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Abstract—This paper presents an innovative architecture based
on a Cycle Generative Adversarial Network (CycleGAN) for
the synthesis of high-quality depth maps from monocular im-
ages. The proposed architecture leverages a diverse set of loss
functions, including cycle consistency, contrastive, identity, and
least square losses, to facilitate the generation of depth maps
that exhibit realism and high fidelity. A notable feature of the
approach is its ability to synthesize depth maps from grayscale
images without the need for paired training data. Extensive
comparisons with different state-of-the-art methods show the
superiority of the proposed approach in both quantitative metrics
and visual quality. This work addresses the challenge of depth
map synthesis and offers significant advancements in the field.

Index Terms—Distance representation, Surface estimation,
Synthesized depth maps

I. INTRODUCTION

Synthesizing depth maps with high quality and precision

is an important problem in computer vision. Depth maps

contain essential information about a given scene, which can

enable many applications such as 3D reconstruction, scene un-

derstanding, and object recognition, among others. However,

obtaining depth maps from real-world situations is difficult and

costly, often requiring special sensors or complex calibration

methods. To overcome this challenge, deep learning-based

generative models have been proposed as a potential solution.

The applications of synthesized depth maps are diverse

and numerous. Depth maps can help to detect and recognize

objects in difficult environments, provide accurate 3D scene

understanding for robotics [1] and autonomous driving [2], and

improve virtual reality experiences (e.g., [3], [4]). Moreover,

the capability to generate depth maps synthetically offers new

opportunities for data augmentation, reducing the dependence

on extensive data collection and annotation [5]. Also, depth

estimation has become an essential support in the broader con-

text of scene understanding, allowing machines to perceive and

interact with their environment more effectively. Its importance

extends to numerous domains, including robotics, augmented

reality [6], autonomous navigation, 3D reconstruction, and

object recognition, where accurate depth information serves

as the core for improving the capabilities of computer vision

systems [7], [8]. The acquisition/estimation of reliable depth

information is pivotal to 3D perception, and several technolo-

gies exist for this task, ranging from active sensors (e.g., Time-

of-Flight devices) to passive cameras, coupled with a variety of

different techniques allowing for depth estimation from images

(stereo matching, structure from motion, and more) [9].

Using synthesized depth maps as a possibility, [10] intro-

duces a method for unsupervised learning of depth estimation

and visual odometry using deep feature reconstruction. The

proposed method uses the power of deep neural networks

to learn depth estimation and motion estimation directly

from unlabeled monocular sequences. In [11] the authors

suggest the fusion of color and hallucinated depth map for

improving image segmentation. The fusion of depth with RGB

enhances the accuracy of semantic segmentation, four different

fusion strategies are tested on computer-generated synthetic

datasets. Also working on scene understanding, [12] proposes

a CNN-based method to predict occluded parts of a scene

by hallucinating semantic and depth information. These are

some examples of the usage of depth maps generated from

monocular views.

In all the cases presented above, the quality of results relies

on the precision of the synthesized depth maps. Therefore,

considering the dependency on map accuracy, in the current

paper a CycleGAN architecture is proposed to generate precise

depth maps. The proposed model uses multiple loss functions.

The main contribution of our work is the incorporation of

multiple loss functions into the generative architecture. The

proposed method uses the cycle-consistency loss [13] [14],

which enforces the restoration of the original input from

the synthesized depth map and vice versa. Moreover, the

combination of contrastive [15], identity and relativistic losses

further improve the quality and realism of the generated depth

maps. By mixing these loss functions, the proposed archi-

tecture achieves a balance between stability and diversity in

the synthesized depth maps. The self-content preserving loss,

guided by a controllable structure, encourages the retention of

unique image characteristics, as demonstrated in [16]. Simulta-

neously, the identity loss ensures the consistency in preserving

structural information, as outlined in [17]. Additionally, the

incorporation of a generative adversarial model enhances both

the perceptual quality and the realism of the synthesized depth

maps, as discussed in [18].

The performance and quality of the synthesized depth

maps are extensively evaluated through comprehensive ex-

periments and comparisons with state-of-the-art methods. The

manuscript is structured as follows; Section II briefly presents

related work. Then, Section III introduces the proposed ap-

proach. Section IV presents experimental results and com-

parisons with state-of-art approaches. Both quantitative and

qualitative results are provided showing the improvements
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achieved with the proposed approach. Finally, conclusions and

future work are given in Section V.

II. RELATED WORK

Traditional methodologies have relied heavily on techniques

such as structure-from-motion, shape-from-X, binocular vi-

sion, and multi-view stereo for depth estimation (e.g., [19],

[20], [21]). There are some models based on stereoscopy to

estimate depth maps, among which is the method presented

in [22]; it proposes a depth map estimation algorithm, using

weighted combinations to improve depth map quality. This

composite focus measure outperforms similar ones in various

scene types and achieves high-quality depth map generation

using only the top five focus measures. On the other hand,

in Dziembowski et al. [23], a study is presented where it was

possible to determine the impact of lossy data compression on

the depth map estimation process. Texture compression has

been analyzed to affect the quality of depth maps, but the

impact is limited to low bitrates. Finally, in [24] the authors

propose to estimate depth maps by computing dense disparity

maps to take into account the characteristics of man-made

environments. The main objective is that the estimation of

the depth maps is as flat as possible. This facilitates its use

in applications such as robotics, autonomous vehicle driving,

scene understanding, and 3D reconstruction that require accu-

rate depth estimation from 2D images.

One of the first CNN-based approaches has been presented

in [25]; the authors propose an algorithm that accurately

estimates depth maps using a lenslet light field camera. The

algorithm estimates multi-view stereo correspondences with

sub-pixel accuracy using the cost volume, which is constructed

using the displacement of sub-aperture images using the phase

shift theorem, adaptive aggregation of gradient costs using

the angular coordinates of the light field, and feature cor-

respondences between the sub-aperture images as additional

constraints. The multi-label optimization propagates and cor-

rects the depth map in weak texture regions. The local depth

map is iteratively refined by fitting the local quadratic function

to estimate a non-discrete depth map. Additionally, the paper

proposes a method to correct unexpected distortions in micro-

lens images. The proposed method has been evaluated on real-

world scenarios for depth estimation.

Although the previously described methods have obtained

good results in the state of the art, they have a major

disadvantage since they depend on multiple observations of

the scene, which often requires different viewpoints or obser-

vations under various lighting conditions. In response to this

limitation, there has been an increase in recent research pre-

senting monocular depth estimation as a supervised learning

challenge. These novel techniques strive to directly anticipate

the depth of individual pixels within an image by deploying

models trained offline on extensive repositories of carefully

selected true-depth data. Consequently, a monocular depth

estimation is presented in [26], where the authors introduced

a deep learning-driven approach known as the Deep Ordinal

Regression Network (DORN). This DORN model employs

an ordinal regression technique to estimate depth values,

effectively mitigating the inherent ambiguity associated with

directly regressing to true depth. To achieve this, the model

discretizes depth values within logarithmic space, treating

them as ordinal variables. Subsequently, a deep neural network

is trained to predict the depth map based on this ordinal

representation. Additionally, includes an inference strategy to

reduce the discretization errors and object boundary confusion

introduced by naive operations to up-sample to the desired

space scale.

Also using a single view, in [27] the author propose a depth

estimation model based on per-pixel ground-truth depth data. It

introduces improvements to self-supervised learning methods,

resulting in both quantitatively and qualitatively enhanced

depth maps. Unlike the trend of exploring complex architec-

tures and loss functions, the authors propose that a model with

specific design choices that include a minimum reprojection

loss to handle occlusions effectively, a full-resolution multi-

scale sampling method to reduce visual artifacts, and an auto-

masking loss to disregard training pixels that do not conform

to camera motion assumptions. A guided approach for depth

estimation is proposed by Huynh et al. [28] which favors pla-

nar structures that are common in indoor environments. This

is achieved by using a depth-attention volume that encodes the

likelihood of a pixel belonging to a planar surface. Another

approach proposed in [29] introduces a novel interleaved

training procedure that allows the trinocular assumption to be

applied during training from current binocular data, allowing

the estimation of depth maps to be unaffected by typical stereo

artifacts.

III. PROPOSED STRATEGY FOR DEPTH MAP ESTIMATION

In this section the proposed generative model is presented,

it is based on the approach introduced in [33]. While this

approach initially focuses on generating thermal representa-

tions, our goal is to leverage the knowledge and techniques

gained from thermal image synthesis and extend them to the

generation of depth maps.

This newly proposed approach employs a variety of loss

functions, including cycle consistency, L1, contrastive, iden-

tity, and least squares losses, with the goal of enabling the

generation of realistic and high-fidelity depth maps from

grayscale images. This extension seeks to harness the potential

of generative networks to estimate the depth information of

objects within a scene. The use of generative adversarial

networks (GANs) is of particular importance because they

facilitate the generation of high-quality, realistic images, are

valuable for creating training data, and enable style transfer

between images, thus enriching computer vision systems with

a deeper understanding of the scene. The architecture of the

proposed approach is presented in Fig. 1.

To synthesize realistic depth maps using deep learning, an

efficient model has been implemented that generalizes the

distance patterns of the dataset comprising grayscale images

and their corresponding depth maps. This data set is then

preprocessed by resizing the images and normalizing the pixel
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Fig. 1. CycleGAN proposed architecture.

values to ensure consistency. Next, the grayscale images are

used as input for the model in order to generate synthetic depth

maps as output. During training, the model is maximized by

the Adam optimizer. Multiple loss functions are used, but in

this model, we also include a residual layer at the end of

the model to improve the accuracy of the network and allow

the creation of identity mappings, that provide short paths

from the initial layer to the last layer. Also, this residual layer

avoids the vanishing gradient problem. A new L1 loss function

has also been added to the original architecture proposed in

[33]; it minimizes the absolute difference between predicted

depth maps and the ground truth depth maps. To control

model complexity and prevent overfitting, a regularizer lambda

is integrated into the l1 loss function. This regularizer term

further improves the quality of these synthesized depth maps,

This term encourages the generation of realistic depth maps.

Commonly it is used to prevent overfitting and improve the

accuracy of the model when facing new data from the problem

domain. The L1 loss function is defined as:

LL1 regularized(G) =
1

N

N∑

i=1

|G(xi)− yi|+ λ ·R(G), (1)

Where xi and yi are the pixel values at the same position

(i, j) in the two images you are comparing. n is the total

number of pixels in the images.
∑n

i=1 represents the sum over

all the pixels in the images. |xi − yi| calculates the absolute

difference between the corresponding pixel values in the two

images. λ is the regularization hyperparameter that controls

the importance of regularization in the loss function. R(G) is

the regularization term, which could be a norm (L1 or L2) of

the parameters of the model G or some other penalty function

designed to prevent overfitting.

As previously mentioned, the contrastive, identity, and least

squares losses are also used to encourage efficient depth map

estimation. These losses are briefly described. Starting with

the cycle consistency loss, which measures how well the

model ensures that the generated depth maps are accurate

and retain meaningful information from the original input

in this case the bightness channel of an HSV image and

then their corresponding reconstruction back again. This cycle

consistency loss is defined as:

Lcycle(G,F ) = Ex∼pdata(x)[‖x−G(F (x))‖1]
+Ey∼pdata(y)[‖y − F (G(y))‖1],

(2)

where, x and y are the depth maps obtained from the model

and the original depth map, respectively, that are being com-

pared.

Also an identity loss, eq. (3), is used to preserve the essential

characteristics of the input data during the translation process,

which is crucial for maintaining the quality and fidelity of the

generated outputs. This means that identity loss helps preserve

the details and characteristics of the original depth maps

when they are passed through the generators. It’s especially

important when there’s a need to ensure that the generated

depth maps are consistent with the input depth maps and

maintain their critical features The identity loss is defined as

follows:

Lidentity = Ex∼pdata(x)[‖x− F (x)‖1]
+ Ey∼pdata(y)[‖y −G(y)‖1].

(3)

Continuing with contrastive loss, which helps the model

effectively learn how to separate different pairs of data points

in its feature space while bringing similar pairs closer together.

This implies that the model has successfully integrated the data

in a way that captures significant distinctions and similarities

between them. In this article, this loss allows the generating

network to produce maps that show depth values and spatial

structures comparable to real depth maps. According to [34],

this loss can be defined as:

Lcontrastive(Ŷ , Y ) =
L∑

l=1

Sl∑

s=1

�contr (v̂sl , v
s
l , v̄

s
l ) , (4)

where Vl ∈ R
Sl×Dl represents a tensor whose shape depends

on the model architecture. The variable Sl denotes the number

of spatial locations of the tensor. Consequently, the notation

vsl ∈ R
Dl is employed to refer to the Dl-dimensional fea-

ture vector at the s-th spatial location. Additionally, v̄sl ∈
R

(Sl−1)×Dl represents the collection of feature vectors at all

other spatial locations except the s-th one.

The proposed architecture also includes the least square loss

which encourages the model to predict more closely match the

ground truth depth maps. It means that the model is successful
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TABLE I
RESULTS FROM THE STAT-OF-THE-ART AND PROPOSED APPROACH ON NYUV2 DATASET.

Methods abs rel ↓ rmse ↓ rms log ↓ log10 ↓ d1 ↑ d2 ↑ d3 ↑
CycleGAN [14] 0,3483 1.2226 0.4096 0.1164 0.4401 0.7248 0.8793
CUT [30] 0.3450 1.1969 0.4048 0.1421 0.4335 0.7317 0.8875
FastCUT [30] 0.3385 1.2501 0.4091 0.1426 0.4420 0.7331 0.8821
DCLGAN [31] 0.3384 1.1894 0.3993 0.1398 0.4434 0.7414 0.8903
SimDCL [31] 0.3483 1.1881 0.4080 0.1427 0.4380 0.7300 0.8855
HnegSRC [32] 0.3514 1.2163 0.4105 0.1437 0.4328 0.7244 0.8812
Prop. App. 0.2727 0.9712 0.3363 0.1164 0.5296 0.8154 0.9331

CycleGAN [14] CUT [30] FastCUT [30] DCLGAN [31]

Input SimDCL [31] HnegSRC [32] Ours GT

CycleGAN [14] CUT [30] FastCUT [30] DCLGAN [31]

Input SimDCL [31] HnegSRC [32] Ours GT

CycleGAN [14] CUT [30] FastCUT [30] DCLGAN [31]

Input SimDCL [31] HnegSRC [32] Ours GT

Fig. 2. Experimental results: (1st. col.) input images; (2nd.-5th. col.) results of state-of-the-art approaches together with results from the proposed approach
and the corresponding ground truth depth map from NYU v2 test set.
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Fig. 3. Results from the state-of-the-art and proposed approaches on three case studies with color map visualization.
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in minimizing the squared differences between its predicted

depth values and the depth values in the ground truth data. A

lower least square loss signifies greater accuracy in depth map

generation, which is a key metric for evaluating the quality of

depth estimation models. The definition of the least square

loss can be expressed as follows:

LLS-GAN
D =

1

2
Exr∼P[(D(xr)− 1)2] +

1

2
Exf∼Q[D(xf )

2] (5)

LLS-GAN
G =

1

2
Exf∼Q[(D(xf )− 1)2], (6)

where xr represents a real depth map from the real data

distribution, xf represents a generated (fake) depth map from

the generator, D(xr) represents the discriminator’s output

(probability) for a real depth map xr, and D(xf ) represents

the discriminator’s output (probability) for a generated depth

map xf . This loss function promotes a more stable and

smoother generation process. It encourages the generator to

produce depth maps that are closer to the real depth maps in

a continuous and less erratic manner.

To enhance the synthesis of depth maps, instance normaliza-

tion is employed, which adjusts the features of each depth map

individually. Applying this normalization process effectively

reduces style differences between the generated and real-depth

maps, leading to improved overall quality and realism in the

synthesized depth maps.

Finally, all the loss functions presented above are combined

to guide the training process comprehensively, ensuring that

the generated depth maps not only resemble the real data but

also maintain content consistency and identity preservation.

The choice of λ values allow us to fine-tune the trade-off

between these different objectives during training. This final

loss is denoted as:

Lfinal = λ1LLSGAN(G,D,X, Y ) + λ2Lcont (G,H,X) (7)

+λ3Lcont(G,H, Y ) + λ4Lidentity(G,F ) + λ5Lcycle(G,F )

+λ6LL1 regularized(F,G)

IV. EXPERIMENTAL RESULTS

This section presents the experimental results obtained

with the proposed approach as well as with state-of-the-art

generative models. Firstly, a short description of the dataset is

given, then results and comparison presented.

A. Datasets

In this research, the NYU v2 dataset [35] has been used

for training and testing the different architectures. The NYU

v2 dataset is a widely used benchmark for depth map syn-

thesis from monocular images. It consists of 1449 RGBD

pairs captured using the Microsoft Kinect sensor in several

indoor scenarios. The dataset covers a diverse range of indoor

scenes, such as bedrooms, kitchens, living rooms, offices, and

classrooms, enabling the evaluation of the proposed approach’s

performance and generalization ability across a wide range of

real-world scenarios. For the experiments, the dataset has been

split into training and testing sets. The first 1000 pairs from the

dataset have been selected for training, while the remaining

449 pairs have been used for testing. As a preprocessing

step, all the images have been resized to 256x256 pixels to

ensure consistency and facilitate the training process. Also, a

normalization to the images has been applied to have values

between 0 and 1.

B. Results and Comparisons

In this section, experimental results from the proposed

approach are presented. Aditionally, comparisons with similar

state-of-the-art adversarial generative models are given. All

models have been trained on the same dataset, NYU v2,

to ensure a fair evaluation. Table I presents experimental

results with the different approaches using different metrics;

it includes absolute relative error (abs rel), root mean squared

error (rmse), root mean squared logarithmic error (rms log),

logarithm base 10 error (log10), and three different threshold-

based metrics (d1, d2, d3). As it can be appreciated, the

proposed approach outperforms the state-of-the-art methods

in all evaluated metrics. The lower values of abs rel, rmse,

rms log, log10, and the higher values of d1, d2, and d3

indicate the superior accuracy and robustness of our depth

map synthesized model on the NYU v2 dataset.

Figure 2 shows illustrations of results obtained with the

different approaches. The first column depicts the RGB input

images, while the subsequent four columns display the results

produced by different techniques and the ground truth depth

map for reference. As shown in Fig. 2, the proposed approach

consistently generates depth maps that closely resemble the

ground truth, preserving important depth details and contours

present in the input RGB image. This qualitative assessment

further reinforces the effectiveness of our method in generating

high-quality depth maps from single RGB images.

Finally, Fig. 3 shows three images as examples depicted

with a color map in order to highlight the quality of depth

estimation compared to ground truth. These experimental

results demonstrate that our approach achieves state-of-the-art

performance in both quantitative and qualitative evaluations,

making it a promising solution for monocular depth map

synthesis tasks.

V. CONCLUSIONS

This paper proposes a novel generative network that syn-

thesizes high-quality depth maps by integrating multiple loss

functions into the architecture, such as contrast, relativistic, l1,

and identity functions. These loss functions improve model

learning and generalization, resulting in a better representa-

tion of the shapes present in the image. Future work will

include residual learning layers and other loss functions to

further improve the visual representation of depth maps. New

architectures based on fuzzy generative models or transfor-

mative networks will be considered, in order to improve the

perception of distances of surfaces of objects in a scene from

a point of view. This can contribute to advances in the field
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of augmented reality, robotics, and modeling or reconstructing

shapes in 3D.
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