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Abstract—This paper proposes a novel approach to remove
haze from RGB images using a near infrared images based
on a dense stacked conditional Generative Adversarial Network
(CGAN). The architecture of the deep network implemented
receives, besides the images with haze, its corresponding image in
the near infrared spectrum, which serve to accelerate the learning
process of the details of the characteristics of the images. The
model uses a triplet layer that allows the independence learning
of each channel of the visible spectrum image to remove the haze
on each color channel separately. A multiple loss function scheme
is proposed, which ensures balanced learning between the colors
and the structure of the images. Experimental results have shown
that the proposed method effectively removes the haze from the
images. Additionally, the proposed approach is compared with a
state of the art approach showing better results.

Index Terms—Infrared imaging, Dense, Stacked CGAN, Cross-
spectral, Convolutional networks

I. INTRODUCTION

The images can be seriously affected by different causes,

one of the most common are the natural phenomena that occur,

such as fog, dust, rain, snow, etc. This considerably reduces

the visibility of the objects in the images, thus affecting

the understanding of the same. Therefore, processes such

as the detection, segmentation or the recognition of objects,

among others, will not be able to obtain results that meet the

required objectives. Outdoor scenes usually suffer mainly from

low contrast and poor visibility due to the adverse weather

conditions that cause airborne particles to scatter the light

present in the atmosphere. One of the atmospheric effects that

occur is the mist, which is independent of the brightness of

the scene and generates attenuation effects. It is affected by

ambient light at the time of image acquisition. It is necessary

to consider that at a greater distance from the focus of the

more diffuse camera the image becomes.

Improving the quality of images has been one of the

problems that computer vision has sought to solve, several

approaches have been proposed, especially aimed at removing

climatic effects such as haze; some traditional techniques were

focused for the elimination of the haze presented on images

using the characteristics present on them. In [1] a method

based on generic regularity in natural images is presented

where the pixels of small image patches usually exhibit a 1D

distribution in the RGB color space, known as color lines. This

method derives a local training model that explains the color

lines in the context of fuzzy scenes and uses it to recover scene

transmission based on the displacement of the lines from the

origin. In [2] a novel system is proposed to explore, improve

and manipulate casual outdoor photographs, combining them

with georeferenced digital terrain and existing urban models.

A simple interactive registration process is used to align a

photograph with that model. These methods generally involve

multi-step approaches that use depth information to eliminate

these degradation effects. Most methods to eliminate haze

in the images only consider the use of assumptions of hard

thresholds or user input to estimate atmospheric light.

In recent years, deep learning through convolutional neural

networks has been widely used in a wide range of fields.

In deep learning, these networks are found to give the

most accurate results in solving real-world problems. Among

the different network architectures, Generative Adversarial

Networks (GANs) have obtained excellent results to solve

problems such as [3] colorization, face generation, cross-

spectral similarity [4], single image dehazing [5] or NVDI

vegetation index generation [6]. Some of these approaches

have used NIR images to improve the results obtained by the

networks. In a previous work [5] we propose to remove the

haze from a image implementing a CGAN network working

with only RGB images. In the current work we tackles the

dehaze problem proposing the usage of cross-spectral images

(RGB+NIR) to enhance the removal process implemented by

our stacked dense CGAN network.

The NIR spectrum is independent of the brightness and

color of the targets, including non-visible illumination re-

quirements. Images from the NIR spectral band have surface

reflection which is material dependent. This means that the dif-

ference in the NIR intensities is not only due to the particular

color of the material, but also to the absorption and reflectance

of colors. Nowadays, although the additional information that

can be obtained from the images of the infrared spectrum,
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the people interested in the visual analysis of the information

prefer that images are able to be perceptible to the human

eye, this means that they are in RGB representation, because

it is easier for people to understand the scene to be analyzed

due to the familiarity of the shapes and colors of the objects,

facilitating decision making.

In our approach, each channel is mapped in a three-

dimensional space, using a stacked dense CGAN model to

accelerate convergence, we propose a dense model to to im-

prove the accuracy and efficiency of training.The manuscript

is organized as follows. Section II presents works related to

the haze removal problem, as well as the basic concepts and

notation of GAN networks. The proposed approach is detailed

in section III. The experimental results with a set of real

images are presented in section IV. Finally, the conclusions

are given in section V.

II. RELATED WORK

Different image haze removal techniques have been pro-

posed in last decade, some of them based on image attributes,

transmission map, air light conditions, atmospheric scattering

model, etc. (e.g., [7]). In [8] the authors proposed an enhanced

detail and dehaze technique for haze removal based on mod-

ified channel prior scheme and combine the dehazed image

with a non-sky detail layer using enhanced method in order

to improve the image details. After that, the recovered image

contrast will be enhanced based on a histogram equalization

approach. Also using a haze model, [9] proposes an improved

contrast enhanced restoration. This technique is based on a

quadtree subdivision searching method, which the sky area

of multi-channel polarization image are extracted automati-

cally, and the atmospheric light and degree of polarization

is calculated; then the scene depth information of image is

calculated based on contrast enhancement method. Finally, the

atmospheric intensity is thinly restored by guided filter, and the

degraded image is restored. In [10] a haze removal technique

that uses a fusion-based variational method is presented, which

combine the minimized outputs of two energy functionals to

produce a haze-free version.

The authors in [11] present a detailed survey and ex-

perimental analysis on DCP-based methods will explain the

effectiveness of the individual step of the dehazing process and

will facilitate development of advanced dehazing algorithms.

Another model based approach has been presented in [12],

which proposes an algorithm based on an image filtering,

dark channel prior, estimations of atmospheric light to obtain

an unhazed image and finally improving the local contrast.

Another method proposed in [13], consists of a combined

algorithm based on both dark channel prior and histogram

optimization, which can make the image contrast stretching,

so the impact of the haze on the image can be weakened. If

the obtained dehazing image cannot meet the minimum quality

required, the dark channel prior can be used to estimate the

haze intensity.

Lately, novel image haze removal approaches based on deep

learning techniques have been proposed obtaining acceptable

results. In [14] a model based on a reformulated atmospheric

scattering model is proposed, instead of estimating the trans-

mission matrix and the atmospheric light separately. Cai et.al.

[15] propose a trainable end-to-end system called DehazeNet,

for medium transmission estimation. DehazeNet takes a hazy

image as input, and outputs its medium transmission map

that is subsequently used to recover a haze-free image via

atmospheric scattering model. More recently the Generative

Adversarial Network (GAN) framework has been used ob-

taining appealing results. In [16] the authors propose a unified

single removal haze GAN network that jointly estimates the

transmission map and performs the haze process; the network

is trained using synthetic images and a two-term loss function.

Additionally, in the GAN architecture a stacking strategy is

proposed to speed up the learning process. Furthermore, the

proposed network is trained using real images. Also in [17] the

authors proposes a method for combining dark channel prior

(DCP) and bright channel prior (BCP) for single image dehaz-

ing. The proposed technique achieves airlight approximations

by implementing numerical proximity of atmospheric light,

which use the average value of the DCP and BCP. A previous

work presented in [5] proposed an novel stacked conditional

GAN to removal the haze on RGB image, and also proposes

a multiple loss to accelerate the learning process at training

time, this approach have obtained good results. Based on this

work, our current work proposed a cross-spectral dense CGAN

to achieve better accuracy and reduce the training time.

Generative based deep learning models can be used to take

a collection of points and infer a function that describes the

distribution that generated them. The generator model after the

training could create samples of the distribution that you just

learned, this allow the network to learn to generate data with

the same internal structure as other data. It is a framework pre-

sented on [18] for estimating generative models via an adver-

sarial process, in which simultaneously two models are trained:

a generative model G that captures the data distribution, and

a discriminative model D that estimates the probability that

a sample came from the training data rather than G. The

training procedure for G is to maximize the probability of D
making a mistake. This framework corresponds to a minimax

two-player game. In the space of arbitrary functions G and

D, a unique solution exists, with G recovering the training

data distribution and D equal to 1/2 everywhere. According

to [19], to learn the generators distribution pg over data x,

the generator builds a mapping function from a prior noise

distribution pz to a data space G(z; θg). The discriminator,

D(x; θd), outputs a single scalar representing the probability

that x came from training data rather than pg . G and D are

both trained simultaneously, the parameters for G are adjusted

to minimize log(1−D(G(z))) and for D to minimize logD(x)
with a value function V (G,D):

min

G

max

D
V (D,G) = Ex∼p data(x)[logD(x)] + (1)

Ez ∼p data(z)[log(1−D(G(z)))].
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GANs networks can be extended to a conditional model

if both the generator and discriminator are conditioned on

some extra information y. We can perform the conditioning by

feeding y into both discriminator and generator as additional

input layer. The objective function of a two-player minimax

game would be as:

min

G

max

D
V (D,G) = Ex ∼p data(x)[logD(x|y)] + (2)

Ez ∼p data(z)[log(1−D(G(z|y)))].
Recently applications of GANs have shown that they can

produce excellent samples. According to [20], training GANs

networks requires finding a Nash equilibrium of a non-convex

game with continuous, highdimensional parameters. GANs are

typically trained using gradient descent techniques that are

designed to find a low value of a cost function, rather than

to find the Nash equilibrium of a game. When used to seek

for a Nash equilibrium, these algorithms may fail to converge.

In that work, they introduce several techniques intended to

encourage convergence of the GANs game, motivated by a

heuristic understanding of the non-convergence problem. They

lead to improved semi-supervised learning peformance and

improved sample generation.

Considering the use of conditional generative networks

models, this work propose the usage of an architecture similar

to the one presented in [5], but by including a densely

connected layers architecture according to [21] to perform

shorter connections between the layers to merge the features

and make it more deeper, accurate, and efficient to train.

Also the model include a stacked network inspired on the

work presented in [22], which consists in a top-down stack of

GANs, each designed to generate lower-level representations

conditioned on higher level representations. In the current

work we propose a dense stacked conditional learning process

of the generator-discriminator to accelerate the convergence

of the network, this stacking strategy allows accelerating the

learning process to generate a clear image representation from

those affected by haze. The current work also proposes include

the corresponding NIR image to increase the effectiveness

of the haze removal process, and a multiple loss term for

discriminator, which makes the learning process continuous

and differentiable and consequently the times of convergence

for the generalization of learning are improved.

III. PROPOSED APPROACH

The proposed approach is based on a cross-spectral gen-

erative adversarial dense network stacked at several levels to

accelerate the training process. This model, unlike the one

proposed in [5], receives as an additional input the image

with haze, its corresponding in the near infrared spectrum

with the objective of obtaining an image with greater clarity

in the details of the images. The GANs generate the image

without haze starting from the images of both RGB and NIR

concatenated spectra, this architecture with the stacked scheme

uses a multiple loss to learn more efficiently and to improve

the convergence of the model, which allows to accelerate the

obtained diversity and to generalize the learning model. A

l1 regularization term has been added at every layer of the

generator network in order to prevent the coefficients to fit so

perfectly to overfit and to introduce more robustness to the

generalization of the model; additionally, it helps reducing the

time to reach a well trained network. l1 helps perform feature

selection in sparse feature spaces, this help to know which

features are helpful and which are redundant.

The network is designed to learn how to generate new

images without haze from an conditional latent distribution.

In our case, the generator network has been modified to use

feature hierarchical representation; we use three levels of dense

stacking conditional learning process. Additionally, the model

has been designed to receive cross-spectral concatenated im-

ages as an input and use a multiple loss function. In order

to optimize the model generalization, the GAN framework

is reformulated for a conditional generative image modeling

tuple. In other words, the generative model G(z; θg) is trained

from a haze and an infrared concatenated image and contrary

to the original GAN model formulation, the random noise z is

not used; with the assumption that the randomness has already

been preserved by the conditioning variables provided by the

images with haze, in order to produce a clear RGB image.

The discriminative model D(z; θd) is trained to assign the

correct label to the generated clear RGB image, according to

the provided original color image, which is used as a ground

truth. Variables (θg) and (θd) represent the weighting values

for the generative and discriminative networks.

Our proposed approach introduce a dense connection be-

tween layers on the architecture, according to [21] we propose

a network that implements shorter connections generally at the

beginning and the end of the learning layers in the model, this

give to the network the capacity to train more rapidly using

less layers. Use dense connections have several compelling

advantages: they alleviate the vanishing-gradient problem,

strengthen feature propagation, encourage feature reuse, and

substantially reduce the number of parameters. Applying this

kind of models of connectivity between the layers achieved as

a direct consequence of the input concatenation of RGB and

NIR image at any level of the learning layers, permits that all

the feature maps learned by any of the dense net layers can

be accessed by all subsequent layers. This encourages feature

reuse throughout the network, and leads to more compact

models.

In addition, similar to [5], multiple loss functions (L) have

been implemented, which was conformed by the combination

of the adversarial loss plus the intensity loss (MSE), the

structural loss (SSIM) and the image quality loss (IQ). This

combined loss function has been defined to avoid the usage

of only a pixel-wise loss to measure the mismatch between

a generated image and its corresponding ground-truth image.

This multi-term loss function is better designed to human

perceptual criteria of image quality, which is detailed below.

The adversarial loss is designed to minimize the cross-

entropy to improve the texture loss :
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Conditional Generative Adversarial Dense Network Model : 
 (G) Triplet Level Dehazing Generator Network  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(D) Discriminator Network 
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Fig. 1. Illustration of the proposed triplet cross-spectral dense CGAN architecture used for image dehazing.

LAdversarial = −
∑

i

logD(Gw(Iz|y), (Ix|y), (3)

where D and Gw are the discriminator and generator of the

real Ix|y and generated Iz|y images conditioned by the haze

and near infrared image feeded in each channel of the Stacked

Gan Network.

The intensity loss is defined as:

LIntensity =
1

NM

N∑

i=1

M∑

j=1

(RGBei,j −RGBgi,j)
2
, (4)

where RGBei,j is the estimated RGB representation and

RGBgi,j is the ground-truth RGB image. This loss measures

the difference in intensity of the pixels between the images

without considering texture and content comparisons. This loss

penalizes larger errors, but is more tolerant to small errors,

without considering the specific structure in the image.

To address the limitations of the simple intensity loss func-

tion, the usage of a reference-based measure is proposed. One

of the reference-based index is the Structural Similarity Index

(SSIM) [23], which evaluates images accounting for the fact

that the human visual perception system is sensitive to changes

in local structure; the purpose of using this index defines

the structural information in an image as those attributes that

represent the structure of objects in the scene, independent of

the average luminance and contrast. The structural loss for a

pixel p is defined as:

LSSIM =
1

NM

P∑

p=1

1− SSIM(p), (5)

where SSIM(p) is the Structural Similarity Index (see [23]

for more details) centered in pixel p of the patch P .

Another loss function that proposes this work is based on

the universal image quality index, the method proposed by [24]

was designed to model any image distortion via a combination

of three factors: loss of correlation, luminance distortion, and

contrast distortion.
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The main reason to use this quality index as a loss function

is its strong ability to measure the structural distortions exist-

ing in the images with haze. It is important to bear in mind

that because the signals of the images are non-stationary it is

preferable to evaluate the quality of the images by measuring

their statistical characteristics in a local way and then combine

them all together in a single measurement of image quality. If

there are a total of M steps, at the j-th step the local quality

index Qj is computed, then the overall quality index is given

by :

Q =
1

M

M∑

j=1

Qj , (6)

Hence, we can formulate the quality loss function as:

LQ =
1

M

M∑

j=1

(1−Qj). (7)

The final loss function (L) used in this work is the accu-

mulative weighted sum of the individual adversarial, intensity,

structural and quality loss functions:

Lfinal = 0.40LAdversarial + 0.25LIntensity+

+0.20LSSIM + 0.15LQ. (8)

The proportion assigned to each loss has been defined based

on the variability of the values obtained by each of the losses

during the training process.

The dense cross-spectral stacked CGAN network proposed

has been trained using Stochastic AdamOptimazer since it is

well suited for problems that are large in terms of data and/or

parameters, very appropriate for non-stationary objectives and

for problems with very noisy/or sparse gradients. Also the

Hyper-parameters have intuitive interpretation and typically re-

quire less tuning, prevents overfitting and leads to convergence

faster. Furthermore, it is computationally efficient, has little

memory requirements, is invariant to diagonal rescaling of the

gradients. The image dataset was normalized in a (-1,1) range.

The following hyper-parameters were used during the training

process: learning rate 0.00004 for the generator and 0.00003

for the discriminator networks respectively; epsilon = 1e-08;

exponential decay rate for the 1st moment momentum 0.4 for

discriminator and 0.3 for the generator; weight initializer with

a standard deviation of 0.04582; l1 weight regularizer; weight

decay 1e-2; leak relu 0.21 and patch’s size of 64×64.

The triplet architecture, see Fig. 1, maintains similar struc-

ture presented in [5]. Basically in the architecture a layer of

learning was suppressed, as well as the depth of the learning

layers was decreased because of the concatenation of the NIR

with the haze image. The learning architecture is conformed

by convolutional, de-convolutional, relu, leak-relu, fully con-

nected and activation function tanh and sigmoid for generator

and discriminator networks respectively. Additionally, every

layer of the model uses batch normalization for training any

type of mapping to prevent underfitting. It is very important

to maintain the spatial information in the generator model,

there is not pooling and drop-out layers and only the stride

of 1 is used to avoid downsize the image shape. To prevent

overfitting we have added a l1 regularization term (λ) in the

generator model, this regularization has the particularity that

the weights matrix end up using only a small subset of their

most important inputs and become quite resistant to noise in

the inputs. Additionally the architecture includes dense model

implemented by at the first and bottom layers in the model

to increase the generalization and obtain more optimization of

the learning process.

The generator (G) and discriminator (D) are both feedfor-

ward deep neural networks that play a min-max game between

one another. The generator takes as input on each channel the

hazy and NIR image and it is transformed into the form of

the data we are interested in imitating, in our case a RGB

clear image. The discriminator takes as an input a set of data,

either real image (z) or generated image (G(z)), and produces

a probability of that data being real (P (z)). The discriminator

is optimized in order to increase the likelihood of giving a high

probability to the real data (the ground truth given image) and

a low probability to the fake generated data (wrongly clarified

haze image), as introduced in [19]; thus, the dense conditional

discriminator network is updated as follow:

�θd

1

m

m∑

i=1

[logD(x(i)) + log(1−D(G(y(i), z(i))))], (9)

where m is the number of patches in each batch, x is the

ground truth image, y is the image without haze (RGB)

generated by the network and z is the random Gaussian

sampled noise. The weights of the discriminator network (D)

are updated by ascending its stochastic gradient. On the other

hand, the generator is then optimized in order to increase

the probability of the generated data being highly rated, it

is updated as follow:

�θg

1

m

m∑

i=1

log(1−D(G(y(i), z(i)))), (10)

where m is the number of samples in each batch, y is the

image without haze (RGB) generated by the network and z
is the random Gaussian sampled noise. Like in the previous

case, the weights of the generator network (G) are updated by

descending its stochastic gradient.

IV. EXPERIMENTS RESULTS

A. Results and comparisons

The proposed architecture has been evaluated using real

hazed images and their corresponding clear RGB and NIR

infrared representations obtained from [25]. Figure 2 presents

a set of images from this dataset. From all these images

85000 pairs of patches of (32×32 pixels) have been cropped

both, in the hazed images as well as in the corresponding

clear RGB images. Additionally, 8500 pairs of patches have

been also generated for validation. On average, every training
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(a) (b) (c)

Fig. 2. Set of images from the dataset obtained from [25]: (a) NIR image, (b) hazy image and (c) Groundtruth image.

Light Haze Light Haze Dense Haze Dense Haze Light Haze Light Haze Dense Haze Dense Haze

Fig. 3. (1st row) NIR patches. (2nd row) Haze patches. (3rd row) Results from the proposed approach dense CGAN (Loss Function: Lfinal). (4th row)
Ground truth images.

process took about 60 hours using a 3.2 eight core processor

with 16GB of memory with a NVIDIA TITAN V GPU.

Some patches, with the corresponding result obtained with

the proposed approach are depicted in Fig. 3; just for making

easier the evaluation of results from the proposed approach

patches have been split up into Light Haze and Dense Haze.

The quantitative evaluation consists of measuring several

metrics with the results obtained with the proposed Stacked

GAN approach when different combinations of the proposed

loss functions where considered; one of the metrics consists

of measuring at every pixel the angular error (AE) between

the obtained result (RGBoi,j) and the corresponding ground

truth value (RGBgi,j). AE is included since this measure is

quite similar to the human visual perception system, [26]—

AE is probably the most widely used performance measure

in color constancy research. Additionally, the Mean Squared

Error (MSE), the Quality Index (QIndex) and the Structural

Similarity (SSIM) metrics are also considered in this quanti-

tative evaluation. On the contrary to AE and MSE, which can

be considered as pixel level evaluation metrics, the SSIM and

QIndex are methods for evaluating the perceived quality of the

results. With the metrics mentioned above combinations of the

different loss functions are evaluated, results are provided in

Table I. It can be appreciated that in all the cases the results

obtained with the final loss proposed with dense Stacked

Conditional GAN are better than those obtained with the

approach presented in [5]. In addition, these losses, being

perfectly differentiable, allow for a better optimization of the

network, thus accelerating the convergence process. Just as

illustrations, few RGB images from Light Haze and Dense
Haze categories, generated with the proposed Stacked GAN

network, are depicted in Fig. 3 for qualitative evaluation.

V. CONCLUSION

This paper tackles the challenging problem of generating

clear RGB representations from hazed and their corresponding

NIR images by using a novel dense stacked cross-spectral con-

ditional generative adversarial network. Results have shown

that in most of the cases the network is able to obtain reliable

clear RGB representations. As mentioned in the discussion

section, this approach has as a limitation the need of having

ground truth images without haze for training, as future work,

actually, as work in progress we have proposed the usage of

a cycle GAN architecture, but feed it with RGB hazed and

their corresponding NIR image in the generator to speed up

the generalization. Future work will also consider other loss

functions to improve the training process.
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TABLE I
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INDEX VALUES, THE BIGGER THE BETTER) AND THE APPROACH IN [5].
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Training Light Haze Dense Haze Urban Dense Haze Light Haze Dense Haze Light Haze Dense Haze

Stacked CGAN presented in [5] 7.18 7.11 21.96 23.75 0.72 0.69 0.62 0.59
with LAdversarial + LIntensity
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with LAdversarial + LSSIM

Proposed cross-spectral dense stacked CGAN 6.28 5.97 19.19 20.33 0.86 0.84 0.76 0.69
with LAdversarial + LSSIM
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Stacked CGAN presented in [5] 5.95 6.12 18.74 19.21 0.84 0.80 0.71 0.68
with Lfinal

Proposed cross-spectral dense stacked CGAN 5.10 5.65 17.92 18.74 0.92 0.86 0.82 0.77
with Lfinal
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