
Synthesized Image Datasets: Towards an
Annotation-Free Instance Segmentation

Strategy
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Abstract. This paper presents a complete pipeline to perform deep learning-
based instance segmentation of different types of grains (e.g., corn, sunflower,
soybeans, lentils, chickpeas, mote, and beans). The proposed approach consists
of using synthesized image datasets for the training process, which are easily gen-
erated according to the category of the instance to be segmented. The synthesized
imaging process allows generating a large set of well-annotated grain samples
with high variability—as large and high as the user requires. Instance segmen-
tation is performed through a popular deep learning based approach, the Mask
R-CNN architecture, but any learning-based instance segmentation approach can
be considered. Results obtained by the proposed pipeline show that the strategy
of using synthesized image datasets for training instance segmentation helps to
avoid the time-consuming image annotation stage, as well as to achieve higher
intersection over union and average precision performances. Results obtained
with different varieties of grains are shown, as well as comparisons with manually
annotated images, showing both the simplicity of the process and the improve-
ments in the performance.

Keywords: Instance segmentation · Food grains · Synthesized dataset
generation

1 Introduction

Deep learning based approaches have shown to be the best option to tackle challenging
computer vision problems such as segmentation [14], recognition [13,15], 3D estima-
tion [21], scene understanding [23] just to mention a few. Actually, deep learning based
solutions have become the facto approaches to tackle challenging tasks in computer
vision, as well as in many fields. Although there are deep learning based models able to
obtain good results with a few training samples, in most of the cases their performance
depends on the amount of annotated data available during the training process.

Most of deep learning based models, for instance ResNet [8], VGG [16], AlexNet
[10], Mask R-CNN [7], are able to reach very accurate results for different applications
when trained on large and well-annotated datasets. Unfortunately, collecting annota-
tions at scale is not feasible or it is prohibitively expensive. Actually, this expensive
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task has been tackled in recent year by different initiatives for a few number of cate-
gories (e.g., pedestrians, cars, dogs, trains, among others) resulting in the well known
PASCAL VOC [5], COCO [12], ImageNet [4], SUN [22] datasets. These datasets con-
tain hundred of thousand of images with millions of annotations (bounding boxes, used
for recognition tasks), or thousands of well-annotated masks (instance’s contour, used
for segmentation applications).

The datasets mentioned above have been the starting point to develop interesting and
useful applications for the video surveillance [6] or driving assistance [20] fields, where
categories such as a person, car, bike, among others, are needed for training object
detection algorithms, or regions correctly annotated in urban scenarios for semantic
segmentation tasks. A bottleneck of most of deep learning based approaches lies is
the need of having large and well-annotated instances. In the current work, the seed
segmentation problem is tackled. In other words, given a cluster of crowded instances,
the algorithm should return the boundary of every single instance in the scene. Although
there are robust and efficient architectures to solve this problem (e.g., Mask R-CNN [7],
YOLACT [2], Deep watershed transform [1]), their performance is highly affected by
the dataset used for training; not only the quantity of instances in the given datasets is
important, but also the quality of annotations (i.e., objects’ boundary) is a key factor.
Furthermore, it is not easy to find datasets that adapt to the requirements of different
tasks.

Having in mind the limitations mentioned above, the current work proposes a novel
strategy to generate annotated images to be used for training instance segmentation
algorithms. Although the proposed strategy is evaluated on the well-known Mask R-
CNN [7], it can be also applied with other instance segmentation models. The main
contribution lies in the pipeline that allows to automatically generate annotated synthe-
sized images that can be used for training or to extend manually annotated datasets.
This mainly reduces time and annotation effort and allows the network to easily be
trained for different scenarios and acquisition sensors. The segmentation of instances
of different types of grains is approached, taking into consideration the corn grains as
a case study to evaluate the effectiveness of the use of synthesized images comparing
them with the results obtained using only real images.

The manuscript is organized as follows. Section 2 presents works related to the
instance segmentation as well as recent approaches on grain segmentation. The app-
roach proposed for generating synthesized datasets is introduced in Sect. 3. Experi-
mental results with different categories and evaluations using ground truth images are
depicted in Sect. 4. Finally, conclusions are presented in Sect. 5.

2 Related Work

As mentioned above, current work addresses the problem of kernel instance segmen-
tation and the need for datasets of large size and variability. In other words, this work
is focused on obtaining all the instances (i.e., grains) present in a cluster image with
a random distribution. This section reviews the most relevant works on these topics,
highlighting the main characteristics of each of the reviewed approaches.

Regarding instance segmentation, the Mask R-CNN architecture has become a ref-
erent in recent years in the area of object detection and instance segmentation; it extends



Synthesized Image Datasets: Towards an Annotation-Free Instance 133

Backbone

ResNet-101 + FPN
RPN

Classifica on

Mask branch

Box regresion

Feature

map

Fixed size

feature map

FC

RoIAlign Layer

Fig. 1. Mask R-CNN architecture used for grain instance segmentation. Images of synthesized
clusters of corn grains are shown as an example (classification module is not used).

the Faster R-CNN object detection framework by adding a branch for the genera-
tion of the masks at the end of the model, thus achieving the instances segmentation
for each output proposal box. In addition, the segmentation is executed in parallel to
the identification and location. The Mask R-CNN framework consists of three stages
(see Fig. 1). First, the backbone extracts feature maps from the input images. Second,
the feature maps generated by the backbone are sent to the Region Proposal Network
(RPN) to generate Regions of Interest (RoIs). Third, the ROIs generated by RPN are
assigned to extract the corresponding target features in the shared feature maps, and
subsequently mapping to a fully connected layer, for target classification and segmen-
tation instances. The process generates the classification scores, bounding boxes, and
segmentation masks [7,24].

Recently, some works have been proposed for the instance segmentation of grains.
For instance, Toda et al. [17] present an instance segmentation neural network to deter-
mine the morphological phenotype of barley grains. The authors propose to use a syn-
thetically generated dataset for the training stage, where the seeds are randomly ori-
ented to give the corresponding variability. The model trained with synthesized images
has given better results compared to the training with real images. In addition, the
authors validate the strategy in other types of grains such as wheat, rice, oat, and let-
tuce grains. The proposed strategy allows generating appealing results. Similarly, our
approach tackles the generation of synthesized corn kernel clusters by randomly dis-
tributing kernels but in our case, the HSV color space is used to obtain the area of every
single instance (i.e., corn kernel). In this color space, more precise contours are obtained
and shadows are easily removed.

On the other hand, Kar et al. [9] present a system for automatically estimating the
quality of food grains in which wheat grains are presented as a case study. In this case,
grains are segmented and classified into eight categories to analyze their quality. To
carry out this objective, a convolutional network is trained with a dataset that consists
of around 5000 synthesized images, according to the authors this model presents good
results both at the time of instance segmentation and classification. One of the differ-
ences with the proposal in the current work is that the work presented by Kar et al. [9]
uses the U-Net network for segmenting single grains which are later on used to gen-
erating the synthesized images; in the current work single grains’ mask are obtained
by simple thresholding in the HSV color space, which consumes much fewer resources
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and processing time. Another difference from the approach proposed by Kar et al. [9] in
which the input grains are randomly distributed concerning ours is that the distribution
in grid format provides better robustness because there is no error when segmenting the
instances that are used to generate the final synthesized cluster image.

Another works to carry out segmentation of instances before the classification of
types and defects in corn grains is the one presented by Velesaca et al. [18]. In that
work, the segmentation is performed using the Mask R-CNN network for subsequent
classification with a lightweight convolutional network. The segmentation algorithm is
trained using a real dataset manually annotated; a crowdsourcing platform, Labelbox1,
has been used to label every single element (e.g., impurities and grains) in the image.
This annotation process requires a lot of time and resources.

In [3] the authors present an evaluation of the effectiveness of segmentation using
images with uniform and textured regions in synthetically generated gray levels, using
unsupervised evaluation criteria based on image regions. Another segmentation tech-
nique based on multichannel texture filtering, which according to the authors allows
detecting similar regions and determining abrupt changes in patterns at the texture level
of the images is presented in [11]. This method was tested using both real and synthetic
images of simple patterns and wood grains, obtaining results similar in segmentation
by regions. Following the segmentation line, Wang et al. [19] presents a technique that
allows segmenting granular rock based on an extension of the skeleton of the image,
differentially eroding it to detect the cores of the granular rock. The results show good
effectiveness when compared to methods such as watershed.

3 Proposed Approach

This section first summarizes the Mask R-CNN instance segmentation network used in
the current work. Then, the proposed strategy for the generation of synthesized images
is presented. The proposed strategy has been evaluated through seven different cat-
egories of grains: corn, beans, lentils, mote, soybeans, chickpeas, and sunflower. The
corn kernel is used as a case study to illustrate the performance of the proposed pipeline;
in this case, study instances are manually annotated to be used as ground truth.

3.1 Segmentation Algorithm

This section introduces the instance segmentation algorithm used to validate the synthe-
sized imaging strategy presented in the current work. Among the different approaches,
the Mask R-CNN has been selected due to its great performance in the instances seg-
mentation task for different categories. Another characteristic of the Mask R-CNN is
that it uses the ResNet 101 architecture to extract features from the image and has a
large number of parameters (i.e., 63738 K), which makes it a complex architecture that
requires datasets with a lot of images for the training stage.

As mentioned above, the Mask R-CNN network is used for segmenting the given
image in instances—i.e., grains present on it. Initially, the model trained with just the

1 labelbox.com.



Synthesized Image Datasets: Towards an Annotation-Free Instance 135

Fig. 2. Examples on different types of grains from the Mask R-CNN network pre-trained with
COCO dataset.

COCO dataset is considered—in the 91 classes of COCO there are not seeds, grains, or
cereals categories, hence the network is not able to correctly segment the given images.
Figure 2 shows illustrations of the results obtained for seven different types of grains; as
can be appreciated, inconsistent results are obtained both in the area of each segmented
grain and in the number of predicted classes, in some cases (e.g., lentil) the result is
just a single big patch. As a conclusion, it can be stated that it is necessary to apply a
training process for this particular problem in order to achieve acceptable results in these
scenarios. For the training process, a large dataset of annotated instances is required;
the image annotation can be performed manually, as performed in [18], or by using the
strategy proposed in the current work, which consists of generating synthesized images,
which are directly annotated, from single real grains. The synthesized image generation
process is presented in the next section.

3.2 Synthesized Image Generation

As mentioned above, training instance segmentation algorithms require a large and
well-annotated dataset. This section presents a strategy for avoiding this time-
consuming task, as well as for a cost-effective at scale dataset annotation. In this way,
large datasets for different varieties of grains can be easily generated for the training
process. The proposed approach consists of two tasks: firstly images of single grains
are acquired from real scenes, and secondly, synthesized images of a cluster of grains
are generated by using sets of single grains. The number of grains in the resulting clus-
ter as well as their distribution can be set by the user as detailed below. Figure 3 shows
the pipeline proposed to obtain the synthesized images of different types of grains that
will be then applied to the case study of corn kernels.
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Fig. 3. Overall pipeline for synthesized clusters of grains generation. Firstly, each grain from the
real images—i.e., grids of grains—is cropped. Then, the grain’s area is extracted using back-
ground subtraction. Next, grains are inserted into an empty synthetic image by the positioning
algorithm; and finally, a custom background is applied to the synthesized image.

The first task for the generation of a synthesized image dataset consists of acquiring
images with samples of non-touching kernels—grids of kernels. The kernel sample
acquisition process consists of taking images of an A4 sheet where grains are uniformly
distributed. The amount of grains per sheet as well as the color of the sheet depends on
the type of grain, for instance, a blue sheet has been used for the mote and chickpea
grains, while other colors have been considered in lentil or sunflower to obtain a higher
contrast between grains and background. In each case, a grid is drawn to split the image
up into small regions containing a single grain in each cell. Images have been acquired
with a mobile device (12MP images) orthogonal to the A4 sheet. The resulting ROI
images are used in the next step to generate the synthesized images of a cluster of
grains. Figure 3(left) shows an illustration of an image with single kernels (i.e., corn
grains) uniformly distributed on a light gray A4 sheet.

The next step after obtaining single kernel crops is to apply a background sub-
traction technique to extract the area corresponding to the grain in the image. The
background subtraction is performed in the HSV color space to obtain a result robust
to illumination changes—background threshold has been adjusted for each variety of
grains considered in this work according to the background and illumination conditions.
Finally, morphological operators are applied to refine and improve contours by elimi-
nating shadows in the scene. The resulting mask is then used to extract the points that
define the contour of a given grain. Figure 3(middle) shows illustrations of the cropped
regions as well as the results after background subtraction.

The generation of synthesized images of a cluster of grains is finally performed by
distributing the number of single grains in an empty background image with a homoge-
neous color. This generation process allows to set different parameters according to the
requirements of the final user: the number of grains, size of the resulting synthesized
image, background color, percentage of grains in contact, percentage of grains on the
image borders (i.e., cut grains) and the number of images to be generated. The algo-
rithm receives as an input a set of images of individual grains randomly selected. Then,
based on the number of grains previously defined by the user, and according to a scale
factor that takes into account the size of the synthesized cluster image, kernels are ran-
domly rotated and placed one by one in available spaces, ensuring that the grains do not
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overlap each other. This algorithm does not maximize the contact perimeter between
elements, it only ensures that there is a contact according to the random rotation. Since
the kernel selection is randomly performed, a grain sample could be considered twice,
but by sure with a different orientation in the final image. Figure 3 shows an illustration
of the whole pipeline.

4 Experimental Results

This section presents experimental results obtained by using the proposed synthesized
image strategy to train instance segmentation approaches. First, the results of a case
study that evaluates the performance of the proposed strategy are presented. This case
study consists of a set of 23 manually annotated images of corn kernels, the obtained
results are considered as a benchmark to compare them with the results obtained when
using the synthesized images for training. Then, other categories of grains are included
in the evaluation. In this second case, since there are no annotated instances (object’s
contour), the number of detected instances is considered as the evaluation criteria.

The Mask R-CNN network [7] was trained to generate a model that allows obtain-
ing all the instances of grains present in a given image. The Mask R-CNN network
implementation used in this work is based on ResNet-101 as the backbone and pre-
trained COCO weight. In addition, the images in the training dataset have been resized
to 1024×1024, to reduce the computational cost of the entire process. The number of
images used in the different datasets has the following distribution: 16 images for train-
ing, 4 images for validation, and 3 images for testing. Figure 1 shows the architecture
of the Mask R-CNN network used in this work.

The results obtained by training the Mask R-CNN network using different datasets
are evaluated in the Sect. 4.2. The metrics used to measure the performance of the
trained networks are IoU, the number of grain instances correctly detected, average
precision (AP) in IoU 50% (AP50), 75% (AP75), and the average value of IoU 50% to
95% with a step size of 5% (AP@[.5:.95]). Furthermore, the synthesized datasets gen-
erated for the different grain varieties have been considered in the training process by
using two approaches: (i) first, the Mask R-CNN is individually trained for each grain
variety—i.e., single-grain approach; and (ii) the Mask R-CNN is trained considering
all the grain varieties at once—i.e., multi-category grain approach.
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4.1 Case Study

The results obtained by training the Mask R-CNN network using a real and synthe-
sized clusters of corn kernels datasets are evaluated in this section. The performance
of the different schemes (single- and multi-grains) is evaluated as follows: i) by tak-
ing into account the number of grain instances correctly counted; ii) by means of the
IoU; and iii) through the average precision metric. Table 1 shows experimental results

Table 1. Results on testing images (manually annotated ground truth) when the Mask R-CNN
network is trained with: Real images (Re); Synthesized single category grain dataset (Sn); Syn-
thesized multi-category grain dataset (Ml)—GT: Ground Truth.

Testing # of instances IoU

images GT Re Sn Ml Re Sn Ml

Image 1 200 199 198 198 0.901 0.914 0.905

Image 2 190 189 188 187 0.897 0.911 0.902

Image 3 223 215 215 212 0.898 0.900 0.895

Avg 613 603 601 593 0.899 0.908 0.901

Fig. 4. Results obtained on testing images (manually annotated ground truth images) when Mask
R-CNN is trained with real and synthesized datasets. (1st col) Ground truth labeled with Label-
box. (2nd col) Results obtained when training with the real image dataset. (3rd col) Results
obtained when training is performed with the synthesized single category grain dataset. (4th col)
Results obtained when training is performed with the synthesized multi-category grain dataset.
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obtained with the proposed strategy. The obtained number of instances and the IoU
metric computed on a set of testing image datasets (three manually annotated images
considered as ground truth) are presented; GT column corresponds to the ground truth
number of instances per image; Re columns show the number of predicted instances
and IoU metric when the Mask R-CNN network is trained with the real image dataset
(manually-annotated images). Sn columns show the number of instances predicted by
the network, as well as the IoU metric when trained with the synthesized corn kernels
dataset; just the corn category is considered. Finally, the Ml columns correspond to the
results obtained when the Mask R-CNN is trained with all synthesized image datasets,
in other words, when all grain categories are considered; both numbers of instances and
IoU are depicted. Looking at the results depicted in the table, although the number of
instances is slightly better when real images are used for training (just one instance error
in the first and second testing images) it does not happen the same in the case of IoU
metric. The results of the IoU metric show a better performance, in all the cases, when
the synthesized dataset is considered (single category grain), an improvement of up to
almost 1.4% can be observed in the first testing image. On the other hand, AP results
for this case study are depicted in Table 2, where the AP@[.5:.95], AP75 and AP50 met-
ric values are shown. It can be seen that the Mask R-CNN trained with synthesized
images presents a better performance in the metrics AP@[.5:.95] and AP75 while the
real dataset presents a better result in the metric AP50. The results obtained in the IoU
and AP metrics show that the use of synthesized datasets allows with a high percentage
of accuracy to correctly delimit the area and contour of the corn kernels confirming the
effectiveness and validity of the proposed approach.

Finally, qualitative results and ground truth annotations on the three testing images
are shown in Fig. 4, where the number of instances predicted by Mask R-CNN and
ground truth values is also depicted. In order to facilitate the qualitative evaluation,
the area of each grain segmented by the Mask R-CNN is brown colored while manual
annotations are shown in green. In addition, a blue circle has been used to highlight each
individual instance together with the corresponding instance number, to check there are
no duplicate or bad segmented grains.

Table 2. Results using the AP metric on testing images (manually annotated ground truth) when
the Mask R-CNN network is trained with: Real images (Re); Synthesized single category grain
dataset (Sn); Synthesized multi-category grain dataset (Ml).

Testing AP@[.5:.95] AP75 AP50

images Re Sn Ml Re Sn Ml Re Sn Ml

Image 1 0.790 0.830 0.790 0.964 0.980 0.957 0.989 0.980 0.974

Image 2 0.800 0.830 0.800 0.978 0.984 0.926 0.995 0.989 0.945

Image 3 0.780 0.790 0.750 0.950 0.945 0.884 0.964 0.964 0.903

Avg 0.793 0.818 0.781 0.958 0.964 0.922 0.982 0.978 0.9410
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4.2 Free Annotation Results

In order to evaluate the usefulness of the proposed approach in other grain categories,
the Mask R-CNN network has been trained with synthesized images generated with
the grain types presented in Sect. 3.2. In all these cases, the performance of the net-
work trained with different schemes (single- and multi-grains) is evaluated using the
IoU and AP metrics together with the number of correctly detected instances. It should
be mentioned that in all these categories of grains (except corn) there are not manually
annotated ground truths, hence in the case of real images just qualitative illustrations
are depicted together with the number of detected instances, which is used as a quan-
titative evaluation. Table 3 shows results (i.e., number of instances, IoU, and the AP
metrics) obtained when the Mask R-CNN network is trained with the synthesized sin-
gle category grain dataset (Sn) and with the synthesized multi-category grain dataset
(Ml). The number of instances in the GT column corresponds to the total number of
grains of the whole testing image sets, while IoU and AP metrics are average values
for the whole testing image sets. Three testing images have been used per category;
these images contain a random number of instances. It can be appreciated that in most
of the cases the best results are obtained when the Mask R-CNN is trained with the
synthesized single category grain dataset. Finally, in order to evaluate the performance
on real images, Table 4 shows results on different grain categories, just the number of
instances, when the Mask R-CNN is trained with synthesized single- and multi- cate-
gories schemes, is depicted since there are not manual annotations. Just as illustrations
of the performance on real images, Fig. 5 shows segmentation results on real images,
obtained by the Mask R-CNN trained with synthesized single category grain dataset for
different types of grains.

Table 3. Evaluation results—IoU and AP metrics—of the Mask R-CNN network when trained
with synthesized single- and multi- categories; just three testing images per category of synthe-
sized grain clusters are considered. Testing images contain a random number of instances, the
total number of instances per category, adding up the three testing images, is depicted in the
second column. Ground truth (GT); Synthesized single category grain dataset (Sn); Synthesized
multi-category grain dataset (Ml).

Type of # of instances IoU AP@[.5:.95] AP75 AP50

grain GT Sn Ml Sn Ml Sn Ml Sn Ml Sn Ml

Bean 973 973 973 0.943 0.937 0.918 0.884 0.999 0.998 0.999 0.999

Chickpea 903 903 903 0.936 0.928 0.928 0.643 0.999 0.998 0.999 0.981

Corn 598 598 598 0.942 0.934 0.929 0.886 0.998 0.997 0.997 0.988

Lentil 913 912 912 0.946 0.936 0.917 0.907 0.999 0.998 0.999 0.999

Mote 840 840 840 0.935 0.929 0.917 0.904 0.999 0.998 0.999 0.999

Soybean 1836 1835 1835 0.906 0.902 0.836 0.830 0.999 0.998 0.999 0.999

Sunflower 768 768 768 0.928 0.923 0.899 0.876 0.999 0.998 0.999 0.998
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Table 4. Evaluation results on real-world grain cluster testing images: number of instances
obtained by the Mask R-CNN network when trained with synthesized single- and multi- cate-
gories. Ground truth (GT); Synthesized single category grain dataset (Sn); Synthesized multi-
category grain dataset (Ml).

Type of Testing # of instances

grain images GT Sn Ml

Bean 13 1890 1888 1887

Chickpea 23 2871 2864 2868

Corn 9 1388 1387 1387

Lentil 9 2142 2137 2140

Mote 23 2985 2973 2969

Soybean 11 2500 2494 2484

Sunflower 22 3000 2829 2751

Fig. 5. Illustrations (one case per grain category) on real images from the Mask R-CNN trained
with the corresponding synthesized single category grain dataset.
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5 Conclusions

This paper proposes a simple but efficient strategy to automatically obtain annotations
to be used in the grain segmentation problem. Although it has been evaluated with the
Mask R-CNN architecture, it can be used in other deep learning based approaches.
The corn kernel case study shows that the Mask R-CNN network trained with the pro-
posed synthesized datasets achieves similar or better results, both IoU and AP, than
when trained with manually annotated images. The simplicity of the proposed strategy
allows generating ground truth information (annotated set of instances) just by taking
a set of images with instances regularly distributed in a grid; in other words, the time-
consuming annotation task is not required, speeding up the training process and at the
same time reaching better results. It should be mentioned that the results obtained by
the proposed strategy can be easily improved by just increasing the number of instances
initially acquired (regular grid), or increasing the variability of considered grains. In
other words, there is still space for improvement. In addition to the case study, the pro-
posed strategy has been evaluated with other types of grains, which include different
shapes, textures, and background colors (e.g., lentil, sunflower, bean, mote, chickpea,
and soybean). In all the cases the proposed strategy shows its validity. Again, results can
be improved by enlarging the synthesized images in the dataset used for training as well
as the variability of instances. Finally, just to confirm the need of having annotation for
each type of grains, a dataset with annotations of all the classes has been evaluated, in
all the cases the single class case reaches better results—i.e., the Mask R-CNN trained
with the grain type to be considered.
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