
Thermal Image Super-Resolution Challenge - PBVS 2021

Rafael E. Rivadeneira, Angel D. Sappa, Boris X. Vintimilla

Sabari Nathan, Priya Kansal, Armin Mehri, Parichehr Behjati Ardakani,

Anurag Dalal, Aparna Akula, Darshika Sharma, Shashwat Pandey, Basant Kumar,

Jiaxin Yao, Rongyuan Wu, Kai Feng, Ning Li, Yongqiang Zhao,

Heena Patel, Vishal Chudasama, Kalpesh Prajapati, Anjali Sarvaiya,

Kishor P. Upla, Kiran Raja, Raghavendra Ramachandra, Christoph Busch,

Feras Almasri, Thomas Vandamme, Olivier Debeir, Nolan B. Gutierrez, Quan H. Nguyen, William J. Beksi

Abstract

This paper presents results from the second Thermal

Image Super-Resolution (TISR) challenge organized in the

framework of the Perception Beyond the Visible Spectrum

(PBVS) 2021 workshop. For this second edition, the same

thermal image dataset considered during the first chal-

lenge has been used; only mid-resolution (MR) and high-

resolution (HR) sets have been considered. The dataset

consists of 951 training images and 50 testing images for

each resolution. A set of 20 images for each resolution is

kept aside for evaluation. The two evaluation methodolo-

gies proposed for the first challenge are also considered in

this opportunity. The first evaluation task consists of mea-

suring the PSNR and SSIM between the obtained SR image

and the corresponding ground truth (i.e., the HR thermal

image downsampled by four). The second evaluation also

consists of measuring the PSNR and SSIM, but in this case,

considers the ×2 SR obtained from the given MR thermal

image; this evaluation is performed between the SR im-

age with respect to the semi-registered HR image, which

has been acquired with another camera. The results out-

performed those from the first challenge, thus showing an

improvement in both evaluation metrics.

1. Introduction

Single image super-resolution (SISR) is a classic ill-

posed problem in computer vision that is still an active field

Rafael E. Rivadeneira∗ (rrivaden@espol.edu.ec), Angel D. Sappa∗+

and Boris X. Vintimilla∗ are the TISR Challenge - PBVS 2020 organizers,

while the other authors participated in the challenge.
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Figure 1: A mosaic illustrating two different resolution ther-

mal images from the same camera viewpoint: (left) a crop

from a MR image; (right) a crop from a HR image [13]

of research. The goal of SISR is to recover an accurate high-

resolution (HR) representation from a given low-resolution

(LR) image. Different approaches have been proposed dur-

ing the last two decades, but in recent years, novel deep

learning-based techniques have shown significant improve-

ments. Most learning-based techniques use a downsampled

image from the HR image augmented with noise and blur

as input. These poor-quality images, together with their

corresponding HR images, are used to train the networks.

Most of these approaches have been mainly used in the

visible spectral domain. With regard to thermal images,

their resolution is a common limitation that is related to

the sensor technology used. The usage of these images is

increasing for miscellaneous applications in several fields

(i.e., medicine, security, industry, among others). Hence,

the SR approaches initially developed for visible spectrum

images have motivated the research community to look for

solutions to this problem in the thermal image domain.

In order to define a standard benchmark for evaluating

different contributions, the first challenge on TISR was pro-
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posed at the PBVS 2020 workshop. Due to the success

of that first challenge and to keep improving the obtained

results, a second challenge on TISR was proposed in the

framework of the PBVS 2021 workshop. For this second

challenge, only the MR and HR sets of images from the

original thermal image dataset have been used (i.e., the LR

set is not considered).

The TISR 2021 challenge1 has two evaluation ap-

proaches. Evaluation 1 measures the ×4 SR result for im-

ages from the HR camera. In other words, each participant

should downsample and add noise to the given ground-truth

(GT) image and use that data to train their network. Evalu-

ation 2 compares the ×2 SR results obtained by using input

images from the MR camera (Axis Q2901-E). These ×2
SR results are evaluated with respect to the corresponding

semi-registered images obtained from the HR camera (FLIR

FC-632O). Hence, the proposed ×2 scale solution should be

able to tackle both problems, i.e., generating the SR images

acquired with the MR camera as well as mapping images

from the MR to HR domain.

The remainder of this manuscript is organized as fol-

lows. Section 2 introduces the objectives of the challenge

and presents the dataset and evaluation methodology. A

summary of the results obtained by the different teams is

presented in Section 3. In Section 4, a short description of

the different approaches proposed by the teams is provided.

Finally, a conclusion is given in Section 5 followed by an

appendix with the team information. Due to space limita-

tions, only the two winning architectures are depicted in this

work. All of the other proposed architectures are provided

in the supplementary material (SM) document and are re-

ferred to as SM-Figure in this paper.

2. TISR 2021 Challenge

The objectives of the TISR 2021 challenge are the fol-

lowing: (i) introduce state-of-the-art approaches for the

thermal image SR problem; (ii) evaluate and compare dif-

ferent solutions using last year’s benchmark; and (iii) pro-

mote a novel thermal image dataset to be used as a bench-

mark by the community.

2.1. Thermal Image Dataset

The dataset used in this challenge was presented in [13]

and used in the first TISR challenge [14]. It consists of

1021 thermal images acquired with three thermal cameras,

at varying resolutions, from indoor and outdoor scenes.

The images were acquired under various lighting conditions

(e.g., morning, afternoon, evening) and contain diverse ob-

jects (e.g., vegetation, people, cars, buildings, etc.). The

cameras were mounted in a rig to minimize the baseline dis-

tance between the optical axis such that the acquired images

1https://pbvs-workshop.github.io/challenge.html

are almost registered. Figure 1 presents a mosaic created

with images from the MR and HR cameras.

2.2. Evaluation Methodology

The performance of the proposed contributions is eval-

uated by means of peak signal-to-noise (PSNR) ratio, and

structural similarity (SSIM) measures between the obtained

SR images with respect to the sequestered GT images that

were not shared. As mentioned before, two kinds of evalua-

tions are performed. The first one evaluates SR results from

a set of 10 downsampled and noisy images obtained from an

HR camera. A downsampling process with a scale factor of

×4 is applied. Additionally, Gaussian noise (σ = 10%) is

added. Figure 2 shows an illustration of this first evaluation

process.

The second evaluation process analyzes a set of 10 SR

images obtained by a ×2 scale factor from the given MR im-

ages. These 10 SR images are evaluated with respect to the

corresponding HR GT images. The GT images are of the

same resolution as the computed SR; however, they were

acquired with a different camera. The SR images from the

MR set are registered with the corresponding HR images by

using a feature point-based approach. The evaluation (i.e.,

PSNR and SSIM) is performed just over 90% of the cen-

tral cropped region of the image. Figure 3 illustrates this

second evaluation process.
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Figure 2: The first evaluation process.

3. Challenge Results

Nine teams submitted their results, together with their

corresponding extended abstracts, and reached the final

phase. The quantitative average results (PSNR and SSIM)

for each team in the two evaluations are shown in Table 1.

Section 4 presents a brief description of the approach pro-

posed by each team to perform SR. Information about the

team members and their affiliations is provided in Appendix

A. According to the results presented in Table 1, the winners

of the second TISR 2021 challenge are the SVNIT NTNU-

1 and ULB-LISA teams who achieved the best results in
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Figure 3: The second evaluation process from MR to HR.

Approach

Evaluation1 Evaluation2

×4 ×2 (MR to HR)

PSNR SSIM PSNR SSIM

COUGER AI 29.13 0.8469 20.03 0.7484

CVC 29.21 0.9032 20.03 0.7533

ISESL-CSIO 30.39 0.8992 16.15 0.5432

MNNIT 14.14 0.5226 20.03 0.7375

NPU-MPI-LAB 29.51 0.8937 21.96 0.7618

SVNIT NTNU-1 30.70 0.9290 20.09 0.7510

SVNIT NTNU-2 30.69 0.9288 21.44 0.7758

SVNIT NTNU-3 30.59 0.9254 20.10 0.7485

ULB-LISA 24.86 0.8420 22.32 0.7899

UTA-RVL-1 25.95 0.8812 19.95 0.7389

UTA-RVL-2 29.40 0.8881 18.40 0.6712

Table 1: The 2021 TISR challenge results. Average results

from the evaluations are detailed in Section 2.2. Bold and

underline values correspond to the best- and second-best re-

sults, respectively.

Evaluation 1 and Evaluation 2, respectively.

4. Proposed Approaches and Teams

4.1. COURGER AI

The COURGER AI team’s proposed approach is based

on a neural network that utilizes the coordinate convolu-

tional layer [11], and residual units [6], along with multi-

level supervision and attention unit to map the information.

As shown in SM-Figure 1, the proposed architecture is

a simple five-block stacked network. Each block consists

of one convolutional layer followed by two Res2net blocks

[4]. The output of the convolutional layer is upsampled by

a factor of 2 for ×2 resolution and by a factor of 4 for ×4

resolution using a subpixel upscaling layer [16]. Each up-

scaled output is then fused for generating the final HR im-

age as well as supervised to improve the pixel-wise resolu-

tion. However, to increase the dimensional feature informa-

tion, the input image is first mapped to the Cartesian space

using the coordinate convolutional layer [11] as inspired by

[8, 7]. To supervise the model output, a combination of

three losses is used: mean squared error (MSE), SSIM, and

Sobel,

Totalloss = MSE + SSIMloss + SOBELloss.

4.2. CVC

The CVC team proposes a lightweight overscaling net-

work (L-OverNet) for thermal image SR. It consists of the

following two main parts: a lightweight feature extrac-

tor and an overscaling module (OSM) for reconstruction.

The feature extractor follows a novel recursive framework

of skip and dense connections to reduce low-level feature

degradation. The OSM is a new inductive bias that gener-

ates an accurate SR thermal image by internally construct-

ing an over-scaled intermediate representation of the output

features. The feature extractor computes useful representa-

tions of the LR patch in order to infer its HR version. Con-

cretely, a recursive structure based on residual blocks (RBs)

assembled into local dense groups (LDGs) and LDGs into

global dense groups (GDGs) is proposed, see SM-Figure 2.

WDSR with wide low-rank convolutions is used. To

make the network focus on more informative features,

squeeze-and-excitation (SE) operations after these convo-

lutions are used. The model learns a scalar multiplier λ to

balance the amount of information that should be carried by

the identity and activation operations within the RBs of the

network. RBs are grouped into the LDGs. The input of an

RB is concatenated with the output of all previous RBs in

the group and merged with a 1×1 convolution. This recur-

sion is repeated for all RBs within the LDG.

To increase the network capacity, a similar recursion is

applied to the GDG, but this time incorporating skip con-

nections between LDGs. This procedure is repeated while

integrating the recursive concatenations through the LDGs

into a single output. The output of each LDG is concate-

nated to the input of the next one. In order to facilitate ac-

cess to local information, the final output of the network

receives the concatenation of the outputs of all the LDGs.

Therefore, the model incorporates features from multiple

layers. This strategy makes information propagation effi-

cient due to the multilevel representation and many shortcut

connections.

To ensure that no information is lost before the recon-

struction step, a long-range skip connection is incorporated

to grant access to the original information. This encourages



backpropagation of the gradients from the output of the fea-

ture extractor to the first 3 × 3 convolution layer. A global

average pooling is also included, followed by a 1×1 convo-

lution to fully capture channel-wise dependencies from the

aggregated information.

As an example, consider the maximum scale factor N

addressed by the network. First, an intermediate represen-

tation of the final image is generated. It consists of over-

scaled maps HOHR, with an overscale factor (N+1) times

larger. Thus, given the h features extracted from ILR, a

3 × 3 convolutional layer is used, followed by the strided

subpixel convolution to upscale the features h to HOHR.

Finally, to obtain the output of the overscaling module, we

include a second long-range skip connection from the origi-

nal ILR image. The final HR image is obtained by adjusting

the overscaled maps and incorporating them into the native

upscaling of the original LR image.

4.3. ISESLCSIO

The ISESL-CSIO team uses an attention-based genera-

tive adversarial network (GAN) to compute SR images from

LR thermal images. The generator model is inspired by SR-

GAN [10] and consists of five residual blocks with short and

long skip connections. These are followed by upsampling

blocks, which use pixel shuffle. An attention mechanism is

introduced like RCAN [24] and is used in the upsampling

blocks to adaptively select the predominant feature set. The

discriminator is feature-based and learns to differentiate be-

tween SR and HR images.

The loss function is a crucial ingredient in training a net-

work. Current advancements recommend the use of im-

age quality assessment metrics such as PSNR, SSIM, MS-

SSIM, etc., in comparison to L2 for the SR task. Inspired

by [22], we found that a combination of L1 and SSIM loss

performs the best. The loss function used for training the

generator model is

LMix = α
1

n

n∑

1

LSSIM + (1− α)
1

n

n∑

1

LL1 ,

where n is the batch size and α = 0.84.

As shown in SM-Figure 3, the network consists of a gen-

erator and discriminator model. The generator model cre-

ates the SR image from the LR or MR image, while the dis-

criminator tries to distinguish if the image is from the gen-

erator (SR) or if it is a real-world sample (HR). As training

progresses, the generator gets better at producing samples

that closely resemble a HR image. Likewise, the discrim-

inator also improves at discriminating HR and SR images.

An equilibrium is reached when the discriminator takes a

sample and tells with equal probability that the image is

from the generator or the real world. When this equilibrium

is reached the generator model is taken and the discrimina-

tor model is discarded. The generator is then used for the

SR task.

4.4. MNNIT

The MNNIT team designed a lightweight model using

SRCNN [3]. Lightweight models are computationally ef-

ficient, which makes them easier to deploy in real-world

problems. The model, as shown in SM-Figure 4, is designed

with three convolutional layers for feature extraction and a

final fourth layer for the reconstruction of SR images. The

first layer generates 128 feature maps using a kernel size of

9 × 9, followed by the SELU activation function. The sec-

ond layer gives 64 features with a kernel size of 7 × 7 and

is followed by a leaky ReLU activation function. The third

layer gives out 32 features with a kernel size of 5×5, which

is followed by the SELU activation function. The final layer

regenerates high-quality SR images. Inspired by later mod-

els utilizing residual learning in SR, a residual connection is

made from the input image to the final convolutional layer

for improved training of the model to achieve better results.

4.5. NPUMPILAB

The NPU-MPI-LAB team presents two approaches. For

Evaluation 1, a simple network is proposed [9]. Initially,

from an LR image, bicubic interpolation (×4) is performed.

The network architecture is shown in SM-Figure 5. At the

first layer, a convolution with a kernel size of 7 is applied

to extract the low-frequency details and ten ResBlocks are

used to extract the high-frequency details. The proposed

approach is computationally efficient, needing only 1.44M

parameters to obtain a four times thermal SR image. The

L2 loss is applied for this task.

For Evaluation 2 a network inspired by ESRGAN [18]

is proposed to deal with SR and domain adaptation at the

same time. The network architecture is shown in SM-Figure

6. The first convolution layer is set to extract shallow fea-

tures and is followed by five multi-branch residual dense

blocks (MRDB). MRDB aims to extract more levels of deep

features through a variety of shortcut structures. Then, the

shallow and deep features are sent to the ×2 upsampling

through the shortcut structures and are decoded to get the

generated image. Note that padding is set to ‘same’ and

stride is set to 1 in all convolution layers to maintain the

original size. Considering the serious misalignment of the

image, a contextual bilateral loss (Cobi) [23] is selected to

match between the generated image and GT. The discrim-

inators are the same as ESRGAN and are called relativis-

tic average discriminators. The total loss of the generator

is composed of the adversarial loss, image-level Cobi loss,

and perceptual-level Cobi loss (through VGG19),

LG = β1L
Ra
G + β2L

img
Cobi + β3L

vgg
Cobi .



4.6. SVNIT NTNU

The SVNIT NTNU team presents three different ap-

proaches summarized below.

Approach 1: Figure 4(a) (SM-Figure 7(a)) shows the

first proposed thermal image SR architecture for scaling

factors of ×2 and ×4. The LR thermal image is used as

input to the network, and it is passed through the low- and

high-frequency feature extraction modules to extract salient

features. The architecture uses an exponential linear unit

(ELU) activation function [15] to improve learning perfor-

mance at each layer in an efficient manner. A new and core

element of the proposed architecture is the simple and effec-

tive design of ResBlock that preserves the high-frequency

details of the SR image with a lesser number of parameters

associated with the network and is shown in Figure 4(b)

(SM-Figure 7(b)). The different kernel sizes (i.e., 1 × 1,

3 × 3, and 5 × 5) are adopted in the convolutional layer of

ResBlock to recover details distributed at local and global

regions. In addition, the proposed ResBlock involves depth-

wise convolution (DC) in the intermediate stage to make the

network computationally cheaper [21]. The channel atten-

tion modules are further used to perform adaptive rescaling

of features on a per-channel basis. A nearest-neighbor inter-

polation is used to upscale the feature maps to the desired

scaling factor (i.e., ×2 and ×4). Finally, feature sharing

with the reconstruction module is introduced that helps the

model to focus on the features that are important.

Approach 2: The architecture of the proposed convolu-

tional neural network (CNN) method for the upscaling fac-

tors ×4 and ×2 (Evaluation 1 and 2, respectively) is shown

in SM-Figure 8(a). Additionally, SM-Figure 8(b) displays

the UNet-based framework for upscaling ×2 in Evaluation

2 LR images. For Evaluation 1, a CNN is trained using the

L1 loss between SR and HR images. In Evaluation 2, the

network shown in SM-Figure 8(a) is trained using the L1

loss on the dataset created by bicubic downsampling from

the available Axis (MR) images [14] while the network in

SM-Figure 8(b) is trained on the dataset created by the reg-

istration between FLIR (HR) and Axis (MR) datasets [14]

using SURF features. However, this registration is not per-

fectly achieved leading them to employ a GAN framework

[5] for semi-supervised learning. The UNet-based network

uses the L1, GAN, and SSIM losses for training. The final

resulting SR image is generated using a combination of the

SR images obtained from those two networks for the Eval-

uation 2 case. Moreover, a self-assemble technique [17] is

also utilized to generate the SR results to enhance its quality

in both evaluations.

A patch of 192× 192 from the HR image and the corre-

sponding size of its LR image is extracted randomly in the

training process. The extracted patches are passed through

a random horizontal flipping and (0o or 90o) rotation to per-

form augmentation. The Adam optimizer with default β

values is used to train the network up to 2× 105 iterations.

The learning rate for the optimizer is set to 2× 10−4 and is

decayed by half at every 25% of the total iterations.

Approach 3: The design of the proposed approach to

super resolve the thermal LR image is illustrated in SM-

Figure 9(a), where it takes a thermal LR image as input and

generates the corresponding SR image based on the cho-

sen upscaling factors (i.e., ×2,×4). The proposed approach

consists of several residual groups and are considered as the

core elements in the network to learn complex and rich fea-

tures from the LR observation. The design of the proposed

ResBlock is depicted in SM-Figure 9(b). Subpixel convo-

lutions [16] in the upscaling block are used to upscale the

feature maps to the desired resolution level. To mitigate the

vanishing/exploding gradient problem, local and long skip

connections are used where the higher-layer gradients are

bypassed to lower layers, hence the learning ability of the

proposed approach improves. Also, a global residual learn-

ing strategy is used.

4.7. ULBLISA

The ULB-LISA team introduces a model referred to

as the xcycles backprojection network (XCBP). It is com-

prised of the following two modules: cycle features cor-

rection (CFC) and residual features extraction (RFE). As

shown in Figure 5(a) (SM-Figure 10(a)), the architecture of

XCBP is unfolded with X number of CFCs, as each cycle

contains one RFE module. The model uses an encoder (E)

of one convolutional layer to extract the shallow features F

from the LR input image ILR and from its pre-upsampled

version ↑ ILR. The pre-upsampling module is a bicubic

operator. It uses a decoder (D) of one convolutional layer,

which takes the final features FSR,X corrected by the CFC

in cycle X to reconstruct the SR image ISR.

The CFC serves as a feature correction mechanism, it is

designed to supply the encoded features of the two parallel

features’ spaces to its RFE module for further feature ex-

traction and corrects the encoded features one at a time. The

output of this RFE module is backprojected by addition to

one of the two parallel features spaces, while in the FSR,x,

the output of the RFE passes by the upsampler (U) to match

the scale of the features. U is a resize-convolution consist-

ing of a predefined nearest-neighbor interpolation operator

of scale factor ×2 and a convolution layer with a receptive

field of size 5 × 5 pixels represented by two stacked 3 × 3
convolutions. In contrast to VCBP [14], the backprojection

corrects the previous features in both encoded features man-

ifold.

The RFE module takes both features and extracts new

residual features for the next feature space correction pro-

cedure based on the similarity and dissimilarity between the

previously corrected features’ spaces. Illustrated in Figure

5(b) (SM-Figure 10(b)), the RFE has two identical sub-
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(a) The block schematic of the proposed architecture for scaling factors ×4 and ×2 (i.e., Evaluation 1 and 2)
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(b) The design of the ResBlock used in the proposed model.

Figure 4: SVNIT NTNU’s first proposed architecture (winner at Evaluation 1).

modules. An internal features encoder (I) is responsible

for extracting deep features from the two parallel spaces of

one convolutional layer, with strided convolution in the HR

space to adapt the different resolution scales. The core of

the RFE module consists of three levels (L) of double acti-

vated convolution layers connected sequentially. The output

of L, defined as inner skip connections, are concatenated to

create dense residual features. They are then fed to a chan-

nel attention module inspired by RCAN [24] to weight the

residual channels priority before they are added to the outer

skip connection.

For Evaluation 2, FLIR images are registered with the

Axis images using SIFT and ORB. Only 60% of registered

images with high NCC and SSIM values are selected for

training. One model with ×2 scale factor was trained on

the following three sets: FLIR ×2 downsampled, Axis ×2

downsampled, and FLIR registered with Axis images. An-

other model with ×2 scale factor is attached to the input of

the first model trained for the noisy FLIR ×4 scale factor.

4.8. UTARVL1

The UTA-RVL-1 team proposes a novel network for

thermal image SR called the deep attention to varying

smooth receptive fields network (AVSRN). The proposed

architecture is displayed in SM-Figure 11. The network

expands upon popularized attention mechanisms [24, 2],

which have attempted to model local features of LR images

throughout SR networks.

The inputs to AVSRN are normalized LR images, which

are fed to a residual in residual (RIR) architecture [24].

The output of RIR, from the last residual group, is passed

to an upscaling module with different parameters for each



(a) Network architecture design.

(b) Residual feature extraction module.

Figure 5: The architecture proposed by the ULB-LISA team (winner at Evaluation 2).

upscaling factor. The RIR is very similar to the original;

thus, these contributions lie at the residual block (RB) level

shown in the right half of SM-Figure 11. The left half of

SM-Figure 11 shows its place within RIR. Inside the RIR is

a residual group containing two RBs.

At the RB level, input from the previous RB is fed to

a parallel structure of three smooth dilated convolutions

(SDC). Dilated convolutions allow CNNs to have access

to more contextual information at a lower cost. Each of

the SDCs in the parallel structure contains a separable con-

volution and then an atrous convolution, in sequence, to

lessen gridding issues associated with dilated convolutions

[19]. The features from the SDCs are aggregated by con-

catenation and Conv2D before being passed to the second-

order channel attention (SOCA) module. SOCA’s output

is multiplied by a residual connection from the aggregating

Conv2D preceding addition with a residual connection from

the previous RB.

4.9. UTARVL2

The UTA-RVL-2 team, inspired by recent successes of

implicit representations on 3D data [1, 12, 20], designed

a compact neural network for the 2D counterpart. The net-

work, shown in SM-Figure 12, learns local features from the

inputs through a series of 2D convolutions resulting in mul-

tiple feature maps. Given a normalized continuous query

location (x, y) in the image space, the network extracts the

corresponding features of the location on each learned fea-

ture map. These collected features are then used to predict

the intensity of a pixel corresponding to the location in the

output image.

More specifically, the proposed network first learns lo-

cal information from input image I through a series of three

convolution blocks of increasing depth. Each block con-

sists of two consecutive 2D convolution layers with ReLU

activation followed by a batch normalization layer. Each

convolution block produces a feature grid that is aligned

with the image space. Next, the features that correspond to

the input coordinates (x, y) are extracted from the feature

grids. Since the location is continuous and the feature grids



are discrete, the query features are calculated using bilinear

interpolation on each feature grid. The extracted features

from all feature grids are then concatenated and fed into a

three-layer fully-connected block, which predicts the inten-

sity value at location (x, y) in the output image.

In each iteration of training, the network takes a LR im-

age and a set of uniformly generated query locations as in-

puts. The GT intensity of each query location is collected

from the SR image of the same scene. Over time, the net-

work is optimized by continuous query locations. At test

time, given a LR image an output image of desired res-

olution is obtained by applying the network to an equally

spaced 2D grid of locations where the number of points in

the grid equals the number of pixels in the output image.

The proposed network is size agnostic and can be applied

to images of varying shapes.

5. Conclusion

This paper summarizes the contributions from the nine

teams that reached the final validation phase in the Thermal

Image Super-Resolution Challenge - PBVS 2021. This was

the second edition of the challenge in thermal image SR.

To conclude, we highlight that the number of teams reach-

ing the final stage is higher than in the first year and the

results obtained from the two quantitative evaluations out-

performed last year’s results. The results from this year will

be used as a baseline for the next challenge. Lastly, this

challenge has also been an opportunity to promote the test-

bed dataset used by the different teams.
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