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Abstract

This paper outlines the advancements and results of the
Fifth Thermal Image Super-Resolution challenge, hosted
at the Perception Beyond the Visible Spectrum CVPR 2024
workshop. The challenge employed a novel benchmark cross-
spectral dataset consisting of 1000 thermal images, each
paired with its corresponding registered RGB image. The
challenge featured two tracks: Track-1 focused on Single
Thermal Image Super-Resolution with an ×8 upscale factor,
while Track-2 extended its evaluation to include both ×8 and
×16 scaling factors, utilizing high-resolution RGB images
to guide the super-resolution process for low-resolution ther-
mal images. The participation of over 175 teams highlights
the research community’s strong engagement and dedication
to enhancing image resolution techniques across both single
and cross-spectral methodologies. This year’s challenge sets
new benchmarks and provides valuable insights into future
directions for research in thermal image super-resolution.

1. Introduction
The field of image super-resolution (SR), particularly fo-

cusing on enhancing the resolution of thermal images, has
seen notable advancements in recent years. The primary
approach involves using deep learning techniques to con-
vert low-resolution (LR) images into high-resolution (HR)
counterparts. These methods typically involve training on
downsampled HR images that have been artificially aug-
mented with noise and blur to improve the network’s ability
to enhance image quality. Despite the prevalence of such
methods for visible spectrum images, there is a growing
need for specialized SR techniques tailored for the thermal
spectrum due to its wide range of applications.
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Figure 1. A montage of visible and thermal images, captured from
the same point of view but with different cameras sensor [35].

Reflecting on the progression of this field, the Thermal
Image Super-Resolution (TISR) challenge, first introduced at
the Perception Beyond the Visible Spectrum (PBVS) CVPR
2020 workshop [31], has become a pivotal benchmark for
evaluating advancements in thermal image SR. The success
of these annual challenges, culminating in the fourth TISR
challenge at PBVS 2023 [30], has prepared the way for
ongoing innovation and benchmarking within this special-
ized area. Each challenge has progressively built upon the
learning’s and datasets of its predecessors, contributing to a
rich foundation for current and future research. The dataset
used in previous challenge is available and also the CodaLab
(Track-11, Track-22) is open for benchmark comparisons.

The 2024 TISR challenge maintains the structure of pre-
vious years challenges, with two different tracks: Track-1
focuses on single-image super-resolution (SISR) with an ×8
upscale factor. Track-2, on the other hand, includes both ×8
and ×16 scaling factors and introduces the concept of using
RGB images as a guide in the super-resolution of LR thermal
input images. This dual-track approach not only sustains
the traditional focus on SISR but also expands the challenge

1https://codalab.lisn.upsaclay.fr/competitions/
9649

2https://codalab.lisn.upsaclay.fr/competitions/
9666
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Figure 2. Illustrations of the cross-spectral dataset, thermal and visible registered images [35].

to explore the potential of cross-spectral methodologies in
enhancing SR techniques. This year’s challenge, make use
of a new registered cross-spectral dataset using visible and
thermal cameras sensor, a mosaic is presented in Fig. 1.

The structure of the manuscript is outlined as follow. Sec-
tion 2 introduces the aims of the challenge and the used
datasets. This is followed by Section 2.3, which provides
an overview of the outcomes achieved by the teams in par-
ticipating in the two tracks. Subsequently, Section 3 gives
a concise overview of the leading methods proposed in the
competition. The manuscript concludes with Section 4, and
supplementary details about the participating teams are in-
cluded in the appendix.

2. TISR 2024 Challenge
Similar to past challenges (i.e., [31], [34], [32], [30]), the

TISR 2024 challenge aims to showcase a variety of meth-
ods for addressing the thermal image super-resolution issue,
serving as a benchmark in the field. Furthermore, this year
introduces a novel cross-spectral dataset designed to address
the challenge of guided thermal image SR, encouraging ad-
ditional exploration and research within this domain.

2.1. Thermal Image Datasets

This year’s challenge utilizes an innovative dataset known
as CIDIS (Cross-spectral Image Dataset for Image Super-
resolution) [35], featuring 1000 pairs of visible and thermal
images. These images were captured using a Basler camera
for the visible spectrum and a FLIR TAU2 camera for the
thermal spectrum, introducing new challenges and opportu-
nities for Super-resolution technology. The dataset provides
a comprehensive collection of 640×480 resolution images
for both visible and thermal spectrums, as depicted in Fig. 2.
It includes registered pairs of visible and thermal images
taken in daylight conditions, which were precisely aligned
using leading registration techniques such as Elastix [24],

Imregister [25], LightGlue [20], and Nemar [1] models.
The dataset comprises 1000 registered pairs of images,

split into 700 images for training, 200 for validation, and 100
for testing. The testing set is further divided into 20 images
for Track-1 testing, and 40 images each for Track-2 Evalua-
tion 1 and Track-2 Evaluation 2. These high-quality images
feature distinct edges, making them ideal for SR model de-
velopment and training. As mentioned above, the dataset’s
images were captured using Basler and FLIR TAU2 cameras,
both offering different resolutions, but for this dataset, all
images were standardized to a resolution of 640x480 pixels.
Visible spectrum images serve as a guidance for enhancing
a low-resolution thermal images, aiming to generate super-
resolved HR thermal images. Examples from this dataset are
showcased in Fig. 2.

2.2. Evaluation Methodology

The evaluation methodology for both tracks follows the
same protocol as that used in the PBVS 2023 challenge [30].
Contributions from all teams are assessed based on the av-
erage values of two key metrics: peak signal-to-noise ratio
(PSNR) and structural similarity index measure (SSIM) [39].
As previously mentioned, the challenge features two tracks,
each with its distinct evaluation process utilizing the 100
image set aside for testing as follows. In the first track, a
set of 20 LR images, derived from high-resolution camera
captures, are considered. These images are not subjected
to additional noise and are downsampled by a factor of ×8.
Figure 3 illustrates the evaluation process for Track-1.

For Track-2, the remaining set of 80 LR images is split
into two groups, with one group being downsampled by a
factor of ×8 and the other by ×16, to facilitate Evaluation 1
and Evaluation 2, respectively. Similar to Track-1, no noise
is added to these downsampled images. Figure 4 depicts the
evaluation process for Track-2.

This methodology ensures a standardized and fair com-
parison of the participating teams’ approaches, allowing
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for a comprehensive analysis of their effectiveness in en-
hancing the resolution of thermal images. By leveraging
a combination of PSNR and SSIM metrics, the evaluation
process aims to quantify both the fidelity and perceptual qual-
ity of the super-resolved images, offering insights into the
advancements achieved in thermal image super-resolution
technology through this challenge.
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Figure 3. Illustration of the evaluations process for Track-1 on a set
of LR images downsampled by a factor of ×8 with no added noise.
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Figure 4. Illustration of the evaluations process for Track-2 on a
set of LR images downsampled by a factor of ×8 and ×16 with
no added noise and using the corresponding HR visible images as
guidance.

2.3. Challenge Results

The top three results from each participating team for
each track are detailed in the following. In Track-1, 19
teams progressed to the final testing phase out of the 113
teams that initially registered. Table 1 presents the average
results (PSNR and SSIM) for the testing images across each
team in the two evaluations. Figure 5 show qualitative results
of Top1 result.

For Track-2, out of the initial 76 teams that registered,
16 advanced to the final testing stage. Table 2 showcases
the average performance metrics (PSNR and SSIM) for the
testing images across these teams, while Fig. 6 show qual-
itative result of Top1 result in both evaluation. Detailed
quantitative outcomes, enhancing the understanding of the
overall competition’s performance, are accessible on the Co-

Team [# param.]
(Track-1: SINGLE)

×8
PSNR SSIM

AC-TSR [132.98M ] 27.52 0.8355
CTYUN-AI [20.08M ] 27.48 0.8351

HBNU [21.20M ] 27.34 0.8322
HSC-SCA [289.10M ] 27.48 0.8292

Table 1. Track-1 top average results for Single Image SR of the
2024 TISR challenge (see Section 2.2 for more details). Bold and
underline values correspond to the best- and second-best results.

Team [# param.]
(Track-2: GUIDED)

Eval 1 (×8) Eval 2 (×16)
PSNR SSIM PSNR SSIM

AIR [3.04M ] - - - - - - 24.77 0.7878
GUIDEDSR [600M ] 31.52 0.9127 25.99 0.8266

UMKC MCC [12.17M ] 30.05 0.8947 25.67 0.8167
VISION IC [3.30M ] 29.34 0.8824 24.69 0.7928

Table 2. Track-2 tops average results for Guided Thermal Image
SR in each evaluation of the 2024 TISR challenge (see Section 2.2
for more details). Bold and underline values correspond to the best-
and second-best results, respectively for each evaluation.

daLab Competition [27] webpage for both Tracks (Track-13;
Track-24).

3. Proposed Approaches and Teams
This section presents a overview of the methodologies

employed by the teams that secured the top positions in each
metric of the evaluations across both tracks. Visual represen-
tations of the architectures yielding the best outcomes are
included. The teams are organized in alphabetical order.

3.1. Track-1: AC-TSR

The AC-TSR architecture first upscales the LR image to
match the size of the high-resolution image, and then feeds
it into the super-resolution network. As shown in Fig. 7, the
network comprises three parts: feature extraction, feature
enhancement, and image reconstruction. Specifically, the LR
thermal image is fed into the feature extraction implemented
by convolutional layers to extract shallow features.

Then, the extracted features are fed into feature enhance-
ment, which comprises N cascaded NAFBlocks [4], to en-
hance the image features. The enhanced feature is then fed
into the image reconstruction layer, followed by a skip con-
nection from the LR thermal image, generating the final
super-resolved result ISR. L1 loss is chosen as the loss func-
tion to constrain the network. To enhance the representability
of the network, the model is first trained with a ×4 LR-HR

3https://codalab.lisn.upsaclay.fr/competitions/
17013

4https://codalab.lisn.upsaclay.fr/competitions/
17014
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Figure 5. Results on Track-1 testing set. Images from left to right: LR, super-resolution result (AC-TSR Team), and GT.

Figure 6. Results on Track-2 testing set: top row shows Evaluation 1 (×8), bottom row shows Evaluation 2 (×16). Images from left to right:
HR Visible, LR, super-resolution result (GUIDED SR Team), and GT.

pair and then fine-tuned with a ×8 LR-HR pair. In addition,
data augmentation is employed to increase the quantity and
diversity of the data, and self-ensemble is also used in the
EDSR [18] method.

The AC-TSR team conducts experiments on two NVIDIA
3090 GPUs for two days using the PyTorch [26] framework.
The batch size and patch size are 8 and 32×32, respectively.
The model size is 132.98M parameters. The quantitative
results show that the AC-TSR team achieves the best results
in both metrics: 27.52 PSNR and 0.8355 SSIM for Track-1.

Source code can be found in https://github.com/
wcy-cs/AC-TSR.

3.2. Track-1: CTYUN-AI

The team employed the HAT-L [6] model to enhance
PSNR and SSIM metrics, leveraging a model architecture
that processes LR images through a Shallow Feature Extrac-
tion layer before concatenating the shallow features for deep
feature extraction via Residual Hybrid Attention Groups
(RHAG) [6] and a convolution layer, ultimately upsampling
to reconstruct high-resolution images, as shown in Fig. 8.

A dual-component loss function combining Mean
Squared Error Loss (MSELoss) and SSIM Loss with respec-
tive weights of 1 and 0.02 is adopted to balance the scale of
the loss functions effectively. The model, comprising 20.8M
parameters and initiated with ImageNet pre-trained weights,
is trained with an Adam optimizer at a learning rate of 0.0001
for 2000 steps, incorporating a warmup phase at a reduced
learning rate for the latter half of the training. To ensure ro-

bustness, a 5-fold cross-validation strategy is implemented,
training models on partitions of the data and averaging pre-
dictions from models with the highest validation accuracy to
determine the final test outcomes.

The CTYUN-AI team conducts experiments on two
NVIDIA 3090 GPUs, each with 24GB of VRAM, over a
total of 20 hours. The model size is 20.8M parameters. The
quantitative results show that this team achieves the second
best results in both metrics: 27.48 PSNR and 0.8351 SSIM
for Track-1.

Source code can be found in https://github.com/
upczww/TISR.

3.3. Track-1: HBNU

Given the outstanding results obtained by Transformer-
based deep neural networks in image super resolution, the
HBNU team chooses to utilize Hybrid Attention Trans-
former (HAT) [5]. This team first applies Nearest Neighbor
upsampling to the LR image, followed by the application of
Cutblur [40], an image augmentation technique specifically
designed for image super-resolution. After downsampling
the image using a desubpixel layer [37], they then directly
employ the model architecture of HAT [5]. For a detailed un-
derstanding of the model structure, please refer to HAT [5].
In the training stage, inspired by HAT [5]’s same-task pre-
training strategy, this team performs pre-training using the
DF2K (DIV2K [11]+Flicker2K [8]) to avoid the massive
time required for pre-training on ImageNet [7]. Figure 9
shows the proposed approach.
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Figure 7. Architecture proposed by the AC-TSR team.
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Figure 8. Architecture proposed by CTYUN-AI team on Track-1.

This team extracts sub-images in advance to increase I/O
speed by cropping the images. The crop sizes are 480×480
for HR images and 60×60 for LR images for pre-training,
and 432×432 for HR images and 54×54 for LR images for
fine-tuning. The batch size is 32 for pre-training and 8 for
fine-tuning, with the patch size set to 48×48 in both cases.
To mitigate overfitting on the small dataset, training-time
augmentations like random rotation, horizontal, and vertical
flips are employed. Additionally, test-time augmentations,
outlined in [28], are utilized to produce the final outputs.
The L1 loss is selected as loss function. Adam optimizer is
used for model training, with a learning rate set to 2e-4 for
pre-training and halved for fine-tuning.

HAT

: Nearest Neighbor upsampling

: Desubpixel Layer

L1

: Cut-and-paste

HR

LR

HR

LR

Figure 9. Architecture proposed by HBNU team on Track-1.

This team utilizes 4 NVIDIA GeForce RTX 3090 GPUs
for pre-training and 2 NVIDIA RTX A6000 GPUs for fine-
tuning, all supported by a 20-core CPU. Python program-
ming language and the PyTorch deep learning framework is
used. The model size is 21.2M parameters. The quantitative
results show that this team achieves 27.34 PSNR & 0.8322
SSIM for Track-1.

Source code can be found in https://github.com/
huiwoni/thermal_Image_SR

3.4. Track-1: HSC-SCA

The HSC-SCA team proposes a pre-trained SwinIR
model as shown in Fig. 10, enhanced through the DIV2K
dataset, to upscale LR thermal images to ×8 HR images,
utilizing DIV2K and Urban100 datasets for re-training to
preserve pre-trained weights and focus on structural details
in complex urban settings [10, 16, 36]. Grayscale images
are specifically chosen to emphasize shape enhancement,
with a tanh layer for output normalization and a cosine an-
nealing approach for learning rate adjustment [22]. AdamW
is used for optimization, with the model’s loss comprising
pixel-wise, perceptual, and adversarial components. Initial
training involves DIV2K, Urban100, and a thermal dataset,
followed by fine-tuning with adjusted datasets and loss struc-
tures, selecting three models for a global ensemble based on
the lowest validation loss.

The initial training phase mixed Charbonnier and SSIM
losses with a VGG19-based perceptual loss and a pix2pix
discriminator for adversarial loss, maintaining a loss ratio
of 1 : 10−3 : 10−3, and shifted to MSE for pixel-wise loss
with adjusted loss ratios in the fine-tuning phase [2,12]. Two
ensemble methods are employed: geometric self-ensemble
for manipulated input averaging and a global ensemble for
averaging results across different models [19]. The learning
rate begins at 2 ·10−4, decreasing to 10−4 in fine-tuning. Re-
training includes a sliding window approach for extracting
and augmenting LR-HR image pairs (48×48 and 384×384,
respectively), supplemented by random transformations in
the tuning phase for enhanced augmentation [29].

The HSC-SCA team conducts experiments on AMD
Ryzen 9 7950X 16-Core Processor (4.50 GHz) / 64 GB
RAM / 4090 1 way (24 GB VRAM), using pytorch, with
a training time of about 4 days. The model size is 289.1M.
The quantitative results show that this team achieves the
second best results in PSNR metric 27.48 PSNR and 0.8292
in SSIM metric for Track-1.

Source code can be found in https://github.com/
jsyoonDL/PBVS2024_TISR_Track1_x8.

3.5. Track-2: AIR

Recent advances in Image Super-resolution research have
shown that Transformer-based networks deliver impressive
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Figure 10. Architecture proposed by HSC-SCA team on Track-1.

results [14]. Although they excel in capturing global infor-
mation, they are less adept at constructing high-frequency
details compared to CNNs [9]. To overcome this limitation,
the authors of CRAFT [15] developed a model that effec-
tively captures and integrates high-frequency information
with global insights. The AIR team has adapted this model
for Guided Thermal Image Super-resolution, useful even
for RGB images, and introduces the Guided CRAFT model.
This approach starts with extracting features from thermal
images using RCRFG from CRAFT. Then, it proposes a
Guided RCRFG that enhances the performance of Guided
Thermal Image Super-resolution by utilizing these features
along with RGB images. The architecture is detailed in
Fig. 11.

The proposed network is trained using high-quality (HQ)
images with a resolution of 320×240 from the provided
train and validation dataset, employing a batch size of 4. All
images are augmented by random horizontal, vertical flips
and translates. The pixel-wise L1 loss function is calculated
for a pair of reconstructed images obtained from Guided
CRAFT and HQ images.

Figure 11. Architecture proposed by AIR team on Track-2.

All reported implementations are based on PyTorch
framework, while the proposed approach is conducted with
16-Core CPU, 1 × A100 GPU, 64Gib RAM for approxi-
mately five days. This team uses early stopping and an initial

learning rate of 0.0002 with the RAdam optimizer [21]. The
model size is 3.04M parameters. The quantitative results
show that the AIR team achieves 24.77 PSNR and 0.7878
SSIM in evaluation 2 for Track-2.

Source code can be found in https://github.com/
DoGunKIM93/guided-craft.

3.6. Track-2: GUIDED SR

The GUIDED SR team proposes a hybrid framework, and
it is based on the following two observations: 1) the widely
used two-stream structure can better capture complemen-
tary information between different modalities [33, 41, 42];
2) the mix of experts (MOE) strategy can further improve
the effectiveness of the algorithm by splitting a task into sev-
eral parts and using specialized experts to handle each one.
Specifically, as depicted in Fig. 12, the proposed framework
takes a paired RGB and thermal image (RGB-T) as input
and produces a high-resolution thermal image as output. It
contains five expert models, and the architecture details of
the expert model are listed in Fig. 13 (more details for this
architecture can be found in NAFNet [4]). Although these
models have the same network design, they have different
functions. Experts 1-4 process RGB-T pairs that are rotated
at various angles, striving to rebuild the images from mul-
tiple perspectives. Expert 5 serves as a fusion module that
integrates the output of the other experts.

To make these expert models cooperate with each other,
each expert model is first trained individually and then their
trained parameters are integrated for fine-tuning. The L1

loss is used as the default loss function. The experiments are
conducted on four NVIDIA A40 GPUs, each with 48GB of
RAM, and it takes about five days to train our framework.
The batch size and patch size are set to 8 and 32 × 32,
respectively. The model size is 600M parameters. The
quantitative results show that this team achieves the best
results in both evaluations across both metrics: 31.52 PSNR
and 0.9127 SSIM in evaluation 1, and 25.99 PSNR and
0.8266 SSIM in evaluation 2, respectively, for Track-2.

Source code can be found in https://github.com/
zhwzhong/GuidedSR-2024.

3.7. Track-2: UMKC MCC

The UMKC MCC team presents a multi-scale architec-
ture inspired by [13], as shown in Fig. 14. It uses bicubic
interprolation to upsample a LR thermal image (×8 or ×16
for GTISR tasks) to align with a high-resolution RGB image.
The upsampled thermal image is then concatenated with the
RGB image. The concatenated image is downsampled by
2× and 4× in two parallel pixel unshuffling streams. The
stream outputs are then processed by shallow feature ex-
tractors composed of two deformable convolutions with a
PReLU activation function in between.

The extracted features are inputted into a single fusion
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Figure 13. Detailed architecture proposed by GUIDED SR team.

block. The first component of the fusion block is a residual
block with enhanced channel attention [38]. The 4× down-
sampled features are upsampled to match the size of the 2×
downsampled features. Those features are concatenated and
then passed through a channel transformer [3]. These fusion
blocks repeat N times. The 2× downsampled features also
undergo a reconstruction block to obtain a high-resolution
thermal image.

Figure 14. Architecture proposed by UMKC MCC team, Track-2.

During training, each image is randomly cropped to ei-
ther 32 × 32 (for the ×8 GTISR task) or 16 × 16 (for the
×16 GTISR task). Each patch is then augmented through
mixup and flipping. It took 2 days to train the model with
a batch size of 8 on 2 NVIDIA RTX A6000 GPUs. The
model has 12.17 M parameters and optimal performance is
achieved with fusion blocks of size 48. The model size is
12.17M parameters. The quantitative results show that this
team achieves the second best results in both evaluations
across both metrics: 30.05 PSNR and 0.8947 SSIM in eval-
uation 1, and 25.67 PSNR and 0.8167 SSIM in evaluation 2,
respectively, for Track-2.

The code is available at https : / / drive .
google . com / file / d / 1MnbKL4OpD -
yjkY6fUWxbGR18F1pYZ5Hr

3.8. Track-2: VISION IC

The VISION IC team proposes a novel method named
SwinFuSR for RGB guided thermal image super-resolution
(Fig. 15), inspired by SwinFusion [23], as a solution for
the PBVS 2024 TISR track-2 challenge. The architecture is
composed of three modules: (1) shallow features extraction
using convolutional layers followed by N Swin Transformer
blocks [17], (2) deep features extraction using L attention-
guided cross-domain fusion blocks for the fusion of IR and
RGB features followed by concatenation and convolution to
merge the branches and (3) deep features reconstruction us-
ing P Swin Transformer layers to refine the merged features
and three convolution layers to return to image space.

In the first two modules, the architecture is divided into
two branches, similarly to SwinFusion: one dedicated to the
RGB image and the other to the IR image. A bicubic inter-
polation is performed on the IR image so that its dimensions
match those of its paired RGB image. A skip connection
from the IR interpolated image and to reconstructed image
is introduced for faster convergence and better performance.
This strategy allows us to obtain good convergence proper-
ties with an L1 loss, then refine the optimization with an L2.
The used patch size is 128×128 and batch size is 16. The
two input patches are augmented with random horizontal
and vertical flip and random rotations and then normalized
between 0 and 1.

Figure 15. Architecture proposed by VISION IC team, Track-2.
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The number of heads, the window size and the embedding
dimensions are 6, 9 and 60 respectively. Hyperparameters
are set with N = 2, L = 3 and P = 3. For training,
a PyTorch framework is used. The learning rate is set to
4×10−4 until 3300 epochs and then it is reduced to 1×10−4

for the remainder. The Adam optimizer is used. The run
lasted 72 hours (4300 epochs) with two Tesla V100 GPUs
with 32.0 GB of RAM each. The model size is 3.30M
parameters. The quantitative results show that this team
achieves the following results: 29.34 PSNR and 0.8824
SSIM in evaluation 1, and 24.69 PSNR and 0.7928 SSIM in
evaluation 2, respectively, for Track-2.

Source code can be found in https://github.com/
VisionICLab/SwinFuSR.

4. Conclusion
This paper highlights the innovative solutions proposed by

participants teams of the Thermal Image Super-Resolution
Challenge at PBVS 2024, incorporating both traditional and
novel tracks with a focus on cross-spectral datasets. The
challenge highlights the use of transformer-based models,
attention mechanisms, and hybrid architectures for enhanced
detail and texture recovery, alongside strategic data aug-
mentation and advanced loss functions to optimize model
performance. This year’s challenge has seen an unprece-
dented level of participation with over 175 teams across
the tracks, reflecting a growing interest in thermal image
super-resolution. The outcomes from Track-1 demonstrate
robust performance, setting new benchmarks for the field.
Meanwhile, results from Track-2 reveal that guided super-
resolution techniques notably enhance image quality, estab-
lishing a foundation for future research. The introduced
dataset will serve as a critical benchmark for upcoming chal-
lenges, promoting collaboration and advancing thermal im-
age super-resolution technology.
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Appendix A. Teams Information
The organization team acknowledge the participants and

utilize edited versions of top-performing team submissions

to provide additional method explanations.

TISR 2024 organization team:
Members: Rafael E. Rivadeneira1

(rrivaden@espol.edu.ec) and Angel D. Sappa1,2

Affiliations:
1Escuela Superior Politécnica Del Litoral, ESPOL, Campus
Gustavo Galindo Km. 30.5 Vı́a Perimetral, P.O. Box
09-01-5863, Guayaquil, Ecuador.
2Computer Vision Center, Campus UAB, 08193 Bellaterra,
Barcelona, Spain.

Top Participant Teams:
AC-TSR

Members: Chenyang Wang (wangchy02@hit.edu.cn),
Zhiwei Zhong and Junjun Jiang.

Affiliation: School of Computer Science and Technology,
Harbin Institute of Technology, Harbin 150001, China.
AIR

Members: Jin Kim (kim.jin@hanwha.com), Dongyeon
Kang, Dogun Kim.

Affiliation: Hanwha Systems, Seoul, Republic of Korea.

CTYUN-AI
Members: Weiwei Zhou (zhouwei-

wei@chinatelecom.cn), Chengkun Ling and Jiada
Lu.

Affiliation: China Telecom Cloud, Guangzhou, China.
GUIDED SR

Members: Zhiwei Zhong (zhwzhong.cs@gmail.com),
Peilin Chen and Shiqi Wang.

Affiliation: Department of Computer Science, City Uni-
versity of Hong Kong, Hong Kong SAR, China.
HBNU

Members: Huiwon Gwon (hui-
won/20191515@edu.hanbat.ac.kr), Hyejeong Jo and
Sunhee Jo.

Affiliation: Hanbat National University, Daejeon, Repub-
lic of Korea.
HSC-SCA

Members: Jiseok Yoon (jsyoon2118@hanwha.com),
Wonseok Jang and Haseok Song.

Affiliation: Hanwha Systems / Seongnam-si, Gyeonggi-
do, Republic of Korea.
UMKC MCC

Members: Raghunath Sai Puttagunta1

(rpyc8@umsystem.edu), Zhu Li1 and George York2.
Affiliation: 1University of Missouri, USA.

2US Air Force Academy, USA.
VISION IC

Members: Cyprien Arnold (cyp.arnold@gmail.com),
and Lama Seoud.

Affiliation: Polytechnique Montréal, Montréal, Canada.
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