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Abstract. This paper presents a novel approach for motion segmenta-
tion from feature trajectories with missing data. It consists of two stages.
In the first stage, missing data are filled in by applying a factorization
technique to the matrix of trajectories. Since the number of objects in
the scene is not given and the rank of this matrix can not be directly
computed, a simple technique for matrix rank estimation, based on a fre-
quency spectra representation, is proposed. In the second stage, motion
segmentation is obtained by using a clustering approach based on the
normalized cuts criterion. Finally, the shape S and motion M of each
of the obtained clusters (i.e., single objects) are recovered by applying
classical SFM techniques. Experiments with synthetic and real data are
provided in order to demonstrate the viability of the proposed approach.

1 Introduction

Several techniques have been proposed for the motion segmentation problem by
feature trajectory grouping. Some of these approaches are formulated under the
framework of factorization methods (e.g., [1,2,3], to mention a few). Features are
tracked over time and their coordinates are stacked into a matrix W2f×p, where
f and p are the numbers of frames and feature points respectively—referred
to as matrix of trajectories hereinafter W . The key point is that under affine
camera model, feature trajectories corresponding to the same object lie in the
same linear subspace. Therefore the aim of the different proposed approaches is
to find each of these linear subspaces in order to reduce W to a form that allows
an easy identification of them.

The aforementioned problem becomes more difficult when the matrix of tra-
jectories contains missing data; that is, when not all the feature point trajecto-
ries are visible during the whole sequence (e.g., due to object occlusions, features
missed by the tracker or new detected features) and no information of the objects
in the scene nor the rank of W are given. In this case two different problems
should be faced up. Firstly, the unknown entries in the matrix of trajectories
must be filled in. Secondly, once W has been filled in, feature trajectories cor-
responding to the same object should be clustered together without previous
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Table 1. Summary of relevant features in previous techniques

method data rank value of W

Boult, Brown [1] full estimated(singular values)
Costeira, Kanade [2] full estimated (interaction matrix)

Han, Kanade [3] full estimated (maximum 6)
Kanatani [4] full estimated (model selection)

Zelnik-Manor, Irani [5] full estimated (singular values)
Yan, Pollefeys [6] full estimated (model selection[4])
Vidal, Hartley [7] missing 5

knowledge of the number of objects. Although some approaches have been pro-
posed for this second problem (e.g. [1,2,3,4,5,6]), as far as we know, the missing
data case is only tackled in [7] by imposing a rank five for W . Table 1 summarizes
the most relevant features of previous works, related to our current proposal.

The current work is focused on motion segmentation from feature trajectories
that contain missing data. A robust approach to deal with the two problems
mentioned above is presented. On a first stage, a strategy to fill in the matrix of
trajectories is introduced. It uses a factorization technique by firstly estimating
the best rank of W , when no prior information about the scene is given. Rank
estimation is based on a novel goodness measurement, which considers not only
the initial entries of W but also the recovered missing ones. The hypothesis of
the proposed goodness measurement is that the frequency spectra of the input
matrix W should be similar after recovering missing entries. On a second stage,
an approach similar to the one presented in [6] is used to obtain the feature
trajectory clusters. Once the segmentation is obtained, the shape S and motion
M of each of the clusters can be recovered by using any SFM technique (e.g., [8]).

The paper is organized as follows. Section 2 presents the proposed approach
for estimating the rank of the matrix W and filling in its missing entries. Section 3
summarizes the procedure used for motion segmentation once the given matrix
W has been filled. Experimental results with synthetic and real sequences, testing
different percentages of missing data and without a prior knowledge of the scene,
are presented in section 4. Conclusions and future work are given in section 5.

2 Fill in Process

The main objective at this stage is to fill in the matrix W in order to proceed
with its corresponding segmentation. Factorization techniques have been widely
used to tackle this problem in the single object case. The central idea is to
express a matrix W as the product of two unknown matrices: W = AB. Hence,
our motivation is to extend to the multiple object case this factorization-based
strategy for filling in the matrix W—concretely, we will use as factorization the
Alternation technique [9], which deals with missing data in W . In the case of a
single rigid moving object, the rank of W is at most four. Therefore, in general W
is filled, assuming that its rank is r = 4, by minimizing ‖W2f×p −A2f×rBr×p‖2

F ,
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where ‖.‖F is the Frobenius norm [10]. Unfortunately, with multiple objects the
rank is neither bounded nor easy to estimate, since information about the number
of objects or about their motions is not given. Our strategy consists in applying
the Alternation by assuming different rank values rk

0 for W , obtaining, thus, a
filled matrix W k

fill for each case. Then, the goodness of these filled matrices is
studied and the best one is taken for the next stage.

Although different goodness measurements could be defined, it could be no-
ticed that both known and missing entries of W should be equally considered in
order to obtain a fair value. For instance, selecting the rank that corresponds to
the filled matrix with the minimum rms1 could be wrong, since as it is pointed
out in [11], no goodness measurement of recovered data is used. In this context
we propose a novel goodness measurement detailed below.

The philosophy of the proposed approach consists in studying the frequency
spectra of the input matrix W . The hypothesis of the goodness measurement
is that, since feature point trajectories belong to surfaces of rigid objects, the
behaviour of the missing data should be similar to the visible one. This similar
behaviour is identified with the fact that the computed matrices W k

fill and the
input one W have a similar frequency content. In order to do that, the Fast
Fourier Transform (FFT) is applied to each of the columns of the matrices
W k

fill and also to the columns of W (adding zeros to its missing entries) for
comparing their modulus. Since the idea is to group features according to their
motion, the columns of the matrices are taken instead of considering the rows or
the two dimensions at the same time. In summary, the strategy is the following:

1. Take different rank values for W : rk
0 , where k = [5, ..., 15] in our experiments.

2. For each rk
0 , apply the Alternation technique to fill in the matrix of trajec-

tories, obtaining a W k
fill for each one.

3. Apply the FFT to W and to each W k
fill and compute their modulus:

F0 = |FFT (W )|, Fk = |FFT (W k
fill)|

4. Choose the W k
fill (referred to as Wfill hereinafter) for which the following

expression is minimum: ‖F0 − Fk‖F =
√∑

i,j ((F0)ij − (Fk)ij)2

3 Motion Segmentation

In this second stage, a similar approach to the one proposed in [6] is used to
segment the trajectories. It consists in estimating a local subspace for each fea-
ture trajectory, and then compute an affinity matrix based on principal angles
between each pair of these estimated subspaces. Finally, the segmentation of the
feature trajectories is obtained by applying spectral clustering [12] to this affin-
ity matrix, using the normalized cut criterion [13]. The steps of the algorithm
are briefly described below.

Rank detection. In the first step of the algorithm, the rank of the filled matrix
Wfill is computed. In general, in presence of noise all singular values are nonzero.

1 rmsk = ‖W − W k
fill‖F /

�
q
2 , where q is the number of known entries in W .
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Therefore, the smallest ones must be truncated in order to estimate the rank.
However, it is difficult to set an appropriate threshold. In [14], authors propose
the model selection for rank detection. Based on that, the following expression
is used to estimate the rank in presence of noise:

rm = argminr
λ2

r+1∑r
j=1 λ2

j

+ μr, (1)

where λi corresponds to the i-th singular value of the matrix, and μ is a parame-
ter that depends on the amount of noise. The higher the noise level is, the larger
μ should be (in our experiments, μ = 10−7). Therefore, the r that minimizes
this expression is considered as the rank of Wfill. Notice that it does not have
to coincide with the rank value used in the previous stage to fill in the matrix of
trajectories, rk

0 . In most of the cases, error is added to the entries of W in the
previous stage, hence its rank could vary.

Data transformation. If Wfill is a 2f ×p matrix, the idea is to consider each of
its p columns as a vector in R2f and to project them onto the unit sphere in Rr,
being r the estimated rank value in the previous step. The SVD decomposes
the matrix of trajectories as Wfill = U2f×2fS2f×pV

t
p×p. In order to project the

trajectories onto Rr, only the first r rows of V t are considered: V t
r×p. Finally, the

p columns of this matrix are normalized to project them onto the unit sphere.

Subspace estimation. For each point α in the transformed space, its local sub-
space is computed, formed by itself and its n closest neighbours: [α, α1, · · · , αn],
being n + 1 = d; where d is the highest dimension of the linear subspaces gen-
erated by each cluster (e.g., 4 for the rigid object case). The closest neighbours
are selected using the Euclidean distance between the transformed points.

Affinity matrix. Instead of computing a distance between points, the distance
between the local subspaces estimated in the previous step is used, which is
measured by principal angles [10]. The affinity A of two points α and β is defined
as the distance between their estimated local subspaces S(α) and S(β):

A(α, β) = e−
�M

i=1 sin(θi)2 , (2)

where θi is the i-th principal angle between the subspaces S(α) and S(β) and
M the minimum of their dimensions.

Spectral clustering. Finally, the motion segmentation is obtained by applying
spectral clustering [12] to the affinity matrix computed in the previous step.
Concretely, the normalized cut criterion, presented in [13], is used to segment the
data. This criterion measures both the total dissimilarity between the different
clusters as well as the total similarity within the clusters and it can be optimized
by using a technique based on a generalized eigenvalue problem.

4 Evaluation Study

In this section, the performance of the proposed approach is studied by using
synthetic and real data. Actually, only the 2–objects case is studied in this paper.
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Considering different percentages of missing data, 25 attempts are repeated and
the percentage of bad-clustered features over the total of features in W is com-
puted. This gives a measure of error in the clustering. Finally, the mean and
median of errors in all the attempts are presented.

Given a full matrix, the missing data are generated by automatically removing
parts of random columns in order to simulate the behaviour of tracked features.
Non-filled columns correspond to features missed by the tracker or to new fea-
tures detected after the first frame.

4.1 Synthetic Data

Two different objects are used. The first one is generated by randomly distribut-
ing 3D feature points over the surface of a cylinder, see Fig 1 (left). The second
object is generated from a set of 3D points, which correspond to a Beethoven
sculptured surface represented by a triangular mesh, see Fig 1 (middle).

Taking these two 3D objects, different sequences are obtained by performing
rotations and translations over both of them. At the same time, the camera
also rotates and translates. Although self-occlusions are produced, all the points
are stacked into the matrix of trajectories, since this is a synthetic experiment.
The full obtained trajectories of a sequence with a cylinder and a Beethoven are
shown in Fig 1 (right). This sequence is defined by 50 frames containing 451
features (185 from the cylinder and 266 from the Beethoven sculpture).

−100 −50 0 50 100−100

0

100

−50

0

50

2040

20

40

−20

−10

0

10

X
Y

Z

−120 −100 −80 −60 −40 −20 0 20 40 60
−20

−10

0

10

20

30

40

50

x

y

Fig. 1. Synthetic objects: (left) Cylinder. (middle) Beethoven. (right) Full feature tra-
jectories of the second sequence in table 2, plotted in the image plane.

Table 2 presents the mean and median of the error obtained in the 25 attempts
for each sequence and each percentage of missing data. In the first two sequences
the objects move independently, while in the last one the rotation of both objects
is identical and consequently the motion is dependent. Independently of the
object motion’s dependency, good results are obtained as long as the percentage
of missing data is below 50%.

Although out of the scope of this work, since our main target is motion seg-
mentation, Fig 2 shows an illustration of the shape and motion of each object
recovered by applying the Alternation to the results of the proposed technique.
These results correspond to the second sequence in Table 2, 20% of missing data.
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Table 2. Synthetic experiments

sequence 2 cyl., W180×145 cyl., Beet., W100×451 2 cyl., W180×160

missing data 20% 30% 40% 50% 20% 30% 40% 50% 20% 30% 40% 50%
mean error 0.02 0 0.57 15.14 0.07 0.41 0.66 4.98 0.25 0.32 0.20 15.90

median error 0 0 0 2.75 0 0 0 0.66 0 0 0 10.62
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Fig. 2. Recovered 3D shape and motion: (left) Cylinder. (right) Beethoven.

4.2 Real Data

The same procedure applied to the synthetic data is now used with real data.
The two objects studied for these real data experiments are shown in Fig 3 (left)
and (middle), respectively. For each object, a real video sequence with a res-
olution of 640 × 480 pixels is used. A single rotation around a vertical axis is
performed to each of the objects. Feature points are selected by means of a
corner detector algorithm and only points distributed over the squared-surfaces
(box and cylinders) visible in all the frames are considered. More details about
corner detection and tracking algorithm can be found in [15].

The input matrices of trajectories corresponding to sequences of multiple ob-
jects are generated by merging different matrices of trajectories (corresponding
or not to the same object) after having interchanged the x and y coordinates.
Overlapping between objects is avoided for clarity by applying a translation.
The first studied sequence is generated by using the first object twice, while the
second sequence uses both objects. The obtained full trajectories in this second
case are plotted in Fig 3 (right). This sequence is defined by 61 frames and 275
features (87 from the first object and 188 from the second one).

Table 3 summarizes the obtained results. It can be seen that the error in
the clustering is higher than in the synthetic case, even working with smaller
percentages of missing data. The main reason is that, working with real noisy
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Fig. 3. Real objects: (left) First object. (middle) Second object. (right) Full feature
trajectories plotted in the image plane, second sequence in table 3.
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Table 3. Real experiments

sequence First sequence, W202×174 Second sequence, W122×275

missing data 10% 20% 30% 40% 50% 10% 20% 30% 40% 50%
mean error 5.19 8.00 14.52 15.10 24.06 11.95 8.21 16.49 23.52 43.02

median error 1.72 3.44 5.74 5.17 20.68 3.63 4.00 7.63 29.09 46.54

data, the Alternation propagates the noise to the filled matrices in the filling in
process. Consequently, the error in the clustering is higher than working with
synthetic free of noise data.

Finally, Fig 4 shows an example of the recovered shape and motion obtained
by applying Alternation to the trajectories corresponding to the two objects of
the second sequence in Table 3, 20% of missing data.
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Fig. 4. Recovered shape and motion: (left) First object. (right) Second object.

5 Conclusions and Future Work

In this paper, an approach for motion segmentation from feature trajectories
with missing data is presented. It consists of two stages. In the first stage, the
missing data in the feature trajectories are filled in. Since working with missing
data and with no prior knowledge of the number of objects in the scene, the rank
of the matrix of trajectories can not be directly computed, a novel technique
to estimate it is proposed. It is based on a frequency spectra study of W and
motivated by the fact that feature point trajectories belong to surfaces of rigid
objects. Therefore the filled matrices should contain a frequency spectra similar
to the one of the input matrix. In the second stage, motion segmentation is
obtained by using a clustering technique based on the normalized cut criterion.

Although we focus our work on the study of the error in the clustering, it
should be mentioned that, in the first stage, the rank of the input matrix W is
properly estimated in most of the cases by using the proposed goodness mea-
surement (it can be checked, since the full initial matrices are known).

Experiments with independent and dependent motions are presented and it
is shown that, although the approach performs well in both cases, better results
are obtained when the motion subspaces are independent. In the experiments
with real data, the error in the clustering is higher than in the synthetic ones.
This is due to the added error in the feature trajectories during the first stage.

Further work will include a study of robustness of the proposed approach to
noisy data.
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