
Off-the-Shelf Based System for
Urban Environment Video Analytics

Henry O. Velesaca1, Steven Araujo1, Patricia L. Suárez1, Ángel Sánchez2 and Angel D. Sappa1,3
1Escuela Superior Politécnica del Litoral, ESPOL, CIDIS, Guayaquil, Ecuador

2E.T.S. Ingenierı́a Informática, Universidad Rey Juan Carlos, 28933 Móstoles, Madrid, Spain
3Computer Vision Center, Edici O, Campus UAB, 08193 - Bellaterra, Barcelona, Spain

{hvelesac, saraujo, plsuarez,}@espol.edu.ec angel.sanchez@urjc.es sappa@ieee.org

Abstract—This paper presents the design and implementation
details of a system build-up by using off-the-shelf algorithms
for urban video analytics. The system allows the connection to
public video surveillance camera networks to obtain the necessary
information to generate statistics from urban scenarios (e.g.,
amount of vehicles, type of cars, direction, numbers of persons,
etc.). The obtained information could be used not only for traffic
management but also to estimate the carbon footprint of urban
scenarios. As a case study, a university campus is selected to
evaluate the performance of the proposed system. The system
is implemented in a modular way so that it is being used as a
testbed to evaluate different algorithms. Implementation results
are provided showing the validity and utility of the proposed
approach.

Keywords—greenhouse gases, carbon footprint, object detection,
object tracking, website framework, off-the-shelf video analytics.

I. INTRODUCTION

A smart city is a place where traditional services become
more flexible, efficient, and sustainable with the use of infor-

mation and communication technologies for the benefit of its

inhabitants ([1], [2]). Currently, there are several initiatives for

the development of technologies in the context of smart cities;

among the most challenging approaches are those focused

to reduce the impact of pollution due to the emission of

greenhouse gases. For example, in Europe, the set plan supports
cities to take measures to arrive in the next years to reduce

40 percent of greenhouse gas emissions through sustainable

use and energy production [3]. Urban carbon emissions can

be generated due to several factors, from moving vehicles till

outdoor lighting systems—e.g., street lights, lights for building

facade valorization, etc. [4]. In short, there is a massive effort on

measuring and controlling carbon emissions within the context

of smart cities, as mentioned above, some times referred to in

the literature as carbon footprint.

In order to reduce emissions, the sources need to be iden-

tified and the amount of environmental pollution needs to

be measured. As mentioned above one of the sources of

carbon emissions are vehicles. In recent years some effort

has been put on counting the number of vehicles in urban

areas and classifying them according to their size. Studies on

specific places on urban scenarios were performed and statistics

information was collected. Such a kind of procedure consists of

installing physical devices (e.g., piezoelectric loops) to collect

information for a couple of days.

Nowadays, most of the cities have hundreds of thousands of

video cameras, which are mainly used for urban monitoring

and video surveillance. Generally, these cameras are being

supervised by a person, which is susceptible to errors due

to the large amount of information that the person has to

handle. In this way, it is very important to invest efforts

in computer vision systems to assist the people who are in

charge of taking control and thus reducing the margin of error

to the minimum [5]. Such video systems can be used not

only for video surveillance applications but also for generating

statistics about different urban indicators, such as the number

of vehicles through an avenue, number of people in a certain

place among others as mentioned in [6]. This information is

useful for governments that are interested in the reduction

of greenhouse gases. The current work aims to provide a

technological solution to measure the impact by generating

statistics related to the vehicle’s usage in urban environments.

The system is based on the usage of a deep learning approach

that allows nowadays to obtain a reliable solution to most of

the computer vision-based problems.

Deep Learning has taken importance in video analytics and

allows us to solve most of the tasks that a human operator

would execute, in addition of doing it in a more efficient way.

For example, Fernández et al. [7] indicates that at present the

principal interest is on applications such as fight detection,

identification of vandalism, theft detection, among others. The

authors also mention that the increase in video surveillance

cameras and mass production of videos all around the world

has increased in recent years, so it is necessary to use models

based on Deep Learning for the tasks of classifying each one of

the activities to be identified, in the same way, that no person

can be done.

Another important concept is the off-the-shelf technologies,
which are solutions made, tested and well maintained by third

parties that are available either free or paid [8]. In the current

work, the usage of a large amount of open source available

will be exploited. In particular, code for detecting and tracking

objects in a given scene, to develop and implement a system

that integrates these two elements and allows to authorities

of the public sector to be able to generate different type978-1-7281-7539-3/20/$31.00 ©2020 IEEE

Proceedings of the IWSSIP 2020 – Special Session Paper 459

of statistics from urban scenarios (e.g., amount of vehicles,

numbers of persons, etc.). The obtained information could be

used for traffic management, security of people in public places,

estimation of carbon footprint in urban scenarios, among other

applications.

The manuscript is organized as follows. Section II presents

works related to both the computer vision approaches needed

for the video processing and understanding and the software

development frameworks. The solution proposed in the current

work is detailed in section III. Implementation results are

depicted in section IV to illustrate a case study. Finally, the

conclusions are given in section V.

II. STATE OF THE ART

This section reviews recent approaches related to the pro-

posed system. It covers topics from the pattern recognition and

tracking till software development frameworks and databases

engines.

A. Object detection

During the last five years, a large amount of convolutional

neural network-based approaches have been proposed for object

detection. This section just reviews some of them, related to the

system implemented in the current work.

1) SSD: One of the existing methods for detecting objects
in images using a single deep neural network is presented

in [9]; it is named as Single Shot multi-box Detector (SSD),

which discretizes the output space of bounding boxes into a

set of default boxes over different aspect ratios and scales

per feature map location [9]. This network, at prediction time,

estimates scores for the presence of each object category in

each default box and generates adjustments to each box to

improve the matching of the object shape. The network also

combines predictions from multiple feature maps with different

resolutions to naturally handle objects of various sizes [9].

2) Faster R-CNN: Another object detection method based
on region proposal to determine object locations is introduced

in [10]; in this work, the authors propose an algorithm that

performs a Region Proposal Network (RPN) that shares full-

image convolutional features with the detection network. This

network uses as input an image of any size and returns a

prediction of object bounds and scores at each position. The

RPN network is initialized with ImageNet and fine-tuned for

region proposal. The obtained regions are used to train Fast R-

CNN; it shares convolutional layers weights, forming a unified

network based on image regions to reduce the time of execution

of object detection [10].

3) YOLO: The last network architecture reviewed in this
section is YOLO (You Only Look Once) [11]. This architecture

is intended for object detection tasks, specialized to determine

the location on the image where target objects are present, as

well as to predict the type of object. YOLO tackles object

detection as a single regression problem, using a convolutional

neural network. It receives as input an image and returns

a vector of bounding boxes coordinates together with their

corresponding class probabilities. YOLO also exploits multi-

scale training which increases the robustness of the solution.

The last version of YOLO, named YOLOv3, uses multi-label

classification to calculate the likeliness of the input belonging

to a specific label, also uses binary cross-entropy loss for

each label, reducing the computation complexity. This type

of algorithm is commonly used for real-time one-shot object

detection [11].

B. Object tracking

Once an object is detected in a given frame, it needs to

be tracked through the whole video sequence in order to

get the same label and counted just one time through the

video sequence. Hence, this section reviews state-of-the-art

techniques for object tracking.

1) Template matching OpenCV function: Template matching
is a technique that applies an exhaustive search for coincidences

between regions of different images. It works by comparing

a region from the template image with regions in the source

image, the image in which it is expected to match the template.

It is recommended that the template image be smaller than the

source image. In OpenCV there are six different methods to

compute the matching cost; although all of them have a similar

performance, CCOEFF NORMED works better when there are

differences between illuminations of both images [12].

2) Simple online and realtime tracking: Simple Online and
Realtime Tracking (SORT) is a software tool that allows

tracking objects in real-time. It uses a Kalman filter and the

Hungarian algorithm to predict the track of previously identified

objects and matches them with new detections [13]. It is a

simple and effective algorithm.

3) Extension to simple online and realtime tracking: In

[14] an extension of the SORT algorithm, named Deep SORT,

is proposed. It improves the performance of detection using

appearance information. This method makes possible to track

objects through longer periods of occlusions, effectively re-

ducing the number of identity switches. The computational

complexity is placed into an offline pre-training stage using a

deep association metric on a largescale person re-identification

dataset. With the deep network, a vector that can describe

all the features of a given image is obtained, improving the

uncertainties coming from the Kalman filter related to the

location of objects over time. During the online application,

the method establishes measurement-to-track associations using

nearest neighbor queries in visual appearance space, achieving

competitive performance at high frame rates.

C. Website development frameworks

Currently, there is a large number of website development

frameworks, and depending on the context where it can be used

will have advantages over another.

1) Java server faces: The Java Server Faces (JSF) is a

web development framework oriented to the user interface for

web applications based on the JAVA programming language;

it uses Java Server Page (JSP) as a technology that allows the

deployment of pages, but also uses other technologies such

460 Proceedings of the IWSSIP 2020

as AJAX, XML, JavaScript, CSS, HTML, RichFaces, among

others [15].

2) Symfony: Another very popular framework for web de-
velopment is Symfony; its popularity is because it is one of

the frameworks for the PHP programming language with better

performance, one of its characteristics is that it presents an

internal architecture based on modules, which allows replacing

or eliminating components that are not needed within a project,

also has a community that supports new features and existing

ones [16].

3) Django: Before presenting the following framework we
will talk about the language in which it is based; Python is

a programming language interpreter that allows a fast perfor-

mance for different types of programs. It is an object-oriented

programming language of general-purpose in general popularity

in the area of deep learning, machine learning, and other

areas. Django is a web framework based in python that allows

easy development, clean and pragmatic design [17]. Django

uses the Model Template View (MTV) paradigm, which is

essentially the Model View Controller (MVC) paradigm but

with different names on its components. Table I shows the

equivalence between MVC and MTV architecture [17].

TABLE I: Equivalence MVC to MTV

Typical MVC Django MTV (file)
Model Model (models.py)
View Template (template.html)

Controller View (views.py)

D. Databases engines

After reviewing the different web development frameworks

we will now review two database engines based on two different

types of paradigms.

1) MySQL: MySQL is an RDBMS (Relational DataBase
Management System) that allows running databases on different

operating systems, stable, good performance, has community

support maintenance, and also a large amount of documentation

is available. It is an engine that allows managing both desktop

and web applications [18].

2) MongoDB: MongoDB is a document-oriented database
that is based in collections instead of tables as in RDBMS.

Documents are a structure similar to rows as in RDBMS and

are organized in collections, that not have any restrictions by

creation. The content of documents can be any elemental data

type, such as string, date, number, or other document [19].

III. PROPOSED SOLUTION

This section presents details of the implemented system for

urban video analytics.

A. Software architecture

The proposed solution has been implemented following a

web-oriented approach, which allows scalability, robustness,

and continuous growth. Django has been chosen as a de-

velopment framework due to the support, a large developer

community, in addition to the fact of using Python as a

programming language, which is currently widely used by

the scientific community. On the other hand, the database has

been implemented in MongoDB, which is a document-oriented

database, Not Only SQL ”NoSQL”, that allows multiple struc-

tural information that permits flexibility and scalability feature

and also massive real-time data flow, this database engine is

efficient in-memory processing and complex data type feature

as indicated in [19]. Figure 1 shows a general scheme of the

software architecture used by the proposed solution.

Back-end algorithms

Mongo DB Django

Views
Front-end

Models

Yolo V3
Object Detection

Sort
Object Tracking

Fig. 1: General scheme of software architecture.

B. Front-end design

The front-end has been designed offering to the users all

the possible system configurations. This section details all the

components included in the front-end.
1) Software configuration: The first module of the web

application allows the construction of the functional archi-

tecture dynamically; that is, it allows the user to create and

configure the functional parameters such as options menu,

profiles, controls, actions to be performed by users, projects,

and users. To implement this application design, one of the most

powerful components of the Django web framework has been

used, which has an interface that, by default, allows managing

previously created and registered models, but also leaves the

possibility of being able to perform new customization in the

future. Figure 2 shows a view of the models that are part of

the functional architecture of the system.
2) Security administration and profiles: The next module to

analyze is the default security mechanisms offered by Django;

although it is a robust and safe scheme for our proposed

solution, modifications were made by including additional

functionalities such as displaying the options menu based on

the profile assigned to a given user, visualization of actions

within the views shown to the user and projects permissions

assigned to a given user. Figure 3 depicts a snapshot of a part

of the administrator profile view.
3) Parameters setting of back-end algorithms: Another char-

acteristic of the proposed solution is the possibility to set all

the parameters needed by the detection and tracking algorithms

Proceedings of the IWSSIP 2020 461

Fig. 2: View of models that allows parameterization of the

system.

Fig. 3: View of an administrator profile.

(implemented in the back-end); it avoids having to change this

configuration through the code. For example, it is possible

to choose the types of objects to be detected and also the

corresponding detection threshold for each object.

4) Cameras configuration: In order to give the required

portability and flexibility, the system offers the possibility to

connect video cameras for processing. The configuration allows

defining cameras, set the camera’s values, and select the one/s

that will be used by the detection and tracking algorithms. The

interface allows marking in a map the camera position for a

further reference.

5) Execution of detection and tracking processes: After

performing the configuration of the IP cameras, it is possible

to execute the detection and tracking algorithms. This option

allows you to select the previously configured cameras and first

execute the object detection algorithm in background mode and

then execute the algorithm that tracks the object of interest.

The information obtained from these processes is stored in the

MongoDB database so that users can analyze the information

and obtain the corresponding statistics based on the information

processed and stored in the system.

6) Statistics: Finally, the module of statistics obtained from
the data generated by the detection and tracking algorithms

is described. This module allows to generate video analytics

reports according to the user requirements (e.g., day, time, type

of vehicle, frequency, etc.), this is done using drill-down reports

that allow users to navigate among different layers of data

granularity by navigating and clicking a specific data element

on the report.

C. Backend algorithms

This section presents the backend algorithms that were

selected for the proposed solution.

1) Object detection: After reviewing the state of the art

approaches related to the object detection problem in section

II, the most promising approaches (i.e., Fast R-CNN, YOLOv3,

and SSD) have been evaluated. Table II shows, mAP and FPS

values for each of the evaluated approaches, when the MS

COCO dataset [20] is considered. These values are indicators

of the accuracy and execution times of the studied models.

Despite that YOLOv3 has a mAP value lower than Fast R-

CNN (about 5% smaller mAP), it is considerably faster than

Fast R-CNN (about 5 times faster). Furthermore, YOLOv3 is

better than SSD in both metrics. The values presented in Table

II were obtained from the original publications (i.e., [10], [21]

and [9]) were each network has been presented, in all the cases

evaluated with the same MS COCO dataset [20].

As a conclusion, the YOLOv3 network has been selected

since it is ideal for real-time application. This aspect is very

important in the proposed solution because the images will be

obtained using IP cameras and the processing and visualization

tasks should run in real-time in a web-based platform.

TABLE II: Comparison of state-of-the-art object detection

approaches, evaluated on MS COCO dataset.

Network mAP FPS
Faster R-CNN 34,9 17

SSD 26.8 59
YOLOv3 33.0 91

2) Object tracking: A set of experiments have been carried
out for selecting the best tracking method. In the experiments,

the three methods explained in the state of the art section have

been analyzed. As a result, the Simple Online and Realtime

Tracking (SORT) has been selected since it obtains better per-

formance compared to the other options. It was concluded that

the match template method has delays in runtime because bit-

level comparisons are made with each of the recognized objects

(bounding boxes), being the worst case when the execution time

is O(n×m), where n and m are the numbers of objects detected
in two different frames; concerning the extension of the SORT

(DEEP SORT), it presents a delay since it has an added value

with the appearance vector, presenting the same problem of the

previous method with only the characteristic vector that has an

execution time of O(n×m), thus decreasing the performance
compared to the original SORT method. Table III shows metrics

from execution times for the three evaluated algorithms.

462 Proceedings of the IWSSIP 2020

TABLE III: Metrics from execution times of tracking algo-

rithms

Elapsed time (seconds)
- SORT Deep SORT OpenCV

avg 0,15 2,99 3,01
max 1,53 8,26 9,04
min 0,12 2,72 2,97
std 0,13 0,44 0,52

IV. IMPLEMENTATION RESULTS

This section presents snapshots of the most representative

views of the platform implemented for the urban video an-

alytic application. The illustrations presented in this section

correspond to results obtained from cameras of a university

campus connected to the system; a server with a Titan X GPU

was used to process and visualize the results in real-time.

A. Camera configuration view

The camera configuration interface presented above was used

to set the IP camera addresses and other parameters. In Fig. 4

a snapshot of the camera configuration interface is shown; the

camera parameters, as well as the camera position (i.e., latitude

and longitude), are defined. In the bottom part, a live view of

the camera is shown to check the added information is correct.

Fig. 4: View of a camera configuration.

B. Execution of detection and tracking process view

Once all cameras have been configured in the system, the

videos acquired by them are processed according to the user’s

specifications. This section shows some results of the detection

and tracking algorithms, which are subsequently stored in the

database for further processing and analysis. As a case study,

one of the IP cameras is used to show the system performance.

The selected chamber is located geographically at the entrance

of the university campus. It should be noted that the algorithms

run in the background, which allows a user to use all the

functionalities of the system simultaneously. Figure 5 shows

the results of the detection and monitoring process.

Fig. 5: View of an execution of detection and tracking pro-

cesses.

C. Statistic view
The system allows obtaining statistics related to previously

processed and stored video sequences. For example, the user

can obtain information regarding: the number of vehicles and/or

pedestrians detected by a particular camera in a certain period

of time; the class of vehicles detected (for example, buses,

trucks, cars, motorcycles); day and period of time with the

highest frequency of vehicles and/or pedestrians; frequency of

buses detected from a certain camera (in the case of study this

information corresponding to the buses entering the university

campus); among other possible queries that the user can make.

Figures 6 and 7 show examples of the reports generated by the

system; This interactive interface allows the user to visualize in

greater detail the information of interest to analyze by selecting

one of the existing categories in the system.

Fig. 6: View of a generated report.

V. CONCLUSIONS

The manuscript presents a computer vision system based

on off-the-shelf algorithms for urban video analytics. The

Proceedings of the IWSSIP 2020 463

main objective is to develop a system able to be used in a

smart city context to process information from already existing

video surveillance networks. The proposed approach has been

implemented using available open-source and evaluated in a

real scenario showing its validity. As a future work other deep

learning-based algorithms will be evaluated in the proposed

framework, trying to reduce processing time as well as to

improve accuracy on results.

ACKNOWLEDGMENT

This work has been partially supported by: the ES-

POL project “Aplicaciones TICs para Ciudades Inteligentes”

(REF: FIEC-16-2018); the Spanish Government under Project

TIN2017-89723-P; the Spanish MICINN RTI Project RTI2018-

098019-B-I00; the “CERCA Programme / Generalitat de

Catalunya”. The authors gratefully acknowledge the support of

the CYTED Network: “Ibero-American Thematic Network on

ICT Applications for Smart Cities” (REF-518RT0559) and the

NVIDIA Corporation with the donation of the Titan Xp GPU

used for this research.

REFERENCES

[1] S. P. Mohanty, U. Choppali, and E. Kougianos, “Everything you wanted
to know about smart cities: The internet of things is the backbone,” IEEE
Consumer Electronics Magazine, vol. 5, no. 3, pp. 60–70, 2016.

[2] R. R. Harmon, E. G. Castro-Leon, and S. Bhide, “Smart cities and the
internet of things,” in Portland International Conference on Management
of Engineering and Technology (PICMET). IEEE, 2015, pp. 485–494.

[3] A. Kylili and P. A. Fokaides, “European smart cities: The role of zero
energy buildings,” Sustainable cities and society, vol. 15, pp. 86–95, 2015.

[4] F. Rossi, E. Bonamente, A. Nicolini, E. Anderini, and F. Cotana, “A
carbon footprint and energy consumption assessment methodology for
uhi-affected lighting systems in built areas,” Energy and Buildings, vol.
114, pp. 96–103, 2016.

[5] F. J. López Rubio et al., “Detección de objetos en entornos dinámicos
para videovigilancia,” 2016.

[6] H. Zhang, V. Sindagi, and V. M. Patel, “Joint transmission map estimation
and dehazing using deep networks,” arXiv preprint arXiv:1708.00581,
2017.

[7] L. C. Fernández Martı́nez, “Identificación automática de acciones hu-
manas en secuencias de video para soporte de videovigilancia,” 2018.

[8] E. Ventocilla and M. Riveiro, “Visual analytics solutions as ‘off-the-
shelf’libraries,” in 21st International Conference Information Visualisa-
tion (IV). IEEE, 2017, pp. 281–287.

[9] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C.
Berg, “SSD: Single shot multibox detector,” in European conference on
computer vision. Springer, 2016, pp. 21–37.

[10] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time
object detection with region proposal networks,” in Advances in neural
information processing systems, 2015, pp. 91–99.

Fig. 7: View of a generated report.

[11] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look
once: Unified, real-time object detection,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2016, pp. 779–
788.

[12] M. Marengoni and D. Stringhini, “High level computer vision using
opencv,” in 24th SIBGRAPI Conference on Graphics, Patterns, and
Images Tutorials. IEEE, 2011, pp. 11–24.

[13] A. Bewley, Z. Ge, L. Ott, F. Ramos, and B. Upcroft, “Simple online and
realtime tracking,” in IEEE International Conference on Image Processing
(ICIP). IEEE, 2016, pp. 3464–3468.

[14] N. Wojke, A. Bewley, and D. Paulus, “Simple online and realtime tracking
with a deep association metric,” in IEEE International Conference on
Image Processing (ICIP). IEEE, 2017, pp. 3645–3649.

[15] D. Palacios, J. Guamán, and S. Contento, “Análisis del rendimiento de
librerı́as de componentes java server faces en el desarrollo de aplicaciones
web,” NOVASINERGIA, vol. 1, no. 2, pp. 54–59, 2018.

[16] M. C. Valle Dávila, “Estudio del framework symfony 2 para el desarrollo
de aplicaciones empresariales,” B.S. thesis, 2017.

[17] J. Vainikka, “Full-stack web development using django rest framework
and react,” 2018.

[18] A. MySQL, “Mysql,” 2001.

[19] N. Q. Mehmood, R. Culmone, and L. Mostarda, “Modeling temporal
aspects of sensor data for mongodb nosql database,” Journal of Big Data,
vol. 4, no. 1, p. 8, 2017.

[20] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan,
P. Dollár, and C. L. Zitnick, “Microsoft coco: Common objects in
context,” in European conference on computer vision. Springer, 2014,
pp. 740–755.

[21] J. Redmon and A. Farhadi, “Yolov3: An incremental improvement,”
arXiv, 2018.

464 Proceedings of the IWSSIP 2020

