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Abstract. This paper proposes a novel approach for obtaining high-
quality thermal image-like representations that can be used as inputs in
various thermal image compressive sensing applications. We address the
challenge of low-resolution/quality thermal images by generating syn-
thetic thermal image representations using a contrastive cycled GAN
network from low-cost visible images. These representations can then be
used to improve the quality of low-quality thermal images of the same
scene. Experimental results demonstrate the effectiveness of the proposed
approach on different datasets.
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1 Introduction

Thermal sensors are playing an increasingly important role in enhancing the
accuracy and reliability of computer vision applications. However, they do come
with limitations, particularly the lower resolution of thermal images compared to
standard visual imaging techniques. High-resolution thermal cameras exist that
can overcome this limitation, but they are cost-prohibitive, making them less
accessible for widespread use [24]. Additionally, the nature of thermal imaging
requires different manipulation and processing techniques compared to visible
spectrum images, further complicating its integration into existing systems.

To address these issues, researchers have been exploring innovative ways
to leverage the benefits of using thermal imaging while mitigating its limita-
tions through thermal image super-resolution algorithms (e.g. [16–18]). Another

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
G. Bebis et al. (Eds.): ISVC 2024, LNCS 15046, pp. 384–396, 2025.
https://doi.org/10.1007/978-3-031-77392-1_29



Thermal Image Synthesis 385

promising approach to tackle this limitation is by means of data fusion strategies,
where information from multiple sensors operating in different spectral bands are
merged to obtain a better resolution representation. This multispectral imaging
strategy allows for the integration of thermal and visible light data, providing
a more complete view that can improve the interpretation and utility of the
produced images [19]. Deep learning plays a key role in this research, offering
new ways to process and analyze large data sets quickly and accurately. These
technologies are essential for applications that require real-time decision-making,
such as autonomous vehicle navigation, and predictive maintenance in industries,
among others [26].

One promising approach for enhancing thermal images is to incorporate visi-
ble images as guidance information. This is known as guidance image processing
and has been explored in various studies [22]. However, there is a need to develop
a more sophisticated approach to generate high-quality thermal images that take
into account the different spectral bands captured by the sensors [13]. Some
approaches utilize feature-level guidance rather than image pixel-level guidance,
using edges from one image to enhance the other image. This edge-based guid-
ing technique enables the reconstruction of higher-frequency features, as demon-
strated in previous works such as [27,29].

The majority of the methods mentioned above utilize deep learning
approaches, specifically Convolutional Neural Networks (CNNs), which outper-
form traditional methods in terms of efficiency. One of the limitations of CNNs
is the substantial amount of data required for training, especially when dealing
with paired images (thermal and visible spectrum). To address these limitations,
in the current work a model capable of generating synthetic thermal images from
visible images without the need for paired data is proposed. The ability to gen-
erate synthetic thermal images from visible images without the need for paired
data has numerous practical applications, such as in surveillance systems, search
and rescue operations, and medical imaging. The contribution of this paper can
be highlighted in:

– Implement a modified contrastive loss [11] to enhance the features obtained
from the generator. The implementation of this loss function enables the
model to focus on image regions with high affinity while disregarding those
with low affinity in the latent spaces

– Apply spectral normalization [14], to improve the style of the synthetic images
and the vanished gradients problem during the training of the model.

– Introduce the relativistic GAN loss function, to enhance the stability, and
convergence of the generator to produce high-quality synthetic thermal images
that closely resemble real ones.

The manuscript is organized as follows. Section 2 presents works related to
the generation of synthetic images. Section 3 presents the proposed cycled GAN-
modified architecture. Experimental results and comparisons are given in Sect. 4.
Finally, conclusions are presented in Sect. 5.
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2 Related Work

Image synthesis has been a popular area of research in computer vision, and deep
learning-based techniques have shown remarkable success in this field. Different
CNN models have been proposed to generate synthetic images and their further
applications; in [28] the authors propose using synthetic thermal images to train a
tracking model. By transforming paired and unpaired images, the tracking model
with thermal images achieves improved results. Among the various deep learning
models, generative models have gained significant attention in recent years for
their ability to generate high-quality images from a given distribution. One of
the most widely used generative model is the generative adversarial network
(GAN), which has proven to be highly effective in generating realistic images,
[21,23]. GANs consist of a generator network that learns to generate images and
a discriminator network that learns to distinguish between real and generated
images. The approach proposed in [6] aims to address the limitations of current
data sets for pedestrian detection in thermal imaging scenarios by generating
synthetic thermal images from their visible counterparts using domain matching.

Trying to overcome the limitation of paired images, [12] proposes the usage
of a cycled GAN network to translate visible images to the thermal domain while
maintaining consistency using a disparity map. Also in [3] the authors propose
a method for learning to count the number of pedestrians by utilizing synthetic
images instead of real ones. Similarly, using deep learning the approach proposed
in [11] aims to enhance the scene context in night vision applications utilizing
a GAN network to map context information. Also, another approach that uses
synthetic data is presented in [25] where the authors introduce a novel approach
to procedural world modeling, offering physically accurate and highly variable
image synthesis for real-time applications. In [9] a semantic image segmentation
technique is presented; the authors propose to address lighting and environmen-
tal limitations by incorporating both real and synthetic thermal infrared camera
images to guide contour extraction. Following the synthetic image generator
approaches, in [2] a new method is proposed to use synthetic images to gener-
ate an almost unlimited dataset for depth training. On the other hand, in the
work presented in [8], a cross-modal generative network is introduced to gener-
ate synthetic thermal images for training a people re-identification model. This
approach utilizes thermal images and introduces object notations to enhance the
accuracy of the re-identification results.

A more recent generative model is the diffusion model (DM), which has
gained significant popularity due to its ability to generate high-resolution images
with fine details. Diffusion models operate by iteratively adding noise to a par-
tially generated image and then removing the noise using a sequence of learned
transformations. Another work related to image synthesizing is presented in [20],
where the authors discuss the use of diffusion models in image synthesis and
their ability to control the image generation process without retraining. They
also introduce cross-attention layers to allow for general conditioning inputs such
as text or bounding boxes.
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3 Proposed Approach

The method proposed in the current work for obtaining synthetic thermal images
from visible spectrum images combines several state-of-the-art techniques. The
architecture used in this approach is based on a cycled GAN, which is a method
for transferring unpaired domains, as described in [30]. The current work builds
on the seminal research by refining the generator process to achieve a more accu-
rate translation of pixel intensity in the far-infrared spectrum. A contrastive loss
is also proposed, to improve the quality of the obtained images. The contrastive
loss, as presented in [11], allows the architecture to establish the correlation
between input embeddings that are in proximity to the region being processed.
By using cosine similarity to determine the similarity of nearby regions, the loss
method can determine differences based on their orientation, rather than just
their magnitude, as is the case with the L1 loss.

To obtain synthetic thermal images from visible spectrum images, the choice
of color space is particularly crucial, since it directly affects the model’s ability to
accurately simulate the temperatures of the objects presented in the images. In
experiments performed with the proposed approach, it could be determined that
changing the RGB color space of the input images to HSV led to significantly
improved results. Specifically, in the HSV color space, the brightness channel
was found to be particularly useful for accurately transforming visible informa-
tion into thermal, resulting in a high-fidelity representation of temperatures and
maintaining good contours and details in generated thermal images.

The current work also incorporates a relativistic GAN loss, proposed by [7],
in place of the traditional GAN loss suggested by [5]. The relativistic GAN
loss considers that in each mini-batch, at least 50% of the generated data are
false. The learning divergence is then minimized based on this assumption. This
approach is beneficial because it enables us to estimate that in a mini-batch
of randomly generated data, there are more realistic samples than false ones.
This leads to better training of the GAN, being a more stable training process,
and improved image quality; and consequently, more accurate synthetic thermal
images. Specifically, the relativistic loss is defined as follows:

Specifically, the relativistic loss is defined as follows:

LRGAN
G = E(x,y)∼(P,Q) [g (C (y) − C (x))] , (1)

LRGAN
D = E(x,y)∼(P,Q) [f (C (x) − C (y))] , (2)

where, E(x,y)∼(P,Q) corresponds to the expectation over the real x data sampled
from the distribution P and the fake y data sampled from the distribution Q.
The f (C (x) − C (y)) is the function that measures the difference between the
scores of the real and fake data for the discriminator and g (C (y) − C (x)) is
the function that measures the difference between the scores of the fake and real
data for the generator.
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The architecture uses a contrastive loss function, which helps the model learn
the similarities between the latent spaces it generates. This approach is based
on the principles outlined in [1].

This loss promotes the grouping of similar representations while ensuring that
dissimilar ones are distinctly separated. Contrastive learning requires defining
two distributions: A positive input distribution, x+ ∼ p+(· | x), which samples
inputs that are similar to a given input image x and a negative input distribution,
x− ∼ p−(· | x), which samples inputs that are different from the given input
image x. The proposed loss function can be written as:

Lcontr(Ŷ , Y ) =
L∑

l=1

Sl∑

s=1

�contr (v̂s
l , v

s
l , v̄

s
l ) . (3)

This function computes the contrastive loss by comparing the predicted feature
vectors v̂s

l with the true feature vectors vs
l and their corresponding sets of other

feature vectors v̄s
l . According to the authors in [1], the shape of the tensor Vl ∈

RSl×Dl is determined by the network architecture, where Sl is the number of
spatial locations in the tensor. vs

l ∈ RDl represents the feature vector at the sth

spatial location and v̄s
l ∈ R(Sl−1)×Dl represents the collection of feature vectors

at all other spatial locations except s.
To prevent the intensity levels of the pixels from exceeding the objective

domain’s bounds during the data transformation process, the model also employs
the identity loss function. This means that the generative network must retain
the most important characteristics, such as the thermal intensity level and object
shape, while maintaining the formation model’s stability. Specifically, the gen-
erative network must ensure that G(x) ≈ x and F (y) ≈ y.

Lidentity (G,F ) = Ex∼pdata(x)[‖G(x) − x‖]
+ Ey∼pdata(y)[‖F (y) − y‖],

(4)

where, G and F are the generative networks, x and y are samples from the data
distributions pdata(x) and pdata(y) respectively,

The final loss function (Lfinal) employed in our model is a combination of
previous loss components and it can be expressed as follows:

Lfinal = LRGAN(G,D) + λXLcontr(G,F )
+λY Lcontr(F, G) + γLidentity(G,F ),

(5)

here, λX and λY are the weights assigned to the contrastive loss function for the
two domains X and Y , respectively. And γ is the weight assigned to the iden-
tity loss function. These values have been empirically determined based on the
outcomes of the experiments. The contrastive loss component Lcontr measures
the similarity of the latent spaces produced by the generator networks G and
F on the embedding network for corresponding input images. The identity loss
component Lidentity ensures that the intensity levels of the pixels do not deviate
significantly from the original domain during the transformation process. The
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weight of the identity loss function, γ, is also defined empirically. Finally, the
overall objective function of the model is denoted by LRGAN and is optimized
jointly with the adversarial loss function between the generator G and the dis-
criminator D.

Fig. 1. Cycled GAN architecture proposed.

The architecture (depicted in Fig. 1) incorporates spectral normalization to
enhance the quality of the synthetic thermal images generated by the model.

4 Experimental Results

This section presents results of the proposed approach, both quantitatively and
qualitatively. Additionally, the data set used for training and the pre-processing
techniques applied to the images are described. Finally, a comparative analysis
is conducted using the structural similarity index (SSIM) and the peak signal-
to-noise ratio (PSNR) to evaluate the performance of the model in generating
synthetic images.

4.1 Training Settings

The model training process involves several steps to achieve the desired outcome.
Initially, the visible images are converted to the HSV color space, and only the
brightness channel is considered for model training. Furthermore, the images are
resized to 256 × 256 pixels during the training process. The model is trained
with a learning rate of 0.000273 using the Adam optimizer. Another parameter
configured is the value of 0.73 for the β1 parameter to accelerate the model
convergence and enhance the image quality results. To quantitatively evaluate
the performance of the model, PSNR and SSIM are selected as metrics. The
training process utilizes a TITAN V GPU, and it takes approximately 96 h to
complete.
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4.2 Datasets

The M3FD data set [10] has been utilized to train the proposed model. The data
set was captured using a binocular optical and infrared sensor and consists of
4,500 image pairs of outdoor scenes. For training, 3,000 image pairs were used
while 890 pairs were used for testing and the remaining images for validation of
the trained model. The images were pre-processed to generate realistic synthetic
far-infrared images by transferring them to the HSV color space and selecting
the V channel for training. To test the model’s robustness, the FLIR ADAS V2
dataset [4] with 300 pairs has been used. Also, an additional proprietary data
set called Thermal Stereo, which includes 200 pairs of registered visible-thermal
images, was used. The model trained with the M3FD data set was evaluated and
compared against the results obtained from other experiments.

4.3 Results and Comparisons

The proposed approach is evaluated by comparing it with unpaired image trans-
lation models, as described in papers Zhu et al. [30] and Park et al. [15]. These
models are well known for their ability to generate synthetic images from the
visible spectrum to another unpaired domain.

Table 1 presents the average results obtained from the model in [30], the
approaches presented in [15], and our model. The evaluation process uses samples
from the M3FD, FLIR ADAS V2 datasets as well as our dataset Thermal Stereo
consisting of outdoor scenes. The SSIM obtained with each dataset, together
with their corresponding PSNR values are depicted. Visual representations of
the synthetic thermal images generated from these validation sets are depicted
in Figs. 2, 3, and 4 for each testing dataset. The evaluation results demonstrate
the effectiveness of the approach in producing high-quality synthetic thermal
images, as evidenced by the quantitative metrics and visual comparisons.

Table 1. Average results from the validation sets (M3FD, Thermal Stereo and FLIR
ADAS V2 datasets). Best results in bold.

Approaches M3FD Thermal Stereo FLIR ADAS V2
PSNR SSIM PSNR SSIM PSNR SSIM

Zhu et al. [30] 12.589 0.501 11.939 0.419 12.031 0.462
CUT [15] 13.391 0.672 12.348 0.537 11.986 0.529
FastCUT [15] 13.901 0.703 13.163 0.673 12.432 0.611
Proposed Approach14.7340.77217.0980.733 13.1330.691
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Fig. 2. M3FD dataset: (1st. row) results from [30]; (2nd. row) results from [15]; (3rd.
row) results from [15]; (4th. row) results from the proposed approach; (5th. row) ground
truth images.
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Fig. 3. Thermal Stereo dataset: (1st. row) results from [30]; (2nd. row) results from
[15]; (3rd. row) results from [15]; (4th. row) results from the proposed approach; (5th.
row) ground truth images.
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Fig. 4. FLIR ADAS V2 dataset: (1st. row) results from [30]; (2nd. row) results from
[15]; (3rd. row) results from [15]; (4th. row) results from the proposed approach; (5th.
row) ground truth images.
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5 Conclusions

The main contribution of the work is the development of a novel approach for
transforming images from the visible spectrum to the far infrared (thermal)
spectrum using an unpaired cycled GAN network. Also, modifications have been
made to the loss and normalization functions to enable the network to simulate
not only the shape but also the temperature and texture of the thermal images,
to improve the image transformations. The results show better image quality
and fidelity compared to the state-of-the-art methods. In future research, further
exploration will be conducted to investigate the utilization of other state-of-the-
art techniques for thermal image syntheses, such as StyleGAN or VQ-VAE.
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