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Abstract—This paper proposes to use a deep learning network
architecture for relative camera pose estimation on a multi-view
environment. The proposed network is a variant architecture of
AlexNet to use as regressor for prediction the relative translation
and rotation as output. The proposed approach is trained from
scratch on a large data set that takes as input a pair of images
from the same scene. This new architecture is compared with
a previous approach using standard metrics, obtaining better
results on the relative camera pose.

Index Terms—Deep learning, Camera pose estimation, Multi-
view environment, Siamese architecture.

I. INTRODUCTION

Camera calibration is a process that allows getting intrinsic

(i.e., camera matrix, focal distance, distortion) and extrinsic

parameters (rotation and translation) of a camera from a

special calibration patterns. Different algorithms of computer

vision do this procedure to have correspondences between 3D

world points and 2D images points on camera plane. These

correspondences are later on used to obtain the calibration

parameters by means of an energy minimization process.

Computer vision has some difficulties when trying to solve

this challenging camera calibration problem since many factors

affect this process, such as illumination, low resolution and

few image features. As mentioned above, image correspon-

dences, which are based on feature detection, is the central

point in any camera calibration process. Different approaches

have been proposed in the literature for feature point detection

and matching, for instance SURF [1], ORB [2], SIFT [3]

just to mention a few. Unfortunately, these algorithms have

low accuracy when there is not enough feature points to be

matched.

Recently, convolutional neural networks (CNN) have been

used to improve state-of-art results in tasks such as images

classification and segmentation, pattern recognition and im-

ages enhancement. Nowadays, these methods are widely used

due to their high precision in different spectrum such as

infrared and visible. CNN based camera calibration algorithms

have been also recently proposed. They can be classified into

two categories: single and multi-view environment. The single-

view approach is composed of monocular images that capture

environment from the same angle and camera in a sequence

of images, for which could be occluded an important feature

depending on the camera angle, becoming an important prob-

lem to solve. In [4] the authors have proposed a robust CNN

architecture, which can be used in real-time monocular six

degree of freedom environment. The approach is used to obtain

camera pose from a single RGB image, even with difficult

lighting, motion blur and different camera intrinsic parameters.

In [5] an updated version of the previous approach is proposed.

The authors propose a similar architecture but with a new

loss function to learn camera pose. On the other hand, the

multi-view approaches solve the problem of occluded features

since the scene is observed from different angles at the same

time. Obviously, there must be a considerable overlap between

the images. It should be noticed that all these learning based

processes have a main limitation, which is related with the

data set needed to train the network. Additionally, also related

with the size of the data set, is the required computational

cost. In the current paper a multi-view approach based on

the usage of a CNN architecture is proposed to estimate

relative extrinsic camera parameters between two images of

the same scene. The training process is performed using the

DTU Robot Image Dataset [6], which contains a large set

of image pairs with their relative pose information. Different

training strategies are evaluated to get the better results. The

rest of the paper is organized as follows. In Section II previous

works on relative camera pose estimation are summarized;

this is followed by Section III, which presents the proposed

approach to obtain extrinsic camera parameters. The results

of conducted experiments are reported in Section IV together

with a detailed description of the used dataset; and finally,

Section V concludes this article.

II. RELATED WORK

Over time, many solutions have been implemented to solve

the problems of camera calibration. In [7], the authors propose

a calibration process that does not require a calibration object

with known 3D shape. It only requires point matches of image

sequences. These points of interest are tracked through the

images as the camera moves. The approach is based on two
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Fig. 1. Siamese architecture is feed with two input images that capture a scene from different angles. The regression part contains three fully-connected and
dropout to estimate the extrinsic parameters of two cameras. A 7-dimensions vector is obtained as output.

steps; the first one find the epipolar transformation while the

second one uses Kruppa equations to estimate the camera

parameters. A particular approach has been presented in [8].

The authors propose a method that is based on the usage of

at least three images of a scene. These images are obtained

from the same point in space but with different camera’s

orientation. In this approach there is not epipolar structure

since all the images are taken from the same point in space,

which make the point correspondences easier. On the contrary

to the previous approaches, traditional methods are based on

feature point detection and mathcing (e.g., SURF [1], ORB [2],

SIFT [3]). As mentioned above, the main disadvantage of these

methods is related with the number of corresponding 2D image

points needed. This problem become harder with there is a

lack of illumination or texture. In [9] a comparative evaluation

of classical feature point descriptors in infrared and visible

spectrum is presented. The robustness to changes in rotation,

scaling, blur, and additive noise has been evaluated, obtained

similar results between both spectrum. The SIFT algorithm has

been used by [10] to calibrate the stereo cameras. For this, the

first camera is calibrated using a plane based chessboard and

after calibrated the intrinsic parameters of the two cameras

are obtained. With this information, the essential matrix is ob-

tained together with translation and rotation matrix. A method

that uses the techniques described above has been presented

in [11] for tackling the structure from motion (SfM) problem

(i.e., reconstruction of 3D-images from a video sequence).

In the SfM problem, camera position is recovered from the

extracted feature points. In [12] the authors propose to solve

the SfM by means of bundle adjustment algorithm, which

uses curves partially observed in all images to refine camera

position estimation.

In last years, many solutions using CNNs have been applied

in computer vision problems considering the powerful to

extract features on images. A few works have been proposed

in the context of relative camera pose estimation. One of the

work in this domain has been presented by [13]. The autors

propose a relative pose estimation between two cameras using

a Siamese CNN architecture. It was trained with image pairs

from same scene. The architecture was trained using transfer

learning from a large scale classification data set. An Euclidean

loss function is used to estimate the relative translation and

rotation as output. Each branch is composed of convolutional

layer and activation function (ReLU). They have two fully-

connected (FC1 and FC2) layers that estimate translation and

rotation respectively.

III. PROPOSED APPROACH

Figure 1 shows the approach propose to estimate relative

camera pose by using two images of same scene. Camera pose

is represented by a 7-dimension vector: Δp = [t̂, r̂], where t̂ is

a 3-dimensions vector that represents the translation and r̂ is a

4-dimensions vector (quaternions) that represents the rotation.

The proposed approach is a Siamese CNN architecture that

contains two identical branches with shared weight. They are

composed of convolutional layers, pooling and rectified linear

unit (ReLU) as activation function. Additional, two fully-

connected layers are proposed with hyperbolic tangent (tanh)

as activation function. In detail, the proposed approach is based

a modification of AlexNet architecture [14] ; more details are

as follows:

• Replace all fully-connected and softmax classifier to

output a 7-dimensions vector.

• Append two fully-connected layers before the final re-

gressor of feature size 1024 each layer and dropout.

• Normalized to unit length the prediction at test time.

The input image of proposed approach was resized to the

240x320 pixels for training and testing. Image enhancement

function (1) is used to improve the features of the images

before of training phase:

I(r,c) =
[ I(r,c) − I(r,c)MIN

I(r,c)MAX − I(r,c)MIN

]
[MAX −MIN ]+MIN

(1)

where I(r,c) corresponds to an image’s pixel, I(r,c)MIN and

I(r,c)MAX are the minimum and maximum values in the image

respectively. While MAX and MIN correspond to 0 and 255

respectively.
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Fig. 2. DTU Robot Image Dataset [6]. Some of the image pairs used to train and evaluate the proposed approach (ground truth of camera pose is estimated
through robotic arm).

The fully-connected layers allow learning non-linear combi-

nations of high-level features of convolutional layers. Dropout

is applied to avoid overfitting. The proposed approach allows

to train two image pairs. The output of both branches are

concatenated to estimate the prediction of 7-dimensions vector

that is represented as translation (3-dimensions) and rotation

(4-dimensions) (See Fig. 1). The proposed approach was

trained from scratch with an Euclidean loss function.

Lfinal(I) = ‖t− t̂‖γ + ‖r − r̂‖γ (2)

where γ is L2 euclidean norm. We normalize the ground truth

relative translation and rotation to unit length. Therefore ‖r‖ =
‖t‖ = 1. Hence a normalization stage is added at training and

testing phase

IV. EXPERIMENTS RESULTS

The proposed approach has been evaluated using image

pairs of the same scene and their corresponding extrinsic

parameters obtained from [6]. Tensorflow library [15] and

python [16] has been used for implementation of the proposed

approach. It has been trained using a 2.5 Ghz. dual core with

96GB of memory and Tesla K20m GPU. The Adam algorithm

[17] has been used as optimizer with a learning rate of 10−4,

reduced by 5% every epoch during 40 epochs. Every training

process took approximately about 49 hours using a batch of

100.

A. Dataset

In order to train the proposed architecture a large data set is

necessary. In the current work pairs of images from from [6],

referred to as DTU, has been used. In this data set ground truth

of camera pose (translation and rotation) has been obtained by

using a robotic arm. The DTU data set consists of 128 scenes

covering 64 different camera positions. The original images

have fixed-size of 1200x1600 pixels. In order to evaluate the

proposed model, the data set has been split up into training,

validation and testing sets. Only the images pairs that have

overlapping in the field view are considered. The training set

is composed of 59800 image pairs. Additional, the validation

and testing sets are composed of 11200 and 3700 image pairs

respectively. In Fig. 2) five pairs of images are presented.

As preprocessing step, DTU data set has been resized from

1200x1600 pixels to 240x320 pixels, keeping aspect ratio of

original images. Image enhancement function (1) has been

used before the training step. This helped to improve the

features of the images (see Fig 3). The ground truth of each

image pairs contains a 7-dimensions vector, i.e., translation

(3-dimensions) and rotation represented by quaternion (4-

dimensions). Additionally, each image pairs and their ground

truth camera pose (translation and rotation) has been saved

into TFRecord file of tensorflow to better manage memory

during training, validation and testing steps.

B. Results and comparisons

Different quantitative metrics has been used to evaluate the

proposed approach. One of the metrics is the angular error

(AE) computed between the obtained result and ground truth

value. AE is computed only on the four elements of the quater-

nion vector [18]. Additionally, The euclidean distance (ED)

is also considered a quantitative evaluation to determine the

distance between translations vectors. For a fair comparison,

the cnnB architecture [13] has been trained with the same

parameters and data set without transfer learning. Figure 4 and

Fig. 5 show comparisons of the results obtained with cnnB and

the proposed approach.

TABLE I
COMPARISON BETWEEN THE PREDICTION OBTAINED WITH OUR MODEL

AND CNNB MODEL USING SIX DIFFERENT SCENES FROM THE TESTING

SET.

Scene # Our model cnnB
Translation Rotation Translation Rotation

(ED) (AE) (ED) (AE)
84 0.019 22.71◦ 0.141 88.77◦
85 0.020 23.55◦ 0.135 80.51◦
98 0.021 21.79◦ 0.132 77.41◦
106 0.023 21.97◦ 0.155 75.04◦
110 0.023 26.40◦ 0.111 76.39◦
128 0.033 27.52◦ 0.143 92.90◦
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Fig. 3. (a) Result obtained after resizing original images to 240x320 pixels.
(b) Enhanced images after applying the enhanced function (note how image
are more colourful after this enhancement stage).

The presented results confirm that the proposed approach

obtains better accuracy than the cnnB architecture [13]. The

improvements on the proposed approach correspond to the

fully-connected layers that have been included to the feature

extraction stage; additionally, the combined use of branch

output in the regressor stage helps to obtain better results (see

Fig 1).

A set of six scenes, randomly selected, is chosen to evaluate

with more details the proposed approaches (see Fig 6). Each

scene contains 64 images taken with different camera posi-

tions. From this images about 70 pairs are obtained for the

evaluation. Table I shows the average results obtained in each

scene. According to these results, in all the scenes the proposed

approach has smaller angular and distance errors than the cnnB

architecture. The results with large translation and rotation

values correspond a scene with lack of illumination or poor

texture (e.g., scene 100, 128). On the contrary, the results

improve significantly when the images have good conditions

of lighting and features (e.g., scene 84, 98).

Fig. 4. Comparison of rotation error between proposed approach and approach
proposed by [13] on DTU Image Robot Dataset.

Fig. 5. Comparison of translation error between proposed approach and
approach proposed by [13] on DTU Image Robot Dataset.

V. CONCLUSION

This paper addresses the challenging problem of estimating

relative camera pose from two different images of the same

scene by using a Siamese convolutional neural network. Ex-

perimental results show that the proposed approach performs a

good camera pose estimation in most of the scenes. Accuracy

is affected by images with lack of texture or poor illumination.

Future work will be focused on evaluating different models

based on Siamese architecture; additionally, other loss func-

tions will be implement. Finally, increasing the size of data set,

including indoor or outdoor environments, will be considered.
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Fig. 6. DTU Robot Image Dataset [6]. Set of six random scenes from the testing set. The images were taken in different camera positions.
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