed in the
section II.

We limit our comparison to 2D to 3D lifting state-of-
the-art methodologies, as these are the most similar to our
approach. For our methodology, we use two variants of the
approach with two different errors (10 and 20 pixels) in the
2D detected keypoints, where we vary the magnitude of the
noise added to the ground-truth 2D detections. This is done
to emulate the fact that 2D detectors are not perfect. In any
case, it is important to note that state-of-the-art 2D detectors
consistently perform better than 10 pixels.

Our algorithm outperforms all other methodologies in
MPJPE values. The MPJPE stands at 18.06 for a 10-pixel
error scenario and increases to 36.40 for a more challenging
20-pixel error scenario. These results prove the robustness
and accuracy of the proposed approach, demonstrating its
efficacy in achieving accurate 3D human pose estimation
under conditions with varying degrees of 2D pixel errors.

Our approach exhibits state-of-the-art performance for sev-
eral key reasons, setting it apart from existing methodologies.
One factor is the used video-based approach. Our algorithm
improves the simple reprojection function by taking into
account how human poses change between frames by using
the frame-to-frame approach. Utilizing information from
multiple frames enables our algorithm to gather context and
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TABLE I
COMPARATIVE ANALYSIS WITH OTHER 2D TO 3D LIFTING

STATE-OF-THE-ART METHODOLOGIES ON THE MPI-INF-3DHP [4]
DATASET.

Methodology Optimization Multi-view Video MPJPE ↓

Kocabas et al. [24] ✓ 109.0
Bouazizi et al. [22] ✓ ✓ 93.0
Pavvlo et al. [17] ✓ 86.6
Bouazizi et al. [23] ✓ 65.9
Jiang et al. [5] ✓ 55.2
Zhao et al. [26] ✓ 27.8
Yu et al. [25] ✓ 27.8

Ours (20px)
✓ ✓ ✓

36.4
Ours (10px) 18.1

refine estimations by considering the consistency of pose
configurations across frames. This not only improves the
robustness but also enhances the ability to handle dynamic
and occluded complex movements.

Furthermore, our approach relies on the unique characte-
ristics of each human skeleton. The link length component
of the objective function (see section III-A.2) will estimate
different link lengths for each human. By tailoring the
optimization process to the individual characteristics of ske-
letons, our algorithm achieves a higher degree of precision.
This customized optimization contributes significantly to
mitigating errors and enhances the overall accuracy of 3D
pose estimations by guaranteeing that the link length does
not change in different frames.

The proposed approach, using 2D detection with a 10 pixel
error, gives the best results overall. It is followed by Yu et al.
[25] and Zhao et al. [26]. These good results may be related
with the fact that all the mentioned approaches are video-
based, which allows to improve 3D poses by leveraging
information from all the frames.

C. Impact of 2D Joint Detection Error

The following experiment evaluates the impact of the 2D
joint detection pixel error on the 3D joint results. The test
set consisted of 500 frames (roughly 20 s) from the MPI-
INF-3DHP [4]. To evaluate the impact of the quality of 2D
keypoints detection on the outcome, we used the 2D ground-
truth keypoints values as input. We added a systematic
absolute pixel error to all the keypoints in a random direction.
The added error varied from 0 to 100 pixels. The test dataset
did not include any occluded joints, and the optimization
used 4 of the 8 available cameras.

Fig. 3 shows a plot of the evolution of the indicators
MJPJE and 3DPCK indicators with the increase of the
2D joint detection error. It presents an analytical view of
the correlation between 2D joint detection errors and the
subsequent impact on the detection of human 3D poses. The
MJPJE, illustrated by the ascending orange curve, shows a
gradual increase in millimeters as 2D joint errors in pixels
rise. This positive correlation underscores the sensitivity of
3D pose predictions to inaccuracies in 2D joint localiza-
tion. The trend suggests that as the precision of 2D joint

detection diminishes, the accuracy of predicting the spatial
positions of joints in the 3D space becomes compromised.
The 3DPCK, represented by the descending blue curve,
reflects the percentage of accurately estimated 3D keypoints
in relation to increasing 2D joint errors. The decline in
3DPCK underscores a more pronounced sensitivity to higher
2D detection errors.

101 102
0

50

100

2D joint error (pix)

M
JP

JE
(m

m
)

0

25

50

75

100

3D
PC

K
(%

)

3DPCK (↑) MJPJE (↓)

Fig. 3. Impact of 2D joint detection error in detection of human 3D poses.
A detailed explanation of the indicators can be found in section IV-A.

Nevertheless, the algorithm demonstrates robust perfor-
mance up to a 2D joint detection error of 25 pixels. Within
this range, both the MJPJE and 3DPCK show favorable
behaviors. The MJPJE remains relatively low, up to 50mm,
indicating an accurate prediction of 3D joint positions, while
the 3DPCK remains consistently high, demonstrating a high
percentage of correctly estimated keypoints.

Up to the 25-pixel threshold, the algorithm effectively
compensates for minor inaccuracies in 2D joint detection,
showcasing resilience to moderate 2D detection errors. Be-
yond 25 pixels, however, the performance trends diverge,
with both MJPJE and 3DPCK responding more sensitively
to increasing 2D joint errors.

D. Impact of Occlusions

This subsection aims to determine the robustness of the
algorithm to occlusions. For this, we designed two different
experiments: one where we randomly occluded an increasing
number of 2D joints that served as input for optimization;
in the second experiment, we occluded the same joint in all
cameras for a period of time and evaluated how precisely the
position of that joint was being predicted.

1) Random Occlusions: This experiment aims to assess
the influence of 2D joint occlusions on the prediction of
3D joint values. The test set contains 500 frames from
the MPI-INF-3DHP dataset [4]. To simulate occlusions,
we systematically remove keypoints from the ground-truth
2D keypoints. The quantity of deleted keypoints per frame
and point-of-view ranged from 0 to 15. Additionally, an
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absolute error of 10 pixels was added to each ground-truth
keypoint value. This controlled variation in occlusion and
error scenarios allows for a comprehensive evaluation of the
robustness of the algorithm under realistic conditions.

Fig. 4 shows the results obtained from the experience
mentioned earlier. Comparative analyses evaluate the efficacy
of a simple reprojection function, optimized through the
least squares method (plots with the tag reproj), against our
proposal.

100 101

0

500

1,000

1,500

Number of occluded joints per frame

M
JP

JE
(m

m
)

0

25

50

75

100

3D
PC

K
(%

)

MJPJE (↓) MJPJEreproj (↓)
3DPCK (↑) 3DPCKreproj (↑)

Fig. 4. Impact of occluded 2D joints in the detection of human 3D
poses, where simple lines represent the performance of our proposal and
marked lines represent the performance of an optimization using only the
reprojection of 3D coordinates to 2D images as the objective function.

In the MJPJE plot, our algorithm (denoted as ”MJPJE”)
consistently outperforms the reprojection function
(”MJPJEreproj”), particularly with higher occurrences
of occluded joints. The stability in MJPJE values for our
methodology signifies very good precision in joint position
estimation, even in highly occluded scenarios, with the
performance of the algorithm maintaining resilience.

In the 3DPCK plot, our algorithm (denoted as ”3DPCK”)
shows higher correctness percentages, even with a substantial
number of occluded joints. In contrast, the reprojection ap-
proach (”3DPCKreproj”) evidences a decline in correctness
with escalating occluded joints, highlighting the efficacy
of our algorithm in sustaining keypoint accuracy under
challenging occlusive scenarios and significantly improving
the performance of the reprojection function.

In conclusion, the figure successfully proves that our pro-
posal greatly improves the reprojection function, particularly
in scenarios where joints are occluded. The observed stability
in performance highlights the robustness and potential of our
solution, enhancing its utility for precise 3D human pose
estimation within intricate real-world scenarios.

2) Consistent Occlusions: This experiment evaluates the
impact of occluded joints in all points of view for a period
of time in 3D joint poses. For this, the dataset used, for each

TABLE II
IMPACT OF THE NUMBER OF CAMERAS IN THE MPJPE (mm) AND

3DPCK (%) IN THE MPI-INF-3DHP DATASET.

# cameras MPJPE ↓ 3DPCK ↑

2 47.4 96.2
3 13.8 100
4 11.6 100

10 normal frames, had 5 frames where the left elbow was
occluded in all cameras. The dataset also had 10 pixels of 2D
joint error in every joint. The obtained MJPJE was 18.08mm
and 100% 3DPCK. Regarding the left elbow, the 3D joint
error was 20.30mm, which is slightly above average but
proves that the position of that joint was well predicted by
the proposed approach.

E. Impact of Number of Cameras

This experiment intends to determine the impact of the
number of cameras used to optimize the quality of the 3D
human poses. The test set contains 500 frames from MPI-
INF-3DHP [4]. We chose a test set with frames with 5
randomly occluded joints and 10 pixels of error.

Table II shows the results obtained when calibrating the
same dataset with a varying number of cameras. We can
conclude that even with the constraint of optimizing only
2 cameras, the performance remains robust. The MPJPE
is 47.4mm, indicating good precision in estimating joint
positions. The 3DPCK is registered at 96.2%, a very good
accuracy considering the limited number of cameras. As
the number of cameras increases to 3 and 4, the precision
further improves, as is evident in the reduced MPJPE values
(13.8 and 11.6, respectively) and the 100% 3DPCK accuracy.
This analysis emphasizes the resilience of the algorithm,
demonstrating good performance even in scenarios where
only two cameras are utilized.

From a practical standpoint, these results have signific-
ant implications for real-world applications. The ability to
achieve accurate 3D human pose estimation with only two
cameras makes the system more feasible and cost-effective
for deployment in real world scenarios, where the number of
available cameras might be limited. The method’s robustness
in low-camera scenarios enhances its versatility and potential
for broader adoption across different fields and use cases.
Additionally, the point of view of the cameras also influences
the quality of detection, as optimal camera placement can
further enhance the accuracy and reliability of the system.

V. CONCLUSION AND FUTURE WORK

In conclusion, our comprehensive experimentation and
analysis have proved the robustness and efficacy of our
proposed algorithm for 3D human pose estimation. The
conducted experiments, including the impact of 2D joint
detection error, occlusions, and varying numbers of cameras,
have proved the resilience of the algorithm under diverse
conditions. Additionally, the algorithm showed excellent
performance even in scenarios with significant 2D joint
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error and exhibited a high degree of robustness in handling
several occluded joints. In our future works, we aim to
evaluate the robustness and generalisation capabilities of
our algorithm by testing it on in-the-wild 3D human pose
datasets, such as the 3DPW dataset [28]. This will provide
insight into the performance of the algorithm under more
diverse and dynamic real-world conditions. Adapting to in-
the-wild datasets poses challenges such as dealing with
varied lighting, backgrounds, and increased occlusions, ne-
cessitating enhanced robustness and generalization strategies,
including advanced data augmentation techniques and more
sophisticated occlusion handling mechanisms. Additionally,
we plan to improve the practical applicability of this method
by working towards real-time implementation. Our proposed
strategy involves optimizing the last n frames, with n yet
to be defined (for instance, 5 frames), instead of optimizing
the entire set simultaneously. The optimization process will
be recursive, utilizing the last optimized position as the
initial guess for the subsequent frame. This will allow
the application of the algorithm in our robotics laboratory,
where real-time is essential. The adapted algorithm will be
crucial in constraining the robot’s movement around humans,
facilitating safer interactions, and enabling future human-
robot collaboration tasks within our laboratory environment.

Extending the approach to mesh-based representations
could enhance the realism and detail of 3D human pose
estimation by capturing intricate body shapes and surface
deformations. This could improve pose precision in complex
scenarios and offer more accurate reconstructions. However,
mesh-based models are computationally intensive and re-
quire sophisticated algorithms, making them challenging to
integrate with existing skeleton-based datasets and evaluation
metrics. Despite these challenges, the potential benefits make
this a promising area for future research and development.
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